A device comprising a sensor, for being mounted to a railway axle bearing unit

Vorrichtung mit einem Sensor, zur Befestigung in einer Achslagereinheit für Schienenfahrzeuge

Dispositif comprenant un capteur, à fixer dans une unité du palier d’un essieu ferroviaire.
Description

[0001] The present invention refers to a device comprising a sensor said device for being mounted to a railway axle bearing unit of the type equipped with an annular sealing insert fast with the stationary outer race of the bearing on the axially outer side thereof. The present invention also relates to a railway axle bearing unit equipped with such a sensor mounting device.

[0002] A bearing of the aforesaid king is known from US-A-5,547,290 fig.9 for example.

[0003] As is well known, railway bogies rest on the stationary outer races of axle bearings by means of saddle-shaped elements that leave uncovered the lower half of the axially outer face of the axle, where a sealing device is usually fitted to close from the outside the annular gap between the inner and outer races of the axle bearing.

[0004] It is an object of the present invention to provide a device enabling to easily fit in the upper parts of said bearing units a sensor for monitoring the operational conditions of the bearing, particularly but not exclusively a temperature.

[0005] The above and further objects are accomplished, in accordance with one aspect of the invention, by the provision of a device of the aforesaid king, characterised by comprising a mounting means of substantially annular shape adapted for mounting to an axial cylindrical surface of said insert, said mounting means being adapted for supporting:

- a sensor to be positioned at the upper half of the annular insert;
- electrical connecting means to be located at the lower half of the annular insert and adapted for providing electrical connection of first conductor means connected to the sensor, to second conductor means connected to a further point remote from the bearing.

[0006] According to another aspect of the invention, there is provided a bearing unit for a railway axle of the type equipped with an annular sealing insert integral with the stationary outer race of the bearing at the axially outer side thereof, characterised by comprising a sensor mounting device as defined herein above.

[0007] In order that the present invention may be well understood there will now be described a few preferred embodiments thereof, given by way of example, reference being made to the accompanying drawings, in which:

- FIG.1 is an axial cross-sectional view of a railway axle bearing unit equipped with a device according to the present invention;
- FIG.2 is a partially sectioned side elevational view looking in the direction of arrow II of FIG.1;
- FIG.3 is a view, to an enlarged scale, of a detail of FIG.1;
- FIG.4 is a view, to an enlarged scale, of a detail of FIG.2; and
- FIG.5 is an exploded perspective view of a bearing unit fitted with an alternative embodiment of a device in accordance with the present invention.

With reference initially to FIG.1, a railway axle bearing unit comprises a radially outer stationary race 1, a pair of radially inner rotating half-races 2a, 2b, and two sets of tapered rollers 3a, 3b, axially spaced and radially interposed between the outer race 1 and the inner half-races 2a, 2b, respectively. The inner half-races are fitted in known manner to the rotating axle 4. An end cap 5, fixed to the axle 4 by means of threaded fastening elements 6, retains the inner half-races 2a, 2b in their correct axial position through an interposed cylindrical spacer 7.

[0008] Resting superiorly on the outer race of the bearing is a concave, saddle-shaped or inverted U-shaped element 8 of a conventional railway bogie (not shown for simplicity). As visible in FIG.2, saddle element 8 has a circumferential extent of about 180 degrees, congruent with the upper and radially outer semi-cylindrical surface of the outer race 1. The saddle element 8 holds the outer race 1 in its correct position due to the vertical load transmitted thereto.

[0009] Reference numeral 9 designates overall in FIG.1 a sealing device of conventional design for sealing the annular gap 20 between the outer race 1 and the inner half-race 2b from the axially outer side of the bearing. The sealing device 9 is comprised of an annular sealing insert 10 integral with the stationary outer race 1 and an annular insert 11 fast for rotation with the axle 4 and the other rotating parts of the unit. The stationary annular insert 10, of metallic or other rigid material, is so shaped as to form a radial wall 12 adjacent to an axial cylindrical wall 13.

[0010] According to the present invention, the cylindrical wall 13 serves as a supporting surface for a device for mounting one or more sensors to be applied to the bearing unit. The mounting device comprises an annular strip 14 surrounding the cylindrical wall 13 from the outside. The strip 14 is circumferentially tightened by a tightening device indicated 15. In the preferred embodiment shown in the drawings, the strip 14 is a circular open ring the ends of which are coupled by a tightening means such as a bolt 15a. As will be apparent to those skilled in the art, tightening of the strip 14 may also be accomplished through different arrangements in a manner equivalent to that of the presently disclosed example.

[0011] At its upper portion, the strip 14 supports and is secured to a sensor body or sensor housing 16, preferably made of an electrically conductive material such as copper. Mounted to the sensor body 16 is a sensor 17, which in the preferred embodiment projects within the gap 20 through an opening 18 obtained in the cylin-
A device comprising at least one sensor (17), said device for being mounted to a railway axle bearing unit having an annular sealing insert (10) fast with the stationary outer race of the bearing from the axially outer side, characterised by comprising a mounting means of substantially annular shape (14, 14') adapted for mounting to an axial cylindrical surface (13) of said insert (10), said mounting means electrically connects one or more wires 21 from the sensor 17 (and/or from other sensor(s) mounted on the same strip) with a cable 22 transmitting the signals generated by said sensor(s) to a processing unit (not shown) located in a remote position, for example on board of the bogie. According to a possible variant, the connector block 19 could also be adapted for connecting the cable 22 in detachable manner, for example by means of a connector (not shown).

The wire electrical connection 21 running along the arch of the strip 14, between the sensor body 16 and the connector block 19, can be improved by co-moulding the outer sheath of said wire to the strip. The sensor body 16 and the connector block 19 could as an alternative be fixed to the strip 14 in other ways, for example by welding.

In the preferred embodiment shown in the attached drawings, the sensor body 16 is radially outwardly protruding in a radial recess 23 formed e.g. by milling the top of the concave side of the saddle element 8. Such an arrangement is advantageous in that the sensor body 16 constitutes a stopping means impeding even slight relative rotation between the outer race 1 and the bogie. Such relative rotation could occur for example when the train passes over points and is therefore subjected to vertical jerks. Rotation of the outer race could in fact stress the cable 22 excessively or even rip or detach same, particularly where the connector block 19 includes a detachable connector.

In order to securely retain the strip 14 onto the outer surface of the cylindrical wall 13, particularly to axially lock the strip to said wall, there are preferably provided engaging means and corresponding seats, for example in form of protuberances 24 formed with the strip 14 and apertures or recesses 25 formed in the cylindrical wall 13 (FIG.4). In a particularly advantageous embodiment, as shown in FIG.2, said axially retaining means and seats are disposed symmetrically with respect to the vertical axial plane P, such that the mounting device can be indifferently mounted with the cable 22 to the right as shown, or to the left, according to requirements. In case retaining seats are provided in form of radial apertures, the strip 14 is suitably equipped with rubber or elastomeric gaskets (not shown) at said apertures.

Referring to FIG.5, there is illustrated an alternative embodiment of the present invention wherein the mounting means supporting the sensor 17, the connector block 19 and the conductor wire 21 between these two devices is an element in form of a ring 14' open at its lower part. At its upper portion, the open ring 14' integrally forms a sensor housing portion 16' and an inner or rear channel (not shown for simplicity) at its right branch portion for housing the conductor wire(s) 21 therein. The open ring 14' is fixed to the annular insert 10 by means of fastening elements 24' engaging fastening holes 25' formed in the insert 10 at locations symmetrical with respect to the vertical plane P, as discussed herein above with reference to the embodiment of FIGs.1 and 2.

The mounting device of the present invention is adapted for supporting any kind of temperature sensor (electronic, thermocouple, platinum, magneto-resistance, etc.) and also other types of sensors. For example, in replacement of or in addition to a temperature sensor fitted in the higher part of the bearing unit, there can be provided a sensor for gauging the revolving speed or the angular displacement of the inner half-axes of the bearing unit. In FIG.2 there is schematically shown an example wherein the sensor 17 is a sensor for gauging revolving speed, facing an impulse ring 26 fast for rotation with the axle 4 and equipped with circumferentially spaced magnetised sectors or metal teeth.

As will be apparent to those skilled in the art, the present invention allows to indifferently mount sensors of any kind, such as speed, position or displacement sensors, vibration sensors, or sensors for detecting the occurrence of emergency conditions such as derailment or axle locking. Data transmitted to the processing unit on board of the railway bogie may also be utilised for gathering information on the condition of the lubricant grease contained in the bearing unit. It will be appreciated that the device of this invention is easy to mount and accessible from the outside, which renders it ideal for the application of sensors to axles fitted with bushings providing electrical connection to earth.

While specific embodiments of the invention have been disclosed, it is to be understood that such disclosure has been merely for the purpose of illustration and that the invention is not to be limited in any manner thereby. Various modifications will be apparent to those skilled in the art in view of the foregoing examples. The scope of the invention is to be limited only by the appended claims.

Claims
1. A device comprising at least one sensor (17), said device for being mounted to a railway axle bearing unit having an annular sealing insert (10) fast with the stationary outer race of the bearing from the axially outer side, characterised by comprising a mounting means of substantially annular shape (14, 14') adapted for mounting to an axial cylindrical surface (13) of said insert (10), said mounting means...
being adapted for supporting:

- a sensor (17) to be positioned at the upper half of the annular insert (10);
- electrical connecting means (19) to be located at the lower half of the annular insert (10) and adapted for providing electrical connection of first conductor means (21) connected to the sensor (17), to second conductor means (22) connected to a further point remote from the bearing.

2. A device according to claim 1, characterised in that said sensor (17) is supported by said mounting means (14, 14') in a position adapt to locate the sensor substantially at the top of the annular insert (10).

3. A device according to claim 1, characterised in that said sensor is chosen from the group consisting of: temperature sensors, sensors for gauging rotational speed or angular position of the axle, vibration sensors, sensors for detecting derailment conditions, sensors for detecting a locked condition of the axle.

4. A device according to claim 1, characterised in that said mounting means (14, 14') is adapted for supporting also said first conductor means (21).

5. A device according to claim 1, characterised in that said mounting means (14, 14') and said insert (10) are equipped with reciprocal engaging means (24, 25; 24', 25') for axially retaining said mounting means on said insert.

6. A device according to claim 1, characterised in that said sensor (17) and said engaging means (24, 25; 24', 25') are located along said mounting means (14, 14') so as to be mounted to said bearing unit symmetrically with respect to a vertical axial plane (P) of the axle (4).

7. A device according to claim 1, characterised in that said mounting means (14) comprises an annular strip adapted for being tightened (15) onto a cylindrical axial wall (13) of said annular insert (10).

8. A device according to claim 1, characterised in that said mounting means comprises a ring-shaped element (14') open at its lower part.

9. A bearing unit for a railway axle (4) of the type equipped with an annular sealing insert (10) integral with the stationary outer race (1) of the bearing at the axially outer side thereof, characterised by comprising a device comprising a sensor according to any one of the preceding claims.

10. A bearing unit according to claim 9, characterised in that said sensor (17) is mounted to a sensor body (16) radially outwardly protruding in a radial recess (23) formed in a saddle-shaped or inverted U-shaped element (8) of a railway bogie resting on the outer race (1) of the bearing.

Patentansprüche

1. Vorrichtung mit zumindest einem Sensor (17), wobei die Vorrichtung zur Anbringung an einer Achslagereinheit für Schienenfahrzeuge vorgesehen ist, die einen ringförmigen Abdichtteileinsatz (10) be- sitzt, der am stationären äußeren Lauf des Lagers von der axialen äußeren Seite befestigt ist, gekennzeichnet durch das Umfassen von Befestigungsmitteln von im Wesentlichen ringförmiger Form (14, 14'), die zur Anbringung an einer axialen zylindri- schen Oberfläche (13) des Einsatzeils (10) angepasst sind, wobei die Befestigungsmittel angepasst sind zum Tragen:

- eines Sensors (17), der an der oberen Hälfte des ringförmigen Einsatzteils (10) zu positionieren ist;
- elektrischer Anschlussmittel (19), die an der unteren Hälfte des ringförmigen Einsatzteils (10) zu lokalisieren und dazu angepasst sind, eine elektrische Verbindung einer ersten, am Sensor (17) angeschlossenen Stromleiter- einrichtung (21) mit einer zweiten, an einem weiteren, vom Lager entfernten Punkt angeschlossenen Stromleitereinrichtung (22) zu schaffen.

2. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Sensor (17) von den Befesti- gungsmitteln (14, 14') in einer Position gehalten wird, die zur Lokalisierung des Sensors im Wesentlichen am Scheitel des ringförmigen Einsatzteils (10) angepasst ist.

4. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Befestigungsmittel (14, 14') auch zum Tragen der ersten Stromleitereinrichtung (21) angepasst sind.

5. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Befestigungsmittel (14, 14') und
Vorrichtung gemäß Anspruch 1,

6. Vorrichtung gemäß Anspruch 5, dadurch gekennzeichnet, dass der Sensor (17) und die Eingriffsmittel (24, 25; 24', 25') entlang der Befestigungsmittel (14, 14') lokalisiert sind, um im Verhältnis zu einer vertikalen Axialebene (P) der Achse (4) symmetrisch an der Lagereinheit angebracht zu sein.

7. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Befestigungsmittel (14) einen ringförmigen Streifen umfassen, der zum Festspannseiten (15) auf einer zylindrischen Axialwand (13) des ringförmigen Einsatzteils (10) angepasst ist.

8. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Befestigungsmittel ein ringförmiges, in seinem unteren Teil offenes Element (14') umfassen.

9. Lagereinheit für die Achse eines Schienenfahrzeugs (4) vom Typ, der mit einem ringförmigen Abdichteinsatzteil (10) ausgestattet ist, welcher in den stationären äußeren Lauf (15) des Lagers an dessen axial äußerer Seite integriert ist, gekennzeichnet durch das Umfassen einer einen Sensor umfassenden Vorrichtung gemäß einem der vorhergehenden Ansprüche.

10. Lagereinheit gemäß Anspruch 9, dadurch gekennzeichnet, dass der Sensor (17) an einem Sensorkörper (16) angebracht ist, der radial nach außen in eine radiale Vertiefung (23) ragt, die in einem satellitförmigen oder verkehrt U-förmigen Element (8) eines am äußeren Lauf (1) des Lagers anliegenden Schienenfahrzeug-Untergestells gebildet ist.

Revendications

1. Dispositif comprenant au moins un capteur (17), dit dispositif étant destiné à être monté sur une unité de roulement de boîte d’essieu de chemin de fer possédant un joint d’étanchéité annulaire (10) attaché à la bague extérieure stationnaire du roulement depuis le côté extérieur axial, caractérisé en ce qu’il comprend des moyens de montage de forme substantiellement annulaire (14, 14’) adaptés pour être montés sur une surface cylindrique axiale (13) dudit joint (10), lesdits moyens de montage étant adaptés pour supporter :

 un capteur (17) devant être placé au niveau de la moitié supérieure du joint annulaire (10) ;
 des moyens de connexion électrique (19) de-

2. Dispositif selon la revendication 1, caractérisé en ce que ledit capteur (17) est supporté par lesdits moyens de montage (14, 14’) dans une position adaptée pour situer le capteur substantiellement au niveau du haut du joint annulaire (10).

3. Dispositif selon la revendication 1, caractérisé en ce que ledit capteur est choisi à partir du groupe composé de : sondes de température, capteurs pour calibrer la vitesse de rotation ou la position angulaire de l’axe, détecteurs de vibrations, capteurs destinés à détecter les conditions de déraillement, capteurs destinés à détecter un état de verrouillage de l’axe.

4. Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens de montage (14, 14’) sont adaptés pour supporter également lesdits premiers moyens conducteurs (21).

5. Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens de montage (14, 14’) et ledit joint (10) sont équipés de moyens de mise en prise réciproque (24, 25; 24’, 25’) destinés à retenir de manière axiale lesdits moyens de montage sur ledit joint.

6. Dispositif selon la revendication 5, caractérisé en ce que ledit capteur (17) et lesdits moyens de mise en prise (24, 25; 24’, 25’) sont situés le long desdits moyens de montage (14, 14’) de façon à être montés sur ladite unité de roulement de manière symétrique par rapport à un plan axial vertical (P) de l’axe (4).

7. Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens de montage (14) comprennent une bande annulaire adaptée pour être fixée (15) sur une paroi cylindrique axiale (13) dudit joint annulaire (10).

8. Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens de montage comprennent un élément en forme d’anneau (14’) ouvert au niveau de sa partie inférieure.

9. Unité de roulement pour un axe de chemin de fer (4) du type équipé avec un joint d’étanchéité annulaire (10) faisant partie intégrante de la bague stationnaire extérieure (1) du roulement au niveau du côté extérieur axial de celui-ci, caractérisée en ce
qu'elle comprend un dispositif comprenant un capteur selon l'une quelconque des revendications précédentes.

10. Unité de roulement selon la revendication 9, caractérisée en ce que ledit capteur (17) est monté sur un corps de capteur (16) en saillie vers l'extérieur de manière radiale dans une gorge radiale (23) formée dans un élément en forme de selle ou de U inversé (8) d'un train roulant de chemin de fer reposant sur la bague extérieure (1) du roulement.