EUROPEAN PATENT SPECIFICATION

PROCESS FOR THE POLYMERIZATION OF LACTIDE
VERFAHREN ZUR POLYMERISATION VON LACTID
PROCEDE DE POLYMERISATION DE LACTIDE

Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Priorities:
14.02.1997 FI 970651

Date of filing:
13.02.1998

Application number:
98903055.6

Date of publication and mention of the grant of the patent:
18.08.2004 Bulletin 2004/34

Proprietor:
Fortum Oil and Gas Oy
02150 Espoo (FI)

Inventors:
• JANSSON, Kari
 FIN-00950 Helsinki (FI)
• KOSKINEN, Jukka
 FIN-02160 Espoo (FI)
• SELIN, Johan-Fredrik
 FIN-00980 Helsinki (FI)

Representative:
HOFFMANN - EITLE
Patent- und Rechtsanwälte
Arabellastrasse 4
81925 München (DE)

References cited:
• EP-A-0 664 309

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The polymerization processes known are various, some examples of compounds, can be used in the polymerization. The molar mass (MW) of the polymer is approximately 20000-500000,

L-lactide, or blends thereof. Conventional initiators suitable for lactide polymerization, such as various tin and iron compounds, can be used in the polymerization. The molar mass (MW) of the polymer is approximately 20000-500000,

It is typical of the prior known art that the residual lactide concentration is high, which hampers the processing of the polymer and, on the other hand, its removal causes additional costs. It is an object of the invention to find a method for the polymerization of lactide, preferably to a conversion which is close to the theoretical maximum. The polymerization velocity of lactide depends on many factors, such as the initiator used, the initiator concentration, the polymerization temperature, and the lactide concentration.

The polymerization velocity is significantly dependent on the lactide concentration when the lactide concentration is above 30 % by weight. Within this range also the viscosity of the polymer-lactide blend at the polymerization temperatures commonly used is relatively low, and thus the polymerization can advantageously be carried out in a stirred reactor at the desired polymerization temperature.

During the development of the process it was observed that an advantageous method of polymerizing to a lactide concentration up to approx. 30 % by weight is reactive extrusion polymerization, wherein the monomer and the catalyst are fed continuously into the extruder. The monomer polymerizes rapidly within the lactide concentration and temperature ranges concerned, typically within approx. 2 minutes to a conversion of 30 % by weight.

It has now been observed, surprisingly, that, in order to polymerize of lactide to a high conversion and to a low lactide concentration, it is preferable to carry out further polymerization in an apparatus in which the polymer melt is polymerized to as high a degree as possible in conditions in which there occurs no transfer of material. Efforts are made to prevent the evaporation of lactide and the mixing of the lactide melt in the apparatus. The polymerization velocity is sufficiently high and the reaction heat of the polymerization is low, so that the lactide will polymerize to a high conversion in a controlled manner within a short period.

According to a preferred embodiment of the invention, the polymerization apparatus used in the second polymerization step is a heated pipe within which the polymer melt travels. The pipe walls are typically heated to a temperature of 180 - 250 °C, and the retention time is 1 - 10 min. The mixing of the polymer melt in the pipe is very slight. The apparatus according to this embodiment is shown in Figure 1.

It is also possible to apply in the polymerization other systems with the polymerization conditions of the type described above. Preferred embodiments of other types include a heated conveyor in which the polymer melt is conveyed in a pressurized and heated space on a sheet or a metal belt, from which it is scraped for further processing of the polymer. One typical apparatus of this embodiment is shown in Figure 2.

The second reactor used in the process according to the invention is highly economical.

Typically the molar mass of the polymer does not rise during the second polymerization step even though the lactide is capable of reacting with the polymers present and the conversion reaches a high level.

The polymer or copolymer according to the present invention can be prepared from L-lactide, D-lactide or D,L-lactide, or blends thereof. Conventional initiators suitable for lactide polymerization, such as various tin and iron compounds, can be used in the polymerization. The molar mass (MW) of the polymer is approximately 20000-500000,
preferably 40000-300000. Preferably the polymer is prepared from L-lactide.

[0016] The first step of the polymerization can be carried out advantageously by extrusion polymerization. The polymer is produced by heating the monomer or the monomer blend to produce a homogeneous melt and by adding a catalyst in order to polymerize the lactide, whereupon the ring opens. It is also possible advantageously to mix the catalyst and the lactide together while cold and to feed the blend into the extruder.

[0017] The invention is described further in greater detail with the help of the following examples.

Example 1

[0018] A polymer melt polymerized in an extruder to a conversion of approx. 70 % by weight, still containing initiator, was fed at a temperature of approx. 200 °C by means of a melt pump into a pipe equipped with a heating jacket and having a length of 2-3 m. The pipe walls were heated by means of an oil jacket to a temperature of approx. 220 °C, and the pressure resistance of the pipe was of the order of 1000 bar.

[0019] The polymer melt polymerized in the pipe system at a high pressure without the evaporation of the lactide, the melt traveling in the pipe system in laminar flow conditions. The average retention time of the polymerizing lactide melt in the pipe system was approx. 2 min, the concentration of lactide in the polymer being less than 10 % by weight.

[0020] Prepolymerization was carried out by extrusion polymerization to various lactide concentrations. The results of the second polymerization are compiled in Table 1.

Table 1.

<table>
<thead>
<tr>
<th>Feed</th>
<th>Polymerization</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactide concentration wt%</td>
<td>Temperature °C</td>
<td>Feed kg/h</td>
</tr>
<tr>
<td>34,3</td>
<td>205</td>
<td>5</td>
</tr>
<tr>
<td>26,8</td>
<td>215</td>
<td>5</td>
</tr>
<tr>
<td>43,6</td>
<td>215</td>
<td>5</td>
</tr>
<tr>
<td>45,6</td>
<td>205</td>
<td>5</td>
</tr>
<tr>
<td>45,6</td>
<td>205</td>
<td>5</td>
</tr>
<tr>
<td>36,7</td>
<td>215</td>
<td>7</td>
</tr>
<tr>
<td>13,9</td>
<td>215</td>
<td>5</td>
</tr>
<tr>
<td>13,4</td>
<td>215</td>
<td>5</td>
</tr>
<tr>
<td>13,1</td>
<td>205</td>
<td>5</td>
</tr>
<tr>
<td>13,1</td>
<td>205</td>
<td>5</td>
</tr>
<tr>
<td>22,1</td>
<td>215</td>
<td>7</td>
</tr>
</tbody>
</table>

Claims

1. A two-step process for the polymerization of lactide to poly lactide, in which process in the first step the polymerization is carried out to a conversion of at least 50% by weight, characterized in that in the latter step the poly lactide is polymerized further to 10.9% by weight at maximum, in conditions in which the mixing of the melt and the evaporation of the lactide are avoided.

2. A process according to claim 1, characterized in that the temperature in the latter reactor is 180-250°C.

3. A process according to claim 1 or 2, characterized in that the retention time in the reactor is 1 to 10 minutes.

4. A process according to claims 1 to 3, characterized in that the reactor is a pipe equipped with heating, withstanding high pressure.

5. A process according to any of the above claims, characterized in that the reactor is a pressurized and heated
polymerisation apparatus equipped with a belt conveyor.

Patentansprüche

1. Zweistufiges Verfahren zur Polymerisierung von Lactid in Polylactid, wobei im ersten Schritt des Verfahrens die Polymerisierung bis zu einer Umwandlung von mindestens 50 Gew.% durchgeführt wird, **dadurch gekennzeichnet**, dass das Polylactid unter Bedingungen, bei denen das Mischen der Schmelze und das Verdampfen des Lactids verhindert werden, im letzten Schritt weiter bis zu maximal 10,9 Gew.% polymerisiert wird.

2. Verfahren gemäss Anspruch 1, **dadurch gekennzeichnet**, dass die Temperatur im Reaktor 180 bis 250°C beträgt.

3. Verfahren gemäss Anspruch 1 oder 2, **dadurch gekennzeichnet**, dass die Rückhaltdauer im Reaktor 1 bis 10 Minuten beträgt.

4. Verfahren gemäss einem der Ansprüche 1 bis 3, **dadurch gekennzeichnet**, dass der Reaktor eine Leitung ist, die mit einer Heizung ausgerüstet ist, welche einem hohen Druck widersteht.

5. Verfahren gemäss einem der oben genannten Ansprüche, **dadurch gekennzeichnet**, dass der Reaktor eine Druckleitung Heiz-Polymerisierungsvorrichtung ist, die mit einem Förderband ausgerüstet ist.

Revendications

1. Procédé en deux étapes pour la polymérisation de lactide en polylactide, dans lequel procédé dans la première étape la polymérisation est effectuée à une conversion d’au moins 50 % en poids, **caractérisé en ce que** dans la dernière étape le polylactide est polymérisé encore jusqu’à 10,9% en poids au maximum, dans des conditions dans lesquelles le mélange de la masse fondu et l’évaporation du lactide sont empêchées.

2. Procédé selon la revendication 1, **caractérisé en ce que** la température dans le dernier réacteur est de 180-250°C.

3. Procédé selon la revendication 1 ou 2, **caractérisé en ce que** le temps de rétention dans le réacteur est de 1 à 10 minutes.

4. Procédé selon les revendications 1 à 3, **caractérisé en ce que** le réacteur est un tuyau équipé avec un chauffage, résistant à une haute pression.

5. Procédé selon l'une quelconque des revendications ci-dessus, **caractérisé en ce que** le réacteur est un appareil de polymérisation chauffé et sous pression équipé avec un transporteur à courroie.
FIG 1

FIG 2