Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to an image correction apparatus for a stereo camera which corrects optical positional deviations in images taken by the stereo camera.

2. Description of the Related Art

[0002] Image processing according to what is called a stereo method is known as a three-dimensional measuring technique using images. In this technique, in general, correlation between a pair of images obtained by imaging an object by two cameras (stereo camera) from different positions is determined and the distance is determined based on a parallax of the same object according to the principle of triangulation by using camera parameters such as installation positions and a focal length of the stereo camera. Such a stereo camera is for example known from EP 0 563 737 A and US 5,307,136.

[0003] In this image processing according to the stereo method, a position where two image signals that are output from the stereo camera coincide with each other by superimposing the two image signals while shifting those sequentially. Therefore, essentially, it is desirable that there exist, between the two images, only deviations between corresponding positions as caused by a parallax; if there exist positional deviations due to other optical distortions etc., mismatching occurs and the accuracy of distance information is lowered.

[0004] For the above reason, adjustments of optical positions are extremely important in using a stereo camera. Japanese Unexamined Patent Publication No. Hei. 5-157557 discloses a technique of mechanically adjusting and holding correlation between two video cameras by providing, on a holding member for connecting and holding the two video cameras, a parallelism adjusting means for making adjustments so that the pixel array of an image sensor of one video camera becomes parallel with that of an image sensor of the other video camera and an optical axis adjusting member for making adjustments so that the optical axis of one video camera becomes parallel with that of the other video camera.

[0005] However, conventionally, once deviations due to deterioration with age occur in a fixed stereo camera, readjustments should be performed in terms of mechanical structure. Readjustments not only require cumbersome operations but also take long time. Further, mechanical adjustments can assure only a limited degree of accuracy.

[0006] To cope with the above problems, the present applicant has proposed, in Japanese Patent Application No. Hei. 9-117268, a technique of making adjustments electrically rather than mechanically by affine-transforming images in accordance with deviations in optical positions of a stereo camera. This technique makes it possible to adjust optical positions of the stereo camera precisely to such a level as is difficult to attain by mechanical adjustments, and to easily perform readjustments on deviations due to deterioration with age after original adjustments.

[0007] However, the correction technique by affine-transforming images that has been proposed by the present applicant is linear corrections, such as optical position corrections in the horizontal and vertical directions and the rotational direction and a correction of a variation in the focal length (angle of view) of a lens, that act uniformly on the entire image. Therefore, this correction technique cannot deal with nonlinear distortions in an image due to influence of a lens distortion, differences in enlargement and reduction factors that depend on the region in an image as caused by inclination of the photodetecting surface of an imaging device, and other factors.

[0008] Further, in a stereo camera, there may occur a case that to orient a distance information generation region to an optimum direction in accordance with use, a main camera for taking a reference image for stereo processing and a sub-camera for taking a comparison image for the stereo processing are mounted in advance so as to be inclined from the base line of the stereo camera. For example, in a vehicular stereo camera, there may occur a case that to locate a distance detection region evenly in the right-left direction with respect to the visual field in the right-left direction, the main camera and the sub-camera are so mounted as to be directed rightward with respect to the front side of the camera System (i.e., the front side of the self vehicle) and a sub-camera-side region, accounting for a prescribed proportion, of an image taken by the main camera is employed as a distance information generation region.

[0009] Such inclined mounting of the two cameras with respect to the base line of the stereo camera requires nonlinear shape corrections on images taken. Corrections of nonlinear positional deviations in images including distortions of the above kinds due to a lens distortion, inclination of the photodetecting surface of an imaging device, etc. are an issue that remains to be addressed.

SUMMARY OF THE INVENTION

[0010] The present invention has been made in view of the above circumstances, and an object of the invention is
therefore to provide an image correction apparatus for a stereo camera which can improve the reliability of stereo processing by making it possible to correct, in an on-board state, nonlinear positional deviations among optical positional deviations in images taken by the stereo camera.

[0011] The above-described object of the invention can be attained by an image correction system configured for correcting optical positional deviations in a reference image and in a comparison image taken by two cameras of a stereo camera, comprising a storage means for storing a predetermined coordinate correction table generated in advance by imaging a particular imaging pattern with said two cameras at the same time, calculating coordinate correcting values for the two images taken by said two cameras, wherein the coordinate correction value of each pixel is calculated by interpolation based on the positional deviations of a plurality of points of said particular imaging pattern and storing the resulting coordinate correction values for said two images in said common coordinate correction table. The image correction system further comprising an image memory for storing said reference image and said comparison image taken by said two cameras and the system further comprising a single correction means common to said two cameras for correcting the coordinate and the image data of each pixel in said reference image and in said comparison image from said reference image memory in a time-divisional manner, by performing an interpolation calculation on each pixel of said reference image and on each pixel of said comparison image according to the coordinate correction values stored in said common coordinate correction table (18), thereby correcting linear and nonlinear positional deviation of each pixel. The image correction system further comprising means for performing stereo matching of the corrected reference image and the corrected comparison image, configured for generating a distance image as three-dimensional image information based on the coordinates and the image data of the corrected reference image and the corrected comparison image.

[0012] That is, in the invention, interpolation is performed on referencing positions in the counterpart image in stereo matching of a pair of images taken by the stereo camera by using pixel-by-pixel positional deviations that have been determined in advance and coordinate data around the referencing positions, and matching is made by referring to interpolated coordinates, whereby mismatching between corresponding positions can be prevented.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]

Fig. 1 is a diagram showing the entire configuration of a stereo processing system.
Fig. 2 is a diagram illustrating a correction pattern of a vertical/horizontal correction.
Fig. 3 is a diagram illustrating a correction pattern of a rotational correction.
Fig. 4 is a diagram illustrating a correction pattern of a focal length correction.
Fig. 5 is a diagram illustrating a lens distortion correction pattern.
Fig. 6 is a diagram illustrating data interpolation in the vertical direction.
Fig. 7 is a diagram illustrating a picked-up image of a horizontal lattice pattern.
Fig. 8 is a diagram schematically illustrating a data distribution example of a coordinate correction table.
Fig. 9 is a diagram illustrating an image obtained by performing a coordinate correction on the original image.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0014] An embodiment of the present invention will be hereinafter described with reference to the drawings. Figs. 1 to 9 relate to the embodiment of the invention, in which Fig. 1 shows the entire configuration of a stereo processing system, Fig. 2 illustrates a correction pattern of a vertical/horizontal correction, Fig. 3 illustrates a correction pattern of a rotational correction, Fig. 4 illustrates a correction pattern of a focal length correction, Fig. 5 illustrates a lens distortion correction pattern, Fig. 6 illustrates data interpolation in the vertical direction, Fig. 7 illustrates a picked-up image of a horizontal lattice pattern, Fig. 8 schematically illustrates a data distribution example of a coordinate correction table, and Fig. 9 illustrates an image obtained by performing a coordinate correction on the original image.

[0015] Fig. 1 shows the configuration of a stereo image processing system which processes images taken by a stereo camera 1 that consists of two cameras each incorporating an image sensor such as a charge coupled device (CCD) and being variable in shutter speed. For example, this stereo image processing system is incorporated in a mobile body such as an automobile or a helicopter and used as part of a system for recognizing its environment and its own position.

[0016] One camera of the stereo camera 1 is a main camera for taking a reference image for stereo processing and the other camera is a sub-camera for taking a comparison image for the stereo processing. The stereo camera 1 is mounted on a camera stay (not shown) with a predetermined base line length. Two images taken by the respective cameras 2 and 3 are input via an image correction apparatus 10 as an image input apparatus to a stereo processing device 40, where the degree of coincidence of the two images is evaluated by stereo matching and a distance image is generated as three-dimensional image information in which far and near information is digitized.

[0017] In this case, although the two cameras 2 and 3 are fixed to the camera stay after they were adjusted mechanically.
in an initial manufacturing stage so that their optical axes became parallel with each other, each of images taken by the
two cameras 2 and 3 is not necessarily an optimum one for stereo processing because it includes considerable levels
of optically nonlinear positional deviations due to limitations in mechanical assembling accuracy, influence of a variation
in lens focal length and a lens distortion, differences in enlargement and reduction factors that depend on the region in
the picked-up image as caused by inclination of the photodetecting surface of an imaging device, and other factors.

[0018] In view of the above, the image correction apparatus 10 is so constructed as to provide optimum image data
for stereo processing by correcting, on a pixel-by-pixel basis, optical positional deviations in an image taken by each
camera 2 or 3. Analog images coming from the cameras 2 and 3 are converted by A/D converters 11 and 12 to digital
images, which are then stored in an image memory 14 via a data bus switching circuit 13. The image data stored in the
image memory 14 are corrected by a data interpolation circuit 21 on a pixel-by-pixel basis.

[0019] A reference/comparison image read address generation circuit 17 generates a reference/comparison image coordinate
correction table 18 that stores pixel-by-pixel coordinate correction data.

[0020] Coordinate correction data that is output from a coordinate correction value calculation circuit 19 for calculating
an image coordinate correction value in accordance with instructions from a microcomputer 50 is added to a horizontal
address that is output from the reference/comparison image read address generation circuit 17, and a resulting address
is output to the address switching circuit 15. Coordinate correction data that is output from the reference/comparison
image coordinate correction table 18 and coordinate correction data that is output from the coordinate correction value
calculation circuit 19 are added to a vertical address that is output from the reference/comparison image read address
generation circuit 17, and a resulting address is output to the data interpolation circuit 21 as well as to the address
switching circuit 15 via a 2-step access circuit 20.

[0021] An output of the data interpolation circuit 21 is input, together with an output of a shading correction table 22
that is accessed by the reference/comparison image read address generation circuit 17, to a luminance correction result
table 23, where it is subjected to a luminance correction. Luminance-corrected image data are output to a reference
image memory 21 and a comparison image memory 32.

[0022] Image data stored in the reference image memory 31 and the comparison image memory 32 are read into the
stereo processing device 40 that is composed of a city block distance calculation circuit having a pipeline structure in
which absolute value calculators and adders are connected together in pyramidal form, a minimum value/pixel deviation
detection circuit for evaluating the minimum value, the maximum value, etc. of city block distances, and other circuits.
In the stereo processing device 40, the degree of coincidence is evaluated for each small region (e.g., a small region of
4 x 4 pixels) of the counterpart image and a distance image is generated. A distance image generation process is

[0023] Further, distance image data that is output from the stereo processing device 40 and corrected original image
data that is output from the image correction apparatus 10 are read into the microcomputer 50, where various recognition
processes are executed. For example, when the system is applied to a vehicle, the microcomputer 50 recognizes a
running environment such as a road shape and presence of a vehicle running ahead and outputs vehicle control data
for, for example, alarming the driver by judging the degree of danger of collision, stopping the vehicle by activating the
brake automatically, or increasing or decreasing the running speed automatically to maintain a safe distance from the
vehicle running ahead.

[0024] In the above stereo processing system, a reference image taken by the main camera 2 and a comparison
image taken by the sub-camera 3 are processed in a time-divisional manner by the image correction apparatus 10 as
an image input apparatus. Image data of a small region for stereo matching is stored in the reference image memory
31. Image data for referring to a position corresponding to one small region is stored in the comparison image memory
32 by an amount covering a prescribed number of pixels of deviation in the horizontal direction (for example, an amount
covering 100 pixels of deviation for a small region of 4 x 4 pixels, i.e., data of 4 x 104 pixels).

[0025] That is, in the image correction apparatus 10, analog images taken by the respective cameras 2 and 3 are
converted by the A/D converters 11 and 12 to digital images of prescribed luminance gradation levels (e.g., gray scale
of 256 gradation levels) and digital image data are stored in the image memory 14 at horizontal and vertical addresses
specified by the reference/comparison image write address generation circuit 16 with the bus switched to the image
memory 14 side by the data bus switching circuit 13.

[0026] When prescribed image data are stored in the image memory 14, the reference/comparison image read address
generation circuit 17 starts image data reading. That is, the reference/comparison image coordinate correction table 18
is accessed and coordinate correction data (address correction data) is added to a vertical address, and coordinate

correction data that is output from the coordinate correction value calculation circuit 19 is added to a horizontal address
and the vertical address. The image memory 14 is accessed via the address switching circuit 15.

[0027] In this embodiment, the coordinate correction data that are stored in the reference/comparison image coordinate
correction table 18 are data to be used for correcting components that are perpendicular to the scanning direction
When image data A(x, y) of a certain pixel of the original image in the image memory 14 is deviated by m pixels, interpolation on data of mutual referencing positions of the reference image and the comparison image in the stereo matching is performed at a resolution of less than one pixel and read addresses are shifted in the horizontal direction. As for a correction on rotational deviations as shown in Fig. 3, a correction on a focal length variation as shown in Fig. 2, correction is made at a minimum of a 1/8-pixel pitch in the vertical direction and 1-pixel pitch in the horizontal direction. In this case, the correction is such that the maximum coordinate correction value is ±16 pixels and the minimum coordinate correction resolution is 0.125 (1/8) pixel.

If appropriate, the reference/comparison image coordinate correction table 18 may store correction data only in the vertical or horizontal direction. Figs. 7-9 shows an example in which correction data in the vertical direction are stored in the table 18. In this example, a horizontal lattice pattern for correction value measurement is imaged in advance by the two cameras 2 and 3 at the same time. Fig. 7 shows an example image taken by the camera 2 or 3. A center line (center-of-gravity line) located at the center of the width of each horizontal lattice line is determined from the image taken, and each center-of-gravity line is compared with a reference horizontal lattice that is stored in a measuring computer. Vertical coordinate correction values at respective pixels on the reference lattice are determined, and a coordinate correction table having a data distribution as shown in Fig. 8 is generated by determining coordinate correction values of pixels that are not located on the reference lattice by linear interpolation.

Fig. 9 shows a result of a correction in which the image of Fig. 7 that is obtained by imaging the horizontal lattice pattern has been corrected by using the coordinate correction table of Fig. 8. It is seen that remarkable distortions at four corner portions of the image taken are corrected and all the lattice lines are thereby corrected so as to extend horizontally.

Where correction data in the horizontal direction are stored in the table 18, a process similar to the above is executed by using a vertical lattice pattern. Where correction data in the vertical or horizontal direction are stored in the table 18, correction data in the other direction may be calculated by the coordinate correction value calculation circuit 19 (described later).

On the other hand, coordinate correction data that are output from the coordinate correction value calculation circuit 19 are data to be used for correcting top-bottom deviations, right-left deviations, rotational deviations, etc. of the cameras 2 and 3 due to deterioration with age based on instructions from the microcomputer 50, and are correction data that act on the entire image uniformly. In this correction, while a vertical correction is performed down to a 1/8 pixel, a vertical/horizontal coordinate correction is performed with one pixel as a unit. In this case, a coordinate correction amount in the horizontal direction is so set that corresponding positions in the counterpart image deviate by a predetermined number of pixels (e.g., 3 pixels) at infinity so that the entire object to infinity is included in the scanning range of the stereo matching. A simple version of a correction of rotational deviations can be realized by increasing or decreasing the vertical correction amount as the horizontal address increases, in accordance with rotational deviation correction data that are set by the microcomputer.

For example, as for a vertical/horizontal correction on top-bottom deviations or right-left deviations as shown in Fig. 2, correction is made at a minimum of a 1/8-pixel pitch in the vertical direction and 1-pixel pitch in the horizontal direction. As for a correction on rotational deviations as shown in Fig. 3, a correction on a focal length variation as shown in Fig. 4, and a correction on a lens distortion as shown in Fig. 5, correction is made at a minimum of a 1/8 pixel pitch only in the vertical direction.

That is, where stereo matching is performed in a small area having a relatively small number of pixels as in the case of this embodiment, data interpolation on only components that are perpendicular to the scanning direction of the stereo matching is performed at a resolution of less than one pixel and read addresses are shifted in the horizontal direction with one pixel as a unit, because information of luminance differences between adjacent pixels is lost in the data interpolation although the information loss is small, the processing time is long, and so forth.

Therefore, as for data that is obtained by coordinate-correcting a vertical address generated by the reference/comparison read address generation circuit 17, the lower 3 bits representing a decimal portion are output to the data interpolation circuit 21 and the upper 5 bits are used by the 2-step access circuit 20 to access, in two steps, two pixels located above and below in the vertical direction. Based on those data, the data interpolation circuit 21 performs interpolation on data of mutual referencing positions of the reference image and the comparison image in the stereo matching.

When image data A(x, y) of a certain pixel of the original image in the image memory 14 is deviated by m pixels
from its proper position as shown in Fig. 6, the data interpolation circuit 21 determines positional-deviation-corrected image data \(B(x, y) \) by performing interpolation according to Equation (1) below in the case of a positive deviation or Equation (2) below in the case of a negative deviation by using image data \(b(x, y-1) \) and \(b(x, y+1) \) of two pixels located above and below in the vertical direction that are obtained through access by the 2-step access circuit 20. This process is executed for all pixels of the original image.

\[
\begin{align*}
(1) \quad B(x, y) &= b(x, y) \times (1 - m) + b(x, y-1) \times m \\
(2) \quad B(x, y) &= b(x, y) \times (1 - m) + b(x, y+1) \times m
\end{align*}
\]

[0037] In this case, where corrections in both of the vertical and horizontal directions are performed with less than one pixel as a unit, coordinate data around a referencing position is determined by making 2-step access for each of a horizontal address and a vertical address and vertical interpolation and horizontal interpolation are performed by using those coordinate data and coordinate data obtained from the horizontal address line and the vertical address line.

[0038] In the luminance correction result table 23, image data corrected by the above-described data interpolation circuit 21 are corrected for a luminance reduction due to a shading phenomenon that occurs in the optical system of each camera by using data that are output from the shading correction table 22 that is accessed by the reference/comparison image read address generation circuit 17. Resulting data are stored in the reference image memory 31 and the comparison image memory 32.

[0039] The image data stored in the reference image memory 31 and the comparison image memory 32 are read into the stereo processing device 40 and subjected to stereo matching there. In the stereo matching, a process of calculating a city block distance between one small region of the reference image memory 31 and that of the comparison image memory 32 is repeated while a shift is made in the horizontal direction by one pixel each time until a shift of a predetermined number of pixels is made. The minimum value, the maximum value, etc. of city block distances are evaluated and it is checked whether the minimum value of city block distances truly indicates coincidence of the small regions of the two images. If check conditions are satisfied, a pixel deviation amount at which the city block distance is minimized is output as distance information corresponding to the small region of the reference image.

[0040] The stereo matching is performed in a state that not only influence of linear positional deviations that occur uniformly in the entire image taken by each camera 2 or 3 but also influence of nonlinear positional deviations for which the correction value varies locally have been removed in an on-board state. Therefore, there occurs no mismatching between corresponding positions and hence correct distance information is obtained, which makes it possible to improve the reliability of image processing.

[0041] Further, even where the two cameras 2 and 3 are mounted so as to be inclined from the base line, nonlinear shape corrections can be performed on an image taken from an oblique direction. A flexible system can thus be realized.

[0042] As described above, according to the invention, interpolation is performed on referencing positions in the counterpart image in stereo matching of a pair of images taken by the stereo camera by using pixel-by-pixel positional deviations that have been determined in advance and coordinate data around the referencing positions. Therefore, not only influence of linear positional deviations that occur uniformly in the entire image taken by each camera 2 or 3 but also influence of nonlinear positional deviations for which the correction value varies locally have been removed in an on-board state. Therefore, there occurs no mismatching between corresponding positions and hence correct distance information is obtained, which makes it possible to improve the reliability of image processing. Further, even where the stereo camera is mounted so as to be inclined from the base line, nonlinear shape corrections can be performed on an image taken from an oblique direction. Great advantages can thus be obtained as exemplified by an advantage that a flexible system can be realized.

Claims

1. An image correction system configured for correcting optical positional deviations in a reference image and in a comparison image taken by two cameras (2, 3) of a stereo camera, characterized by comprising:
 - a storage means for storing a predetermined coordinate correction table (18) generated in advance by imaging a particular imaging pattern with said two cameras (2, 3) at the same time, calculating coordinate correcting
values for the two images taken by said two cameras (2, 3), wherein the coordinate correction value of each pixel is calculated by interpolation based on the positional deviations of a plurality of points of said particular imaging pattern and storing the resulting coordinate correction values for said two images in said common coordinate correction table (18);

- an image memory (14) for storing said reference image and said comparison image taken by said two cameras (2, 3);
- a single correction means (21) common to said two cameras (2, 3) for correcting the coordinate and the image data of each pixel in said reference image and in said comparison image from said image memory (14) in a time-divisional manner, by performing an interpolation calculation on each pixel of said reference image and on each pixel of said comparison image according to the coordinate correction values stored in said coordinate correction table (18), thereby correcting linear and nonlinear positional deviation of each pixel; and
- means (40) for performing stereo matching of the corrected reference image and the corrected comparison image, configured for generating a distance image as three-dimensional image information based on the coordinates and the image data of the corrected reference image and the corrected comparison image.

2. The image correction apparatus according to claim 1, wherein said correction means (21) corrects the coordinate and the image data of said reference image and said comparison image according to the coordinate corrections values stored in said coordinate correction table (18) at a resolution of less than one pixel pitch in the vertical direction and one pixel pitch in the horizontal direction.

3. The image correction apparatus (10) according to claim 1, wherein a luminance of a pixel in said corrected reference image and in said corrected comparison image is interpolated by the luminance of the pixels surrounding said pixel in said reference image and in said comparison image.

Patentansprüche

1. Bildkorrektursystem, welches zur Korrektur von optischen Positionsabweichungen in einem Referenzbild und in einem Vergleichsbild, welche durch zwei Kameras (2, 3) von einer Stereokamera aufgenommen sind, ausgelegt ist, dadurch gekennzeichnet, dass es enthält:

- ein Speicherelement zum Speichern einer vorbestimmten Koordinaten-Korrektturtable (18), welche zuvor durch ein Aufnehmen eines bestimmten Bildmusters durch die zwei Kameras (2, 3) zum gleichen Zeitpunkt erzeugt ist, Berechnen von Koordinaten-Korrekturwerten für die zwei Bilder, welche durch die zwei Kameras (2, 3) aufgenommen sind, wobei der Koordinaten-Korrekturwert von jedem Pixel durch Interpolation basierend auf den Positionsabweichungen von einer Mehrzahl von Punkten von dem bestimmten Bildmuster und durch Speichern der resultierenden Koordinaten-Korrekturwerte für die zwei Bilder in der allgemeinen Koordinaten-Korrektturtable (18) berechnet ist;
- einen Bildspeicher (14) zum Speichern des Referenzbildes und des Vergleichsbildes, welche durch die zwei Kameras (2, 3) aufgenommen sind;
- ein Einzelkorrekturelement (21), gemeinsam für die zwei Kameras (2, 3), zum Korrigieren der Koordinate und der Bilddaten von jedem Pixel in dem Referenzbild und in dem Vergleichsbild vom Bildspeicher (14) auf eine Zeitmultiplexweise, durch ein Durchführen einer Interpolationsberechnung auf jedem Pixel von dem Referenzbild und auf jedem Pixel von dem Vergleichsbild gemäß den Koordinaten-Korrekturwerten, welche in der Koordinaten-Korrektturtable (18) gespeichert sind, wodurch eine lineare und nicht lineare Positionsabweichung von jedem Pixel korrigiert wird; und

3. Bildkorrekturvorrichtung (10) nach Anspruch 1, bei welcher eine Luminanz eines Pixels in dem korrigierten Referenzbild und in dem korrigierte Vergleichsbild durch die Luminanz der Pixel interpoliert wird, welche den Pixel in
Revendications

1. Système de correction d’image configuré de façon à corriger des écarts de positions optiques dans une image de référence et dans une image de comparaison prises par deux caméras (2, 3) d’une caméra stéréo, caractérisé par le fait qu’il comprend :

- des moyens de stockage destinés à stocker une table de correction de coordonnées prédéterminée (18) générée à l’avance en imageant en même temps un motif d’imagerie particulier avec lesdites deux caméras (2, 3), à calculer des valeurs de correction de coordonnées pour les deux images prises par lesdites deux caméras (2, 3), dans lequel la valeur de correction des coordonnées de chaque pixel est calculée en faisant appel à une interpolation sur la base des écarts de position d’une pluralité de points dudit motif d’imagerie particulier, et à stocker les valeurs de correction de coordonnées résultantes pour lesdites deux images dans ladite table de correction de coordonnées commune (18) ;
- une mémoire d’image (14) destinée à stocker ladite image de référence et ladite image de comparaison prises par lesdites deux caméras (2, 3) ;
- des moyens de correction uniques (21) communs auxdites deux caméras (2, 3) destinés à corriger les coordonnées et les données d’image de chaque pixel dans ladite image de référence et dans ladite image de comparaison en provenance de ladite mémoire d’image (14) d’une façon par répartition dans le temps, en exécutant un calcul d’interpolation sur chaque pixel de ladite image de référence et sur chaque pixel de ladite image de comparaison selon les valeurs de correction de coordonnées stockées dans ladite table de correction de coordonnées (18), en corrigeant de ce fait un écart de position linéaire et non linéaire de chaque pixel ; et
- des moyens (40) destinés à procéder à une correspondance stéréo de l’image de référence corrigée et de l’image de comparaison corrigée, configurés de façon à générer une image de distance en tant qu’informations d’image tridimensionnelle sur la base des coordonnées et des données d’image de l’image de référence corrigée et de l’image de comparaison corrigée.

2. Appareil de correction d’image selon la revendication 1, dans lequel lesdits moyens de correction (21) corrigit les coordonnées et les données d’image de ladite image de référence et de ladite image de comparaison selon les valeurs de correction de coordonnées stockées dans ladite table de correction de coordonnées (18) avec une résolution inférieure à un pas de pixel dans la direction verticale et avec un pas de pixel dans la direction horizontale.

3. Appareil de correction d’image (10) selon la revendication 1, dans lequel la luminance d’un pixel dans ladite image de référence corrigée et dans ladite image de comparaison corrigée est interpolée par la luminance des pixels qui entourent ledit pixel dans ladite image de référence et dans ladite image de comparaison.
FIG. 9
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5307136 A [0002]
- JP HEI5157557 B [0004]
- JP HEI9117268 B [0006]
- JP HEI5114099 B [0022]