EUROPEAN PATENT SPECIFICATION

(12) European Patent Office

(19) Europäisches Patentamt

(11) EP 0 954 652 B1

(12) Date of publication and mention of the grant of the patent:

(21) Application number: 96940436.7

(22) Date of filing: 13.11.1996

(21) Application number: EP 0 954 652 B1

(22) Date of filing: 13.11.1996

(45) Date of publication and mention of the grant of the patent:

(51) Int Cl. 7: E04B 1/64, E04B 5/00, E04B 2/26, E04C 2/288, E04C 2/04

(54) INSULATING CONNECTOR RODS USED IN MAKING HIGHLY INSULATED COMPOSITE WALL STRUCTURES

ISOLIERTE VERBINDUNGSKABEL ZUR ANWENDUNG BEI DER HERSTELLUNG HOCHISOLIERTER ZUSAMMENGESETZTER WANDKONSTRUKTIONEN

TIGES DE RACCORDEMENT ISOLANTES UTILISEES POUR LA REALISATION DE STRUCTURES MURALES COMPOSITES HAUTEMENT ISOLEES

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

(43) Date of publication of application:
10.11.1999 Bulletin 1999/45

(73) Proprietor: H.K. COMPOSITES, INC.
American Fork, UT 84003 (US)

(72) Inventors:
• KEITH, David, O.
American Fork, UT 84003 (US)

• HANSEN, David, M.
American Fork, UT 84003 (US)

(74) Representative: Stuttard, Garry Philip et al
Urquhart-Dykes & Lord LLP
Tower North Central
Merrion Way
Leeds LS2 8PA (GB)

(56) References cited:
US-A- 2 412 744
US-A- 3 653 469
US-A- 4 329 821
US-A- 4 805 366
US-A- 4 945 700

US-A- 3 523 395
US-A- 4 139 975
US-A- 4 393 635
US-A- 4 829 733

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

[0001] This invention relates to highly insulative connector rods used to secure together multiple layers of insulating and structural material within a composite wall structure. In particular, the connector rods secure together an insulating layer and preferably two structural layers on either side of the insulating layer. The connector rods are especially suited for construction of composite wall structures using the “cast-in-place” method.

2. THE RELEVANT TECHNOLOGY

[0002] As new materials and compositions have been continuously developed, novel methods for synergistically combining apparently unrelated materials to form useful composites have also been deployed. In the area of building and construction, high strength structural walls have been fabricated and then coated or layered with highly insulating materials, which generally have relatively low structural strength, to provide a composite structure having both high strength and high insulation. Conventionally, the structural component, such as a wall, is built first, after which the insulating layer or sheet is attached to the structural component. Thereafter a protective cover is placed over the insulating material to protect and hide it. The purpose of the insulation barrier is to impede the transfer of thermal energy across the structural wall.

[0003] One of the least expensive and strongest building materials that has found extensive use in the construction industry is concrete, which is typically formed from a mixture of hydraulic cement, water, and an aggregate, including rocks, pebbles and sand. Unfortunately, concrete has the drawback of offering poor insulation compared to highly insulating materials such as fiberglass or polymeric foam materials. While an 8 inch slab of concrete has an R value of 0.64, a 1 inch panel of polystyrene has an R value of 5.0. Conversely, highly insulative materials, at least those of reasonable cost, typically offer little in terms of structural strength or integrity. Though lightweight aggregates having higher insulating ability may be incorporated within concrete to increase the insulating effect of the concrete, the use of perlite in an amount that has a dramatic effect on the insulation ability of the concrete will usually result in greatly decreased strength of the structure.

[0004] While structural walls made of cement or masonry can be fitted or retrofitted with any number of insulating materials, including insulating mats or sheets that are attached to the inner wall, or foams that are sprayed between an inner and outer wall, one strategy has been to manufacture a composite wall structure having two structural layers separated by a core insulating layer. However, in order for the two-structural-layer wall to have sufficient strength and integrity, and to prevent the two structural walls from collapsing together or separating apart during construction and subsequent use of the building, it is necessary to structurally bridge the two structural walls together. This has usually been accomplished through the use of metal studs, bolts, or beams.

[0005] However, because metal is a very good conductive material (and therefore has very low insulation), such studs, bolts, beams, or other means for structurally bridging the two walls together can also create a conduit or conductive thermal bridge across which heat can readily flow, notwithstanding their being surrounded by ample amounts of an insulating material. As a result, heat can rapidly flow from a relatively warm inside wall to a colder outside wall during cold weather, for example. Therefore, though the structural walls might be separated by a very efficient insulating material having a high R value (which is the measure of the resistance to flow of thermal energy, or heat, across the material), the net R value of the overall composite structure will often be far less when metal or other noninsulating connectors are used, thus negating or at least greatly diminishing the effect of the insulation layer. Of course, one might construct a building having no structural supports or connectors between the inner and outer walls; however, the result will be a wall having inadequate strength for most building needs.

[0006] Examples of composite wall structures using metal tie rods or studs may be found in the following U. S. Patents: U.S. Patent No. 4,393,635 to Long, U.S. Patent No. 4,329,821 to Long et al., U.S Patent No. 2,775,018 to McLaughlin, U.S. Patent No. 2,645,929 to Jones, and U.S. Patent No. 2,412,744 to Nelson. As stated above, the composite wall structures disclosed in these references have a substantially lower R value than that of the highly insulating layer due to the thermal bridging effect of the highly conductive metal studs or connectors that pass through the cross section of the insulating layer.

[0007] In order to minimize the problem of thermal bridging, some have employed connector rods having a metal portion that passes through the concrete layers and a thermally insulating portion that passes through the insulating layer (e.g., U.S. Patent No 4,545,163 to Asselin). Others have developed connector rods made entirely from high R-value materials. For example, U.S. Patent No. 4,829,733 to Long (hereinafter the “Long 733 Patent”) discloses a plastic shear connector used in forming an insulated wall having an inner and an outer concrete structural layer, with a highly insulating layer sandwiched therebetween. Although the plastic shear connector described in the Long ‘733 Patent has found some use in the construction industry, the design of the connector described therein, together with the method for making such a connector, create added materials, manufacturing, and labor costs due to the relatively in-
efficient method of forming and then using the connector set forth in the Long '733 Patent. A summary of the method used to manufacture the preferred connector rods disclosed in the Long '733 Patent, as well as a summary of the limitations in their use and effectiveness, are set forth in copending U.S. application Serial No. 08/255,910, filed April 8, 1994 (hereinafter the "Parent Application"), which has been incorporated by specific reference for disclosure purposes.

One method for manufacturing the composite wall structure described herein is the so-called "tilt-up" method, whose manufacture is described hereinbelow. An example of a preferred connector rod used in the tilt-up method is set forth in the Parent Application, which connector has a substantially printed tip at one end and an enlarged head at the other. Both aid in the placement of the connector rods compared to, e.g., the connector disclosed in the Long '733 Patent. The tilt-up method for manufacturing composite wall structures is typically carried out as follows.

First, concrete is poured into a horizontally configured form to form a first unhardened structural layer. Second, the insulating layer is placed over the surface of the still uncured first structural layer. Third, the connector rods are inserted through the exposed horizontal surface of the insulating layer so that a first portion of the connector rods extends into the interior of the uncured first structural layer, so that a second portion spans the width of the insulating layer, and so that a third portion extends outwardly from the insulating layer surface. The connector rods are preferably twisted in order to consolidate the uncured concrete into a locking structure or recess within the first portion of the connector rod to ensure eventual secure anchoring of the connector rod within the first horizontal slab. Fourth, either before or after substantial hardening of the first structural layer, a second concrete layer is poured over the surface of the insulating layer within a form in order to form the second structural layer. The third portion of the connector rods is preferably fully enveloped within the second structural layer. Fifth, after the first and second structural layers have been adequately cured and the forms removed, the horizontally positioned composite wall structure is tilted up vertically by means of a hoist or crane and positioned into the desired location.

A second method for manufacturing the composite wall structure is the "cast-in-place" method, wherein the structural walls are poured within a vertical form that has been built in a location at or near where the composite wall structure is to be finally located. A more detailed discussion of this method is set forth more fully hereinbelow. In the cast-in-place method, connector rods having a length corresponding to the width of the entire composite wall structure are placed substantially orthogonally through the insulating layer, with a first portion extending out of one surface of the insulating layer, a second portion extending through the width of the insulating layer, and a third portion extending out the other surface of the insulating layer. The insulating layer with the connector rods extending out of both surfaces is then placed vertically between the vertical form. The extended portions of the connector rods horizontally span the form and maintain the insulating layer in a properly spaced arrangement between the two walls of the form, with vertical spaces between each side of the insulating layer and the form where the structural material is to be poured. Thereafter, concrete or other hardenable structural material is poured between the two vertical spaces to form a structural layer on either side of the insulating layer. Upon curing and removal of the form, the structural layers and insulating layer are locked together by means of the connector rods to form the composite wall structure.

While the connector rods disclosed in the Long '733 Patent could be used in the cast-in-place method, they have the serious drawback of having flat, substantially rectangular end surfaces. This design has at least three drawbacks: (1) the rectangular end surfaces of the connector rods of the Long '733 Patent together with the relatively sharp corners of the rectangular ends can cause friction or hang-ups between the rectangular surfaces and the side walls of the forms when placing the insulating layer vertically in the form; (2) upon removal of the form from the composite wall structure, the exposed rectangular end surfaces of the connector rods will likely present a visual nuisance and the exposure through the composite wall surface can cause the connector rods to be exposed to potentially destructive environmental elements, such as chemical or solar attack; and (3) the rectangular volume occupied by the connector rods of the Long '733 Patent will tend to inhibit good consolidation of the concrete in the wall surface at or near the area around the rectangular end surfaces, particularly just beneath the flat portion of the connector rod abutting the sidewall surface of the form.

In light of the foregoing, what are needed are improved insulating connector rods and methods for manufacturing highly insulative composite wall structures.

In addition, what are needed are improved designs and methods for molding improved insulating connector rods in a single step that yet provide adequate strength and support in the manufacture of composition wall structures.

Additionally, what are needed are improved connector rods having a design that eliminates or at least greatly diminishes the tendency of either or both ends of the connector rod to be exposed on the composite wall surface, particularly when utilised in the cast-in-place method for manufacturing highly insulating composite wall structures.

US-A-4805366 discloses a snap lock retainer mechanism for insulated wall construction formed in a plurality of parts with a rectangular cross-section and rectangular ends by multiple moulding steps.

What are further needed are improved connec-
tory rods that have a design which reduces the friction between the ends of the connector rods and the sidewalls of the forms during placement of the insulating layer within the form.

[0017] Finally, it would be an improvement in the art to provide improved connector rods having a design which improves the ability to achieve substantially complete consolidation of the concrete or other hardenable structural material in the outer surfaces of the structural layers, particularly at or near where the outer ends of the connector rods are oriented.

[0018] Such improved connector rods having improved design features and methods for manufacturing such connector rods having the aforesaid design features are set forth and claimed herein.

SUMMARY OF THE INVENTION

[0019] The present invention relates to improved designs and methods for manufacturing connector rods used in the manufacture of composite wall structures. In particular, such connector rods can be manufactured, at least substantially, in a single step and may be used in the manufacture of highly insulating wall structures having two concrete structural layers surrounding a highly insulating material sandwiched therebetween. Such wall connectors prevent or greatly reduce the flow of heat between the two concrete walls surrounding the insulative material, and also eliminate the tendency of one or both of the ends to be exposed within the surface of the final composite wall structure. In addition, the connector rods of the present invention reduce friction or potential hang-up between the connectors and the form sidewalls during placement of the insulating layer between the form sidewalls using the cast-in-place method. They also promote better consolidation of concrete or other hardenable structural material in the outer surfaces of the structural layers, particularly at or near where the outer ends of the connector rods are oriented.

[0020] These features have been accomplished by designing and manufacturing a connector rod having a substantially pointed tip at both ends. Such connectors rods are generally symmetrical and/or simple in design and construct, which allows them to be molded in a single step, such as by injection molding, resin transfer molding, or reaction injection molding, thereby eliminating the need to form the connectors in a multi-step fashion as has been the standard in the art for plastic connector similar in design and construct to those disclosed in the Long '733 Patent.

[0021] In a preferred embodiment, the connector rod is injection molded from a polycarbonate resin or other high strength resin or moldable plastic material. Another preferred material is a polycarbonate "alloy" consisting of polycarbonate and polyethylene teraphthalate. In some cases, where increased tensile and bending strength are desired, fibers such as glass fibers, carbon fibers, mineral fibers, boron fibers, ceramic fibers, and the like may be impregnated within the resin to form a connector rod having increased strength and stiffness. The use of more flexible fibers, such as cellulosic, nylon, or other polymeric fibers would be expected to increase the toughness and decrease the stiffness of the connector rod. Nevertheless, where fibers are unnecessary it will be preferable not to use them due to the generally increased cost of their use.

[0022] In a preferred embodiment, the connector rod has a central shaft having at either end a substantially pointed tip, which facilitates the entry of the connector rod through the insulating layer, and which also ensures that there is only minimal contact between either end of the connector rod and the sidewalls of the form when used in manufacturing composite wall structures using the cast-in-place method. Of course, the connector rods disclosed and claimed herein are not limited to any particular method and may be used, for example, in the lift-up method of manufacturing composite wall structures (although the connector rod having an enlarged head at one end, as in the Parent Application, is preferred). The combination of pointed tips at both ends of the connector rod greatly facilitates the use of the connector rod in the manufacture of composite wall structures and leads to a superior final product in which only a minimal amount of the connector rod is exposed within the composite wall surface. It also aids in placing the insulating layer between the form sidewalls and promotes better consolidation of the concrete or other hardenable structural material.

[0023] The central shift includes a middle portion, or "mesial segment", which is intended to reside within the insulating layer. The mesial segment is preferably designed to greatly reduce or prevent the incursion of concrete or other flowable structural material around the mesial segment and into the interior of the volume defined by the insulating layer. Such an influx of concrete into the insulating layer will create a thermal bridge through that portion of the insulating layer, which will reduce the overall insulating ability, or R-value, of the composite wall structure.

[0024] For purposes of clarity, the segment of the connector rod that includes the pointed tip that actually penetrates the insulating layer will hereinafter be referred to as the "penetrating segment", while the remaining segment that includes the other pointed end that does not penetrate the insulating layer will be referred to as the "trailing segment".

[0025] The substantially pointed ends within the penetrating segment of the connector rods of the present invention make it far quicker and easier for the technician to insert the connector rods through the insulation layer compared to, e.g., connectors having a rectangular cross-section on both ends, which design is commonly used in the industry. In addition, the substantially pointed end allows for easy penetration through an insulating material that has a greatly reduced hole size drilled therethrough, or even none at all, since the sub-
stantially pointed end makes the connector rod "self-tapping". Alternatively, the end could have a pyramidal (3-, 4-, or multi-faceted) shape rather than a conical tip and still fall within the definition of "substantially pointed". The result would be substantially the same in each case. A wedge-shaped or "chisel" end, which closes up to a line rather than a single point, would be less satisfactory, but superior to the rectangular surface of the prior art connectors.

[0026] The connector rod further includes one or more recessed portions in both the penetrating segment and the trailing segment into which the uncured concrete or other structural material will flow during casting of the structural walls. Upon hardening, the concrete or other structural material within the one or more recessed portions will firmly and reliably anchor the connector rod firmly within the structural layers of the composite wall structure. Vibrational forces applied to the form or "poking" with rods can be employed to help consolidate the concrete forming the structural walls.

[0027] On either end of the mesial segment, which is defined as that portion of the connector rod that resides within the insulating layer, is a flange or other means for locking the connector rod in place after being inserted through the insulating layer. One of the flanges can be integrally molded into the connector rod, although it can also comprise a plastic washer or disk that is slid over the connector shaft either before or after the connector rod is placed into the insulating layer. It is far simpler and cheaper for the flange at or near the interface between the mesial segment and trailing segment, which is opposite to the side of the connector being inserted through the insulating layer, to simply be integrally molded within the connector rod. This first, or prefixed, flange acts as a means for orienting the connector rod by limiting the depth of penetration through the insulating layer.

[0028] However, it is preferable that the flange at or near the interface between the mesial segment and the penetrating segment that is inserted through the insulating layer to be attached after inserting the connector rod through the insulating layer. Otherwise, this flange might tear too large of a hole through the insulating layer and create the possibility of back flow of uncured concrete or other structural material into the enlarged hold, thereby creating a thermal bridge in the vicinity of the incursion. The second flange preferably comprises a plastic washer that is simply snapped onto the connector rod after it has been inserted through the insulating layer. It may be locked into place by any known means, such as fitting into a small groove or recess within the central shaft at or near the interface between the mesial segment and the penetrating segment. The hole within the plastic washer will preferably be slightly smaller than the circumference of the penetrating segment, but because the washer will typically be slightly flexible, it will be possible for the hole in the washer to temporarily expand when the washer is inserted over the penetrating segment and then contract after it reaches the locking groove or recess to become locked in place.

[0029] Alternatively, the plastic washer might have, e. g., an elliptical hole that corresponds to an ellipsoidal profile of the connector rod. The locking groove or recess at or near the interface between the mesial segment and the penetrating segment might be somewhat more circular than elliptical, such that when the plastic washer is twisted relative to the connector rod, it becomes locked in place. Rotating the washer back the other way unlocks the washer for easy removal.

[0030] The washer might also simply be a self-locking washer that is press-fitted over the connector rod without a locking groove or recess. The washer is held in place due to the pressure of the inner wall against the outer surface of the connector rod. It is pushed on until it reaches the insulating layer, thereby causing the connector rod to be locked in place. The washer can be adapted with little cuts around the interior wall in order to allow the inner wall to flex somewhat when being inserted over the connector rod.

[0031] Finally, although plastic washers are preferred, the washers can be made of any material that allows the locking of the connector rod in place after being inserted through the insulating layer. Because the washer is located on the outer surface of the insulating layer it can be made of, e.g., metal without adversely affecting the insulating ability of the insulating layer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] Figure 1A is an exploded perspective view of a preferred insulating connector rod having a substantially pointed tip at either end shown being fitted with a locking device.

Figure 1B is a perspective view of the connector rod of Figure 1A having been fitted with the locking device.

Figure 1C is an exploded perspective view of an alternative insulating connector rod having a substantially pointed tip at either end shown being fitted with a locking device.

Figure 2 is an exploded perspective view of an alternative embodiment of a connector rod of the present invention being fitted with an orienting device and a locking device.

Figure 3A is a cross-section view of composite wall structure formed using the cast-in-place method and one of the connector rods of Figure 1.

Figure 3B is a breakaway perspective view of the composite wall structure of Figure 3A showing minimal exposure of one end of the connector rod through the composite wall surface.

Figure 4A is a breakaway perspective view showing the use of a prior art connector in a composite wall structure.
Figure 4B is a breakaway perspective view of a side of the structural layer of a composite wall structure made by the cast-in-place method using the connector shown in Figure 4A and showing the increased exposure of one end of the connector rod through the composite wall surface.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0033] The present invention relates to specially designed, highly insulative connector rods used in the manufacture of composite wall structures, and methods for the manufacture and use of such connector rods. Such connector rods can be manufactured in a single step to yield connector rods having a wide variety of structural features and accessories therein. Such connector rods are designed to secure together two structural layers that are separated a predetermined distance by an insulating layer therebetween comprising a highly insulating, or high R value, material. Because the connector rods also are made from a high R value material, they prevent or greatly reduce the flow of heat between the two concrete walls compared to, e.g., metal connectors. The design of the connector rods makes them especially useful in the manufacture of composite wall structures using the cast-in-place method. However, they are not limited to any particular method for manufacturing composite wall structures.

[0034] The connector rods of the present invention are preferably injection molded from any appropriate resin or other high strength plastic material, although they may also be molded by resin transfer molding, reaction injection molding, or any other single-step or relatively simple molding process known in the art. An important criterion is that the manufacturing costs of the molding process be commensurate with the overall cost parameters of the connector rod to be used.

[0035] A preferred resinous material is polycarbonate resin because of the ease with which it may be injection molded. Another similar resinous material is polycarbonate-polybutylene teraphthalate alloy, which is less expensive than polycarbonate resins. Other resins, such as epoxy resins, thermostet plastics, and other high strength, high R-value materials, may be used. An important criterion is to select a resinous material or other plastic having the desired properties of strength and insulation depending on the performance criteria of the composite wall structure to be fabricated.

[0036] Although not necessary in many instances, it may be desirable to incorporate within the resinous material or other plastic material fibers such as glass fibers, carbon fibers, boron fibers, ceramic fibers, and the like in order to increase the tensile strength, bending strength, and toughness of the connector rod. Fibers can also increase the shear strength of the connector rod if adequately randomly dispersed throughout the resinous or other plastic material. Nevertheless, where fibers are not necessary in order to impart greater strength or stiffness to the connector rod, it will usually be preferable to exclude them due to the generally increased cost of their use.

[0037] Because the use of resins or other moldable plastics (whether or not impregnated with fibers) allows for an almost endless variety of design configurations that can be molded into a connector rod in a single step, such connector rods can include a wide variety of structural features or accessories without increasing the cost of manufacture. Many connector rods presently used in making composite wall structures are formed by pull-truding continuous fibers through a resinous material, which thereafter must be cut, machined, and then retrofitted with even the most minor additional structural features due to the limitations inherent in the pull-trusion method of molding. Pull-trusion, like extrusion, is inherently only capable of yielding rods of uniform cross-section corresponding to the die head design.

[0038] Referring to Figure 1A, in a first preferred design of the connector rod of the present invention, the connector rod 10 includes an elongate shaft 12 that is preferably cylindrical or ellipsoidal. The elongate shaft 12 includes a penetrating segment 14, a mesial segment 16, and a trailing segment 18. The penetrating segment 14 includes a substantially pointed penetrating tip 20 disposed at a first end of the connector rod 10 and at least one recessed portion 22 for receiving flowable concrete or other hardenable structural material therein for anchoring the connector rod within the first structural layer upon curing or hardening of the structural material.

[0039] The trailing segment 18 also includes a substantially pointed tip 24 at the other end of the connector rod 10, but is designated as a trailing tip 24 for clarity. The penetrating tip 20 and the trailing tip 24 may or may not be identical in size or design and will often only be distinguishable in view of the placement, if any, of a fixed ridge or flange 26 disposed at or near the interface between the mesial segment 16 and the trailing segment 18. In the event that the ridge or flange 26 is not integrally molded within the connector rod 10, but is only later attached later as a plastic washer (Figure 2), the penetrating tip 20 and trailing tip 24 may very well be indistinguishable before attachment of the ridge or flange 26.

[0040] The trailing segment 18 also includes means for anchoring the trailing segment within the second structural layer upon curing or hardening of the structural material. An example of structure that would serve this anchoring purpose is a protrusion 28, which is disposed between the ridge or flange 26 and the trailing tip 24. Hardenable structural material can flow into and harden within a recess 30 defined by the portion of the trailing segment 18 between the ridge or flange 26 and the protrusion 28. Alternatively, the anchoring means could be at least one recessed portion 22 within the penetrating segment 14.
In a preferred method of use, the ridge or flange 26 will be fixed in place prior to placement of the connector rod 10 through the insulating layer. This may be accomplished by integrally molding the ridge or flange 26 within the connector rod 10, as shown in Figure 1A. Alternatively, the ridge or flange 26 may comprise a plastic washer or other appropriate ridge-forming device that is attached onto the connector rod 10 prior to insertion through the insulating layer (Figure 2). In either scenario, the ridge or flange 26 provides a definite stopping point, which constitutes means for limiting the penetration depth of the connector rod 10 through the insulating layer. This helps the technician place the connector rod 10 through the insulating layer to the correct depth quickly, easily, and accurately virtually every time.

Located at or near the interface between the mesial segment 16 and the penetrating segment 14 are means, such as a groove or recess 32, for attaching a locking device, such as a plastic washer 34, to form a second ridge or flange 36 at or near the interface between the mesial segment 16 and penetrating segment 14, as shown in Figure 1B. This second ridge or flange 36 provides means for locking the connector rod 10 in place after placement within the insulating layer so that it will not pull out or otherwise shift out of position once it is properly placed. The means for attaching the plastic washer 34 at or near the interface between the mesial segment 16 and penetrating segment 14 comprises the groove or recess 32 that is configured such that, once the plastic washer 34 is slid over the penetrating segment 14 and into the groove or recess 32, the plastic washer 34 will be reliably secured in place when subject to ordinary loads associated with placing the insulating layer within the vertical form and pouring concrete on either side of the insulating layer within the form.

Nevertheless, in cases where the technician wishes to remove the connector for any reason, the locking mechanism provided by the groove or recess 32 and the plastic washer 34 can be adapted to allow for such removal. In this scenario, the groove or recess 32 and washer 34 may be configured such that they can be locked together upon rotating the washer 34 relative to the connector rod 10. This may be done, for example, by designing the connector rod 10 to have a generally ellipsoidal profile (not shown) and the hole 38 within the washer 34 to be generally elliptical (not shown). The groove or recess 32 might be designed to have a more circular profile such that when the washer 34 is rotated relative to the connector rod 10, the narrower portion of the elliptical hole 38 will be positioned nearer the widest portion of the surface of the connector rod 10, thereby causing the washer 34 to become locked in place (not shown). Rotating the washer 34 in the opposite direction to realign the ellipse of the washer hole 38 and the elliptical surface of the connector rod 10 would then cause the washer 34 to be unlocked from the groove or recess 32 (not shown).

Referring to Figure 1C, the means for locking the connector rod in place within the insulating layer might simply constitute a self-locking washer 42 that is press-fitted over a connector rod 40 that is similar to connector rod 10 except that it does not include the locking groove or recess 32. The washer 42 is held in place due to the pressure of the inner wall of a washer 42 against the outer surface of the connector rod 40. It is pushed on until it reaches the insulating layer, thereby causing the connector rod to be locked in place. The washer may also be adapted with little cuts 44 around the interior wall in order to allow the inner wall to flex somewhat when the washer 42 is being inserted over the connector rod 40.

Finally, although plastic washers are preferred, the washers 34, 42 can be made of any material that allows for reliable locking of the connector rod in place after being inserted through the insulating layer. Because the washers 34, 42 are to be located on the outer surface of the insulating layer, they can be made of, e.g., metal without adversely affecting the insulating ability of the insulating layer and the overall composite wall structure.

In an alternative embodiment, the connector rod of the present invention might be designed to function equal or similar to the connector rod 50 shown in Figure 2. The connector rod 50 is similar in design and function to connector rod 10 of Figure 1A, except that the ridge or flange 26 of connector rod 10 has been eliminated and replaced with groove or recess 52. In addition, the means for securing the trailing portion 18 of connector rod 10 has been modified such that the protrusion 28 has been eliminated and replaced with at least one recessed portion 54 disposed between the groove or recess 52 and the trailing tip 24 similar to the at least one recessed portion 22 of connector rod 10.

Because the connector rod 50 shown in Figure 2 appears to be substantially symmetrical, the penetrating segment 12 and trailing segment 18 are virtually indistinguishable until an orienting device, such as one of first and second washers 56, 58, is secured to the connector rod 50. In a preferred method of use, the connector rod 50 is first fitted with the first washer 56, which, when locked in place, will serve as means for orienting the connector rod 50 during insertion through the insulating layer. In particular, the washer 56 will act as a stop that will limit the degree of penetration of the connector rod 50 through the insulating layer. This allows the technician to place each of the connector rods 50 through the insulating layer to the same depth every time. Thereafter, the second washer 58 is secured in place within the groove or recess 32 at or near the intersection of the penetrating segment 14 and mesial segment 16 in order to provide means for locking the connector rod 50 in place in the desired orientation within the insulating layer.

Alternatively, the connector rod 50 and washers 56, 58 can be modified to provide means for locking and unlocking the washers 56, 58 in place on the con-
nector rod 50, as explained above. Similarly, one or both of the grooves or recesses 32, 52 can be eliminated and the corresponding washer be adapted to be held in place in a press-fit manner. However, it will generally not be preferable to modify the orienting means in this manner, since this may make it more difficult to correctly place the orienting washer 58 in the correct location each time, which might cause varying placement depths of the multiple connector rods 50 being placed within the insulating layer.

[0049] In general, the connector rods of the present invention, as illustrated above, are designed to be especially useful in the manufacture of composite wall structures using the cast-in-place method, which is illustrated in Figure 3A using the connector rod 10 illustrated in Figure 1A. In this method, an appropriate number of the connector rods are inserted through an insulating layer 60 to a depth determined by the location of the first ridge or flange 26. Thereafter, formation of the second ridge or flange 36 by attachment of washer 34 on the other side of the connector rod 10 locks the connector rod 10 in place in the desired orientation. When the insulating layer 60 is placed between the sidewalks 70 of a form, the substantially pointed penetrating tip 20 and trailing tip 24 make significant abutting contact with the two sidewalks 70, which serve to orient the insulating layer 60 at the appropriate distance between the two essentially parallel side walls 70 in conjunction with the locking action of the first and second ridges or flanges 26 and 36. In an alternative embodiment, the design of the penetrating tip 20 and trailing tip 34 can be changed from a conical shape to a pyramidal shape (not shown) that can be 3-, 4-, or multi-faceted without significantly altering the utility of the connector rods of the present invention. However, while a chisel-shaped end (not shown) would likely be superior to the rectangular-shaped ends of the prior art connector, they are less preferred than the conical or pyramid-shaped tips in the preferred connector rods.

[0050] Once the insulating layer 60 has been appropriately situated between the form sidewalks 70, concrete or other hardenable structural material is then poured within spaces 80 on either side of the insulating layer 60 between the insulating layer 60 and the two sidewalks 70 to form structural layers 90. In order to avoid unduly stressing one side of the insulating layer 60 during formation of the structural layers 90, it is usually preferable to pour equal or similar depths of concrete or other structural material within spaces 80 in order to substantially equalize the pressure being exerted on either side of the insulating layer 60 at any particular moment. Once the concrete or other structural material has sufficiently cured or hardened, the form sidewalks 70 can be removed from around the structural layers 90 of the composite wall structure.

[0051] As shown in Figure 3B, an important advantage of using the connector rods of the present invention is that little or virtually none of the connector rod tips (e.g., trailing tip 24) will be exposed within the outer surface 100 of the final hardened composite wall structure 110. This is because the connector rods terminate at either end with substantially pointed tips 20, 24 having a cross-section that is essentially reduced to zero at the end. This sharply contrasts with the rectangular surface exposure that will occur when using the prior art connectors of rectangular cross section, as shown in Figures 4A and 4B. This reduced exposure would also be true for chisel-shaped ends, which would terminate in a line rather than a rectangle in the outer surface of the composite wall structure (not shown).

[0052] The advantage of using the pointed end connector of the present invention is at least three-fold: 1) the reduced surface contact between the substantially pointed tips and the form sidewalks will greatly reduce the friction vis-a-vis the rectangular-faced connector of the prior art, which will facilitate placement of the insulating layer 60 between the sidewalks 70 of the form; 2) upon removal of the form sidewalk 60 from the composite wall structure 110, only the pointed ends 20, 24 of the connector rods will be exposed within the composite wall surface 100, which greatly reduces or eliminates potential visual nuisance and greatly reduces exposure of the connector rods to potentially destructive environmental elements, such as chemical or solar attack; and 3) the reduced cross section at the interface between the substantially pointed connector rods of the present invention and the sidewalks 70 facilitates more complete consolidation of the concrete or other structural material of the outer wall surface 100 in or near the area around the pointed tips compared to, e.g., a rectangular-faced prior art connector, which would tend to prevent complete consolidation of concrete just beneath the flat portion of the connector abutting the sidewalks 70.

[0053] In general, the structural material used to form the structural layers 90 of the composite wall structures made according to the present invention may comprise any suitable material which can flow when initially cast and then harden to form a generally rigid, structural layer. In a preferred embodiment, the structural layers comprise a concrete material formed from a mixture including hydraulic cement, water, an aggregate material, and other appropriate admixtures. Concrete is preferred because of its low cost, high strength, and ease of casting compared to other materials. Nevertheless, any appropriate structural material may be used, such as high strength polymers, resins or other materials, which can flow when cast and later be hardened.

[0054] The insulating layer 60 may comprise any appropriate insulating material, such as polystyrene foam, fiberglass, aerogel, xerogel, xonotlite, seagel, polyliso-cyanate foam, polyurethane foam, urea-formaldehyde foam, and low density, highly insulating cementitious materials. Such insulating materials are given only by way of example and not by limitation.

[0055] The insulating layer 60 preferably includes a plurality of holes that are predrilled or punched there-
through through which the connector rods of the present invention can be inserted, as described above. Because of the piercing effect of the penetrating tip 20, it is often preferable to drill holes having a smaller diameter compared to the diameter of the elongate shaft 12 to ensure a tight fit within the insulating layer. This helps to prevent incursion of concrete into the insulating layer, which can cause a thermal bridge, and undermine the utility of the present invention. In many cases, no holes will be required at all because of the self-tapping nature of the substantially pointed penetrating tip 20.

[0056] The various connector rods described herein were used in experimental composite wall structures and were found to have more than adequate shear strength to hold together the three layers of the composite wall structures that were tested. In fact, in all cases when a stress strong enough to cause a failure of the composite wall structure was applied, it was the concrete structural layer that failed in each instance. The connector rods were left intact.

[0057] The present invention may be embodied in other specific forms without departing from its essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description.

Claims

1. A connector rod (10) for use in manufacturing an insulating composite wall structure, wherein the connector rod (10) comprises a highly insulating material and includes:

- an elongate shaft (12) having a penetrating segment (14), a trailing segment (18), and a mesial segment (16) disposed between the penetrating and trailing segments (14, 18);
- orienting means (26, 56) disposed at or near where the trailing segment (18) and mesial segment (16) intersect for limiting penetrating of the connector rod (10) through an insulating layer (60);
- first anchoring means (22) within the penetrating segment (14) for anchoring the connector rod (10) within a first structural layer (90) when the first structural layer (90) is substantially hardened; and
- second anchoring means (28, 30, 54) within the trailing segment (18) for anchoring the connector rod (10) within a second structural layer (90) when the second structural layer (90) is substantially hardened;

characterized in that the elongate shaft (12) is injection molded into a single step and has a substantially circular or ellipsoidal cross section and in that the connector rod further includes:

- a first substantially pointed tip (20) at an end of the penetrating segment distal to the mesial segment (16) for penetrating completely through an insulating layer (60);
- a second substantially pointed tip (24) at an end of the trailing segment distal to the mesial segment (16), the first and second substantially pointed tips (20, 24) terminating approximately at respective outer surfaces (100) of the first and second structural layers (90) so as to facilitate consolidation of the hardenable material around the ends (20, 24) of the penetrating and trailing segments (14, 18), the outer surfaces (100) of the first and second structural layers (90) being substantially smooth and continuous around the first and second substantially pointed tips (20, 24) of the connector rod (10).

2. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the orienting means includes a flange (26) integrally molded within the connector rod (10) at or near where the trailing segment (18) and the mesial segment (16) intersect.

3. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the orienting means includes a disk-like structure (56) that is attached to the connector rod (10) and substantially locked in place in a desired location at or near where the trailing segment (18) and the mesial segment (16) intersect.

4. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the first anchoring means within the penetrating segment comprises at least one recess (22) in the penetrating segment (14) disposed between the first substantially pointed tip (20) and the mesial segment (16).

5. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the second anchoring means within the trailing segment comprises at least one recess (30, 54) in the trailing segment (18) disposed between the second substantially pointed tip (24) and the mesial segment (16).

6. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the connector rod (10) is formed from a polycarbonate material.

7. A connector rod (10) for use in manufacturing an
An insulating composite wall structure (110) as defined in claim 1, wherein the connector rod (10) is formed from a high strength resin.

8. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the connector rod (10) is formed from a moldable plastic material.

9. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the connector rod (10) is formed from an epoxy resin.

10. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the connector rod (10) is formed from a thermoset plastic.

11. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the connector rod (10) is impregnated with fibers.

12. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, further including engageable locking means (36) disposed at or near where the penetrating segment (14) and mesial segment (16) intersect for maintaining the connector rod (10) in a desired orientation relative to the insulating layer (60).

13. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 12, wherein the engageable locking means includes a disk-like structure (36) that is attached to the connector rod and substantially locked in place in a desired location at or near where the penetrating segment (14) and the mesial segment (16) intersect.

14. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 13, wherein the disk-like structure (36) comprises a self-locking washer.

15. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 13, wherein the connector rod (10) further includes a locking groove (32) at or near where the penetrating segment (14) and the mesial segment (16) intersect and wherein the disk-like structure (36) comprises a washer that is locked in place within the locking groove (32) in order to form the engageable locking means.

16. An insulating composite wall structure (110) comprising first and second structural layers (90) made from a hardenable material, an insulating layer (60) disposed between the first and second structural layers (90), and a plurality of connector rods (10) as defined in claim 1, wherein at least one of the first and second structural layers (90) comprises a concrete material.

17. An insulating composite wall structure (110) as defined in claim 16, wherein the insulating layer (60) comprises polystyrene foam.

18. An insulating composite wall structure (110) as defined in claim 16, wherein the insulating layer (60) comprises fiberglass.

19. An insulating composite wall structure (110) as defined in claim 16, wherein only a minor portion of the substantially pointed tips (20, 24) of the connector rods are visible through the outer surfaces (100) of the structural layers (90).

20. A connector rod (10) for use in manufacturing an insulating composite wall structure (110) as defined in claim 1, wherein the connector rod (10) is formed from a polycarbonate-polybutylene terephthalate alloy.

Patentansprüche

1. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur, wobei die Verbindungsstange (10) ein hochisolierendes Material umfasst und beinhaltet:

 einen langgestreckten Schaft (12) mit einem Durchdringungsabschnitt (14), einem Hinterabschnitt (18) und einem zwischen dem Durchdringungs- und Hinterabschnitt (4, 18) angeordneten Mittelabschnitt (16),

 ein bei oder nahe dem Ort, an dem sich der Hinterabschnitt (18) und der Mittelabschnitt (16) schneiden, angeordnetes Ausrichtungsmittel (26, 56), um das Durchdringen der Verbindungsstange (10) durch eine isolierende Schicht (60) zu begrenzen,

 ein erstes Verankerungsmittel (22) in dem Durchdringungsabschnitt (14), um die Verbindungsstange (10) in einer ersten strukturellen Schicht (90) zu verankern, wenn die erste strukturelle Schicht (90) im Wesentlichen ausgebildet ist, und

 ein zweites Verankerungsmittel (28, 30, 54) in dem Hinterabschnitt (18), um die Verbindungsstange (10) in einer zweiten strukturellen Schicht (90) zu verankern, wenn die zweite strukturelle Schicht (90) im Wesentlichen aus-
gehärtet ist,
dadurch gekennzeichnet,
dass der langgestreckte Schaft (12) in einem einzigen Schritt spritzgegossen ist und einen im Westentlichen kreisförmigen oder elliptischen Querschnitt aufweist, und dadurch, dass die Verbindungsstange weiterhin beinhaltet:
eine erste im Wesentlichen spitz zulaufende Spitze (20) an einem von dem Mittelabschnitt (16) distalen Ende des Durchdringungsabschnitts, um vollständig durch eine isolierende Schicht (60) hindurchzudringen,
eine zweite im Wesentlichen spitz zulaufende Spitze (24) an einem von dem Mittelabschnitt (16) distalen Ende des Hinterabschnitts, wobei die ersten und zweiten im Wesentlichen spitz zulaufenden Spitzen (20, 24) ungefähr bei jeweiligen äußeren Oberflächen (100) der ersten und zweiten strukturellen Schicht (90) enden, um die Verfestigung des aushärtbaren Materials um die Enden (20, 24) des Durchdringungs und Hinterabschnitts (14, 18) zu erleichtern, wobei die äußeren Oberflächen (100) der ersten und zweiten strukturellen Schicht (90) im Wesentlichen glatt und durchgehend um die erste und zweite im Wesentlichen spitz zulaufende Spitze (20, 24) der Verbindungsstange (10) sind.

2. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei das Ausrichtungsmittel einen integral mit der Verbindungsstange (10) bei oder nahe dem Ort, wo sich der Hinterabschnitt (18) und der Mittelabschnitt (16) schneiden, ausgeformten Flansch (26) beinhaltet.

3. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei das Ausrichtungsmittel eine scheibenähnliche Struktur (56) umfasst, welche an der Verbindungsstange (10) angebracht ist und in wesentlichen in einer gewünschten Position bei oder nahe dem Ort, wo sich der Hinterabschnitt (18) und der Mittelabschnitt (16) schneiden, ortsfest verriegelt ist.

4. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei das erste Verankerungsmittel in dem Durchdringungsabschnitt zumindest eine Vertiefung (22) in dem Durchdringungsabschnitt (14) umfasst, welche zwischen der ersten im Wesentlichen spitz zulaufenden Spitze (20) und dem Mittelabschnitt (16) angeordnet ist.

5. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei das zweite Verankerungsmittel in dem Hinterabschnitt zumindest eine Vertiefung (30, 54) in dem Hinterabschnitt (18) umfasst, welche zwischen den zweiten im Wesentlichen spitz zulaufenden Spitzen (24) und dem Mittelabschnitt (16) angeordnet ist.

6. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei die Verbindungsstange (10) aus einem Polycarbonat-Material gebildet ist.

7. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei die Verbindungsstange (10) aus einem hochfesten Harz gebildet ist.

8. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei die Verbindungsstange (10) aus einem formbaren Kunststoffmaterial gebildet ist.

9. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei die Verbindungsstange (10) aus einem wärmehärtenden Kunststoff gebildet ist.

10. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei die Verbindungsstange (10) mit Fasern imprägniert ist.

11. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei die Verbindungsstange (10) mit fasern imprägniert ist.

12. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, weiterhin umfassend in Eingriff bringbare Verriegelungsmittel (36), welche an oder nahe dem Ort angeordnet sind, an dem sich der Durchdringungsabschnitt (14) und der Mittelabschnitt (16) schneiden, zum Halten der Verbindungsstange (10) in einer gewünschten Ausrichtung relativ zu der isolierende Schicht (60).
benähnliche Struktur (36) beinhaltet, welche an der Verbindungsstange angebracht ist und im Wesentlichen ortsfest an einem gewünschten Ort bei oder nahe dem Ort, wo sich der Durchdringungsabschnitt (14) und der Mittelabschnitt (16) schneiden, verriegelt ist.

14. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 13, wobei die scheibenähnliche Struktur (36) eine selbstverriegelnde Scheibe umfasst.

15. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 13, wobei die Verbindungsstange (10) weiterhin eine Verriegelungsvertiefung (32) bei oder nahe dem Ort, wo sich der Durchdringungsabschnitt (14) und der Mittelabschnitt (16) schneiden, umfasst, und wobei die scheibenähnliche Struktur (36) eine Scheibe umfasst, welche ortsfest in der Verriegelungsvertiefung (32) verriegelt ist, um das in Eingriff bringbare Verriegelungsmittel zu bilden.

16. Isolierende zusammengesetzte Wandstruktur (110), umfassend erste und zweite aus einem aushärtbaren Material gefertigte strukturelle Schichten (90), eine zwischen der ersten und zweiten strukturellen Schicht (90) angeordnete isolierende Schicht (60) und eine Vielzahl von Verbindungsstangen (10) gemäß Anspruch 1, wobei zumindest eine der ersten und zweiten strukturellen Schichten (90) ein Betonmaterial umfasst.

17. Isolierende zusammengesetzte Wandstruktur (110) gemäß Anspruch 16, wobei die isolierende Schicht (60) Polystyrolschaum umfasst.

18. Isolierende zusammengesetzte Wandstruktur (110) gemäß Anspruch 16, wobei die isolierende Schicht (60) Glaswolle umfasst.

19. Isolierende zusammengesetzte Wandstruktur (110) gemäß Anspruch 16, wobei nur ein kleiner Abschnitt der im Wesentlichen spitz zulaufenden Spitzen (20, 24) der Verbindungsstangen durch die äußeren Oberflächen (100) der strukturellen Schichten (90) sichtbar ist.

20. Verbindungsstange (10) zur Benutzung bei der Herstellung einer isolierenden zusammengesetzten Wandstruktur (110) gemäß Anspruch 1, wobei die Verbindungsstange (10) aus einem Polycarbonat-Polybutylen Terephthalat-Gemisch gebildet ist.

Revendications

1. Tige de raccordement (10) pour la fabrication d’une structure de paroi composite d’isolation, la tige de raccordement (10) comprenant un matériau fortement isolant et présentant :

- un axe allongé (12) possédant un segment de pénétration (14), un segment arrière (18) et un segment médian (16) disposé entre les segments de pénétration et arrière (14, 18) ;
- des moyens d’orientation (26, 56) disposés sur ou près du point d’intersection du segment arrière (18) et du segment médian (16) afin de limiter la pénétration de la tige de raccordement (10) à travers une couche d’isolation (60) ;
- un premier moyen d’ancrage (22) à l’intérieur du segment de pénétration (14) pour ancrer la tige de raccordement (10) à l’intérieur d’une première couche de structure (90) lorsque la première couche de structure (90) a sensiblement durci ; et
- des seconds moyens d’ancrage (28, 30, 54) à l’intérieur du segment arrière (18) pour ancrer le connecteur (10) à l’intérieur d’une seconde couche de structure (90) lorsque la seconde couche de structure (90) a sensiblement durci ;

caractérisée en ce que l’axe allongé (12) est moulé par injection en une seule étape et possède une section transversale sensiblement circulaire ou ellipsoïdale et en ce que la tige de raccordement comprend de plus :

- une première extrémité sensiblement en pointe (20) à une extrémité du segment de pénétration distale du segment médian (16) pour pénétrer complètement à travers une couche d’isolation (60) ;
- une seconde extrémité sensiblement en pointe (24) à une extrémité du segment arrière distale du segment médian (16), les première et seconde extrémités sensiblement en pointe (20, 24) se terminant approximativement sur les surfaces externes respectives (100) des premières et secondes couches de structure (90) afin de faciliter la consolidation du matériau durcissable autour des extrémités (20, 24) des segments de pénétration et arrière (14, 18), les surfaces externes (100) des première et seconde couches de structure (90) étant sensiblement lisses et continues autour des première et seconde extrémités sensiblement en pointe (20, 24) de la tige de raccordement (10).

2. Tige de raccordement (10) pour la fabrication d’une structure de paroi composite d’isolation (110) selon la revendication 1, dans laquelle le moyen d’orien-
3. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle le moyen d'orientation comprend une structure en forme de disque (56) qui est fixée à la tige de raccordement (10) et sensiblement maintenue en place à une position désirée sur ou près du point d'intersection du segment arrière (18) et du segment médian (16).

4. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle le premier moyen d'ancrage à l'intérieur du segment de pénétration comprend au moins un évidement (22) dans le segment de pénétration (14) disposé entre la première extrémité sensiblement en pointe (20) et le segment médian (16).

5. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle le second moyen d'ancrage à l'intérieur du segment arrière comprend au moins un évidement (30, 54) dans le segment arrière (18) disposé entre la seconde extrémité sensiblement en pointe (24) et le segment médian (16).

6. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle la tige de raccordement (10) est formée d'un matériau de polycarbonate.

7. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle la tige de raccordement (10) est formée d'une résine à haute densité.

8. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle la tige de raccordement (10) est formée d'une matière plastique injectable.

9. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle la tige de raccordement (10) est formée d'une résine époxyde.

10. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle la tige de raccordement (10) est formée d'une matière plastique thermodurcissable.

11. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle la tige de raccordement (10) est imprégnée de fibres.

12. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, comprenant au moins un moyen de blocage engagé (36) disposé sur ou près du point d'intersection du segment de pénétration (14) et du segment médian (16) afin de maintenir la tige de raccordement (10) dans une orientation désirée par rapport à la couche d'isolation (60).

13. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 12, dans laquelle le moyen de blocage engagé comprend une structure en forme de disque (36) qui est fixée à la tige de raccordement et sensiblement maintenue en place sur une position désirée sur ou près du point d'intersection du segment de pénétration (14) et du segment médian (16).

14. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 13, dans laquelle la structure en forme de disque (36) comprend une rondelle auto-blocante.

15. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 13, dans laquelle la tige de raccordement (10) comprend, de plus, une rainure de blocage (32) sur ou près du point d'intersection du segment de pénétration (14) et du segment médian (16) et dans laquelle la structure en forme de disque (36) comprend une rondelle qui est maintenue en place à l'intérieur de la rainure de blocage (32) afin de former le moyen de blocage engagé.

16. Structure de paroi composite d'isolation (110) comprenant des premier et seconde couches de structure (90) constituées d'un matériau durcissable, d'une couche d'isolation (60) disposée entre les premier et seconde couches de structure (90) et d'une pluralité de tiges de raccordement (10) selon la revendication 1, dans laquelle au moins une des premier et seconde couches de structure (90) comprend du béton.

17. Structure de paroi composite d'isolation (110) selon la revendication 16, dans laquelle la couche d'isolation (60) comprend une mousse de polystyrène.

18. Structure de paroi composite d'isolation (110) selon
la revendication 16, dans laquelle la couche d'isolation (60) comprend des fibres de verre.

19. Structure de paroi composite d'isolation (110) selon la revendication 16, dans laquelle seule une petite partie des extrémités sensiblement en pointe (20, 24) des tiges de raccordement est visible à travers les surfaces externes (100) des couches de structure (90).

20. Tige de raccordement (10) pour la fabrication d'une structure de paroi composite d'isolation (110) selon la revendication 1, dans laquelle la tige de raccordement (10) est formée d'un alliage de téréphtalate de polycarbonate/polybutylène.