Method of manufacturing tyre tubes containing sealant and vulcanizing apparatus therefor

Verfahren zur Herstellung von Dichtmittel enthaltenden Reifenschläuchen und Vulkanisiervorrichtung dafür.

Procédé de fabrication de chambres à air pour pneus contenant un produit obturant et appareil de vulcanisation pour sa mise en œuvre

Designated Contracting States:
DE FR IT

Priority: 04.03.1998 JP 6946898

Date of publication of application:
20.10.1999 Bulletin 1999/42

Proprietor: HONDA GIKEN KOGYO KABUSHIKI KAISHA
Minato-ku Tokyo (JP)

Inventor: Yamagiwa, Toshio
c/o K.K. Honda Gijutsu Kenkyusho
Wako-shi, Saitama (JP)

Representative: Liska, Horst, Dr.-Ing. et al
Weickmann & Weickmann
Patentanwälte
Postfach 86 08 20
81635 München (DE)

References cited:
EP-A- 0 818 302
US-A- 4 966 543

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a method of manufacturing a tire tube and a vulcanizing apparatus therefor, and particularly to a method of manufacturing a sealant containing tire tube including an air chamber filled with air and a sealant chamber filled with a sealant according to the preamble of claim 1, and a vulcanizing apparatus therefor according to the preamble of claim 3.

Fig. 1 is a transverse sectional view of a wheel mounted with a tube containing tire including a sealant chamber. Referring to Fig. 1, a rim R of the wheel for a motorcycle is connected to a hub (not shown) via wire spokes (not shown).

A tube containing tire T having a tire 1 and a tube 2 contained in the tire 1 is mounted on the rim R. The tube 2 includes a peripheral wall 4 and a partition wall 5 for partitioning the inside surrounded by the peripheral wall 4 into two parts. The peripheral wall 4 is composed of an air chamber peripheral wall 41 positioned radially inward of the tube 2, and a sealant chamber peripheral wall 40 positioned radially outward of the tube 2. The partition wall 5 is molded integrally with the peripheral wall 4.

An air chamber 3, which is surrounded by the air chamber peripheral wall 41 and the partition wall 5 in an approximately circular shape in cross-section, is filled with air. A sealant chamber 7, which is surrounded by the sealant chamber peripheral wall 40 and the partition wall 5 in an approximately arcuate shape, is filled with a known liquid sealant 8. The air chamber peripheral wall 41 has an air valve 6 for filling the air chamber 3 with air.

A material composed of a crude rubber kneaded at the material kneading step is extrusion-molded into a raw material tube having an approximately circular shape in cross-section, is filled with air, and at a sealing step, the sealant chamber 7 is filled with a sealant 8 through the sealant filling hole. Then, at a vulcanizing step, the vulcanizing die is heated to vulcanize the raw material tube to form a vulcanized material tube. At a vulcanizing die set step, as shown in Fig. 5, the annular raw material tube 2' (also referred to as "tube") is set in a vulcanizing die 18. At a first vulcanizing step, the vulcanizing die 18 is heated to vulcanize the raw material tube 2', thereby forming a vulcanized material tube 2 (also referred to as "tube"). The tube 2 ejected from the vulcanizing die 18 at a vulcanizing die ejection step is fixed by a specialized jig (not shown) at a fixing step. At a perforating step, a sealant filling hole is opened in the sealant chamber peripheral wall 40.

Then, at a sealant filling step, the sealant chamber 7 is filled with a sealant 8 through the sealant filling hole. At a crude rubber sheet sticking step, a crude rubber sheet is stuck in such a manner as to cover the sealant filling hole, and at a second vulcanizing step, the crude rubber sheet and its neighborhood are locally vulcanized to close the sealant filling hole, to obtain a finished tube.

To open the sealant filling hole in the tube, the tube is required to be fixed. According to the above-described related art method, since the sealant filling hole is opened at the perforating step subsequent to the first vulcanizing step, the tube ejected from the heating die 18 must be fixed using the specialized jig provided separately from the heating die 18. As a result, in the related art method, it is required not only to additionally provide the specialized jig, but also to additionally provide the steps of fixing the tube on the specialized jig and releasing the fixture of the tube therefrom. This causes a problem in increasing the number of the manufacturing steps.

Another problem of the related art method is that it is difficult to open the sealant filling hole 41 because the tube in the state after the first vulcanizing step is harder than the tube in the state before vulcanization.

An object of the present invention is to solve the above-described problem of the related art method, and to provide a method of manufacturing a sealant containing tire tube and a vulcanizing apparatus therefor, which is capable of simply opening a sealant filling hole without use of any specialized jig.

(1) A method of manufacturing a sealant containing tire tube which includes an air chamber filled with air and a sealant chamber filled with a sealant, the method including: a first step of forming, by extrusion-molding, a raw material tube in which the inside of a peripheral wall having an approximately circular shape in cross-section is partitioned by a partition wall into an air chamber and a sealant chamber; a second step of joining both ends of the raw material tube to each other in an annular shape; a third step of setting the annular raw material tube in a vulcanizing die; a fourth step of heating the vulcanizing die, thereby vulcanizing the raw material tube to form a vulcanized material tube; a fifth step of ejecting the vulcanized material tube thus vulcanized from the vulcanizing die; a sixth step of filling the sealant chamber with a sealant through a sealant filling hole; and a seventh step of closing the sealant filling hole, characterized in that at the third and fourth steps, the sealant filling hole communi-
(2) A vulcanizing apparatus for vulcanizing a raw material tire tube inserted in a specific die, the raw material tire tube having a configuration in which the inside of a peripheral wall formed into an approximately circular shape in cross-section is partitioned by a partition wall into an outer peripheral side sealant chamber and an inner peripheral side air chamber, characterized in that the apparatus includes: filling hole opening means for opening a sealant filling hole communicated to the sealant chamber by cutting off part of the peripheral wall.

According to the configuration (1), since the sealant filling hole is opened in the raw material tube in the state in which the raw material tube is set in the vulcanizing die, it is possible to eliminate the necessity of providing the specialized jig for fixing the raw material tube and of providing the steps of fixing the raw material tube using the specialized jig and releasing the fixture of the raw material tube therefrom, and hence to simplify the manufacturing steps.

According to the above configuration (2), it is possible to open the sealant filling hole in the raw material tube in the state in which the raw material tube is set in the vulcanizing die.

Hereinafter, the present invention will be described in detail with reference to the drawings.

Brief Description of the Drawings:

Fig. 1: A transverse sectional view of a wheel mounted with a tube containing tire including a sealant chamber.

Fig. 2: A sectional view showing the configuration of a vulcanizing die according to a second embodiment of the present invention.

Figs. 3(a), 3(b) and 3(c): Sectional views showing actions of a filling hole opening device 50 additionally provided in the vulcanizing die.

Fig. 4: A flow chart showing steps of manufacturing a tube.

Fig. 5: A sectional view showing the configuration of a related art vulcanizing die.

Fig. 6: A flow chart showing manufacturing steps of the present invention and related art manufacturing steps.

A method of manufacturing a sealant containing tire tube according to a first embodiment of the present invention is shown on the right side of Fig. 6. The steps up to and including the joining step for forming a tube raw material into a tubular shape are the same as those in the related art method described with reference to Fig. 4, and therefore, illustration and description thereof are omitted.

After completion of the joining step, the annular raw material tube 2' (hereinafter designated "tube material") is set in a vulcanizing die at a vulcanizing die set step. Fig. 2 is a sectional view showing the configuration of a vulcanizing die 30 constituting a vulcanizing apparatus according to a second embodiment of the present invention. The vulcanizing die 30 includes an upper die 30a, a lower die 30b, and a filling hole opening device 50 to be described later. The lower die 30b has a cutter passage 32 which passes through the vulcanizing die 30 from outside to inside, and a cut piece recovery passage 33 which extends from the outside of the vulcanizing die 30 to a portion, near the inner opening end, of the cutter passage 32.

A drive shaft 52 of a linear actuator 51 is inserted in the cutter passage 32, and as will be described later, a cutter 53 having a leading end around which a cutter blade 53a is mounted is fixed to one end of the drive shaft 52. The linear actuator 51, drive shaft 52, and cutter 53 constitute the filling hole opening device 50 for opening a sealant filling hole in a peripheral wall 4 of the tube material 2'.

At a perforating step subsequent to the vulcanizing die set step, a sealant filling hole is opened in a sealant chamber peripheral wall 40 by the filling hole opening device 50. Figs. 3(a), 3(b) and 3(c) are sectional views showing the actions of the filing hole opening device 50.

When the tube material 2' is set in the vulcanizing die 30, as shown in Fig. 3(a), the linear actuator 51 is kept in the retreated state. After the setting of the tube material 2' in the vulcanizing die 30 is completed, hot air or high temperature steam is supplied into an air chamber 3 of the tube material 2' through an air valve 6, to bring an air chamber peripheral wall 41 and the sealant chamber peripheral wall 40 in tight-contact with the vulcanizing die 30, and also to bring a partition wall 5 in tight-contact with the sealant chamber peripheral wall 40.

By energizing the linear actuator 51 in such a state, the cutter 53 is moved forward in the cutter passage 32 as shown in Fig. 3(b), and the annular cutter blade 53a mounted at the leading end of the cutter 53 cuts a portion of
the sealant chamber peripheral wall 40 into an annular shape. In this embodiment, a stopper 53b is provided on the inner side of the cutter blade 53a. The biting amount of the cutter blade 53a is restricted by the stopper 53b. As a result, the cutter blade 53a does not reach the partition wall 5, and selectively cuts only the peripheral wall 40.

[0024] Alternatively, the linear actuator 51 may be held in the vulcanizing die 30 at the position shown in Fig. 3(b) before the tube material 2' is set in the vulcanizing die 30. With this configuration, when the tube material 2' is set in the vulcanizing die 30 and then a gas such as air is supplied into the tube material 2', the tube material 2' is expanded and thereby a portion of the sealant chamber peripheral wall 40 is cut into an annular shape by the cutter blade 53a. This makes it possible to eliminate the works of moving forward the cutter blade 53a by energizing the linear actuator 51, and hence to simplify the manufacturing steps.

[0025] Next, at a first vulcanizing step, the vulcanizing die 30 is heated to vulcanize the tube material 2' to form a vulcanized material tube 2 (hereinafter designated "tube 2") imparted with an elasticity. After completion of the vulcanization, the tube 2 is ejected from the vulcanizing die 30. After that, as shown in Fig. 3(c), the linear actuator 51 is energized in the retreating direction. At this time, a suction force toward the outside of the vulcanizing die 30 is applied to the recovery passage 33 by means of suction means (not shown), so that a cut piece 40a cut from the peripheral wall 40 by the cutter blade 53a is discharged to the outside of the vulcanizing die 30 through the recovery passage 33.

[0026] The above perforating step is followed by a sealant filling step. It should be noted that the sealant filling step, and the subsequent crude rubber sheet sticking step and second vulcanizing step are the same as those in the above-described related art method, and therefore, the explanation thereof is omitted.

[0027] In this way, according to this embodiment, since the cutter blade 53a is bitten in the tube material 2' before the vulcanizing step, even if a small cut is formed in the partition wall 5 or the like by the cutter blade 53a, such a cut is expected to be repaired in the subsequent vulcanizing step. Accordingly, it is possible to eliminate the necessity of enhancing the perforating accuracy at the perforating step so much, and hence to further facilitate the manufacture of the tire tube.

[0028] In this embodiment, since the filling hole opening device 50 for opening a sealant filling hole 60 in the tube material 2' is provided in the vulcanizing die 30, it is possible to eliminate the necessity of provision of any specialized jig for fixing the tube material at the perforating step.

[0029] In this embodiment, since the sealant filling hole 60 can be opened in the state in which the tube material 2' is set in the vulcanizing die 30, it is possible to eliminate the necessity of provision of the steps of fixing the tube material 2' using a specialized jig and releasing the fixture of the tube material 2' therefrom, and hence to simplify the manufacturing steps.

[0030] In this embodiment, since the sealant filling hole 60 is opened in the peripheral wall which is in the relatively soft crude rubber state before vulcanization, it is possible to make the perforation work easier as compared with the related art perforation work in which the sealant filling hole is opened in the hard peripheral wall after vulcanization.

[0031] The present invention exhibits the following effects:

1. Since the filling hole opening device for opening the sealant filling hole in the tube material is provided in the vulcanizing die, it is possible to eliminate the necessity of provision of any specialized jig for fixing the tube material at the perforating step.

2. Since the sealant filling hole is opened in the state in which the tube material is set in the vulcanizing die, it is possible to eliminate the necessity of provision of the steps of fixing the tube material using a specialized jig and releasing the fixture of the tube material therefrom, and hence to simplify the manufacturing steps.

3. Since the sealant filling hole is opened in the peripheral wall which is in the relatively soft crude rubber state before vulcanization, it is possible to make the perforation work easier as compared with the perforation work in which the sealant filling hole is opened in the hard peripheral wall after vulcanization.

4. Since the tube material is vulcanized after the sealant filling hole is opened in the tube material, even if a cut is formed in the partition wall or the like at the perforating step, such a cut is expected to be repaired in the subsequent vulcanizing step.

Object: To provide a method of manufacturing a sealant containing tire tube, which is capable of simply opening a sealant filling hole without use of any specialized jig, and a vulcanizing die therefor.

Solving Means: A vulcanizing die 30 includes an upper die 30a, a lower die 30b, and a filling hole opening device 50. The filling hole opening device 50 includes a linear actuator 51, a drive shaft 52, and a cutter 53. The lower die 30b has a cutter passage 32 which passes through the vulcanizing die 30 from outside to inside, and a cut piece recovery passage 33 which extends from the outside of the vulcanizing die 30 to a portion, near the inner opening end, of the cutter passage 32. The drive shaft 52 of the linear actuator 51 is inserted in the cutter passage 32, and the cutter 53 is fixed to one end of the drive shaft 52.
Claims

1. A method of manufacturing a sealant containing tire tube (2) which includes an air chamber (3) filled with air and a sealant chamber (7) filled with a sealant (8), said method comprising:

- a first step of forming, by extrusion-molding, a raw material tube (2') in which the inside of a peripheral wall (4) having an approximately circular shape in cross-section is partitioned by a partition wall (5) into an air chamber (3) and a sealant chamber (7);
- a second step of joining both ends of the raw material tube (2') to each other in an annular shape;
- a third step of setting the annular raw material tube (2') in a vulcanizing die (30);
- a fourth step of heating the vulcanizing die (30), thereby vulcanizing the raw material tube (2') to form a vulcanized material tube (2);
- a fifth step of ejecting the vulcanized material tube (2) thus vulcanized from the vulcanizing die (30);
- a sixth step of filling the sealant chamber (7) with a sealant (8) through a sealant filling hole (60); and
- a seventh step of closing the sealant filling hole (60),

characterized in that at said third and fourth steps, the sealant filling hole (60) communicating to the sealant chamber (7) is opened in the peripheral wall (4) of the raw material tube (2') having been set in the vulcanizing die (30).

2. A method of manufacturing a sealant containing tire tube (2) according to claim 1, wherein at said sixth step, the sealant chamber (7) is filled with the sealant (8) in a state in which the air chamber (3) is filled with air.

3. A vulcanizing apparatus for a sealant containing tire tube (2), which is adapted to vulcanize a raw material tire tube (2') inserted in a specific die (30), said raw material tire tube (2') having a configuration in which the inside of a peripheral wall (4) formed into an approximately circular shape in cross-section is partitioned by a partition wall (5) into an outer peripheral side sealant chamber (7) and an inner peripheral side air chamber (3),

characterized in that said apparatus comprises:

- filling hole opening means (50) for opening a sealant filling hole (60) communicating to the sealant chamber (7) by cutting off part (40a) of the peripheral wall (4).

4. A vulcanizing apparatus for a sealant containing tire tube (2) according to claim 3, further comprising a passage (33) through which the cut piece (40a) of the peripheral wall (4) is removed.

Patentansprüche

1. Verfahren zur Herstellung eines ein Dichtungsmittel enthaltenden Reifenschlauchs (2), welcher eine mit Luft gefüllte Luftkammer (3) und eine mit einem Dichtungsmittel (8) gefüllte Dichtungsmittelkammer (7) umfasst, das Verfahren umfassend:

- einen ersten Schritt des Ausbildens eines Rohmaterialschauches (2') durch Extrusionsformen, wobei die Innenseite einer Umfangswand (4) mit einer annähernd kreisförmigen Form im Querschnitt durch eine Trennwand (5) in eine Luftkammer (3) und eine Dichtungsmittelkammer (7) unterteilt ist;
- einen zweiten Schritt des Verbindens beider Enden des Rohmaterialschauches (2') miteinander in einer ringförmigen Form;
- einen dritten Schritt des Einsetzes des ringförmigen Rohmaterialschauches (2') in eine Vulkanisierungsform (30);
- einen vierten Schritt des Erhitzens der Vulkanisierungsform (30), so dass der Rohmaterialschauch (2') vulkanisiert wird zur Ausbildung eines aus einem vulkanisierten Material bestehenden Schlauchs (2);
- einen fünften Schritt des Ausstoßens des so vulkanisierten aus einem vulkanisierten Material bestehenden Schlauchs (2) aus der Vulkanisierungsform (30);
- einen sechsten Schritt des Füllens der Dichtungsmittelkammer (7) mit einem Dichtungsmittel (8) durch ein Dichtungsmittelüllfloch (60); und
- einen siebten Schritt des Schließens des Dichtungsmittelüllflochs (60),

dadurch gekennzeichnet, dass in dem dritten und dem vierten Schritt das mit der Dichtungsmittelkammer (7) in
Verbindung stehende Dichtungsmitteleinfüllloch (60) in der Umfangswand (4) des in die Vulkanisierungsform (30) eingesetzten Rohmaterialsreifenschlauchs (2') geöffnet wird.

2. Verfahren zur Herstellung eines ein Dichtungsmittel enthaltenden Reifens (2) gemäß Anspruch 1, wobei im sechsten Schritt die Dichtungsmittelkammer (7) mit dem Dichtungsmittel (8) in einem Zustand gefüllt wird, in welchem die Luftkammer (3) mit Luft gefüllt ist.

3. Vulkanisierungsvorrichtung für einen ein Dichtungsmittel enthaltenden Reifenschlauch (2), welche dafür ausgelegt ist, einen in einer speziellen Form (30) eingesetzten Rohmaterialreifenschlauch (2') zu vulkanisieren, wobei der Rohmaterialreifenschlauch (2') eine Konfiguration besitzt, bei der die Innenseite der Umfangswand (4), die in einer annähernd kreisförmigen Form im Querschnitt ausgebildet ist, durch eine Trennwand (5) in eine äußere Umfangsseitendichtungsmittelkammer (7) und eine innere Umfangsseitenluftkammer (3) unterteilt ist, dadurch gekennzeichnet, dass die Vorrichtung umfasst:

 Einfülllochöffnungsmittel (50) zum Öffnen eines mit der Dichtungsmittelkammer (7) in Verbindung stehenden Dichtungsmitteleinfülllochs (60) durch Herausschneiden eines Teils (40a) der Umfangswand (4).

4. Vulkanisierungsvorrichtung für einen ein Dichtungsmittel enthaltenden Reifenschlauch (2) gemäß Anspruch 3, ferner umfassend einen Durchgang (33), durch welchen das herausgeschnittene Stück (40a) der Umfangswand (4) entfernt wird.

Revendications

1. Procédé de fabrication d'une chambre à air (2) de pneumatique contenant un produit d'étanchéité qui comporte un compartiment (3) pour air rempli d'air et un compartiment (7) pour produit d'étanchéité rempli d'un produit d'étanchéité (8), ledit procédé comprenant :

 une première étape consistant à former, par moulage par extrusion, un tube (2') en matériau brut, dans lequel l'intérieur d'une paroi périphérique (4), ayant une section transversale de forme approximativement circulaire, est divisé par une cloison (5) en un compartiment pour air (3) et en un compartiment (7) pour produit d'étanchéité ;
 une deuxième étape consistant à réunir les deux extrémités du tube (2') en matériau brut en réalisant une forme annulaire ;
 une troisième étape consistant à mettre en place le tube annulaire (2') en matériau brut dans un moule de vulcanisation (30) ;
 une quatrième étape consistant à chauffer le moule de vulcanisation (30), ce qui vulcanise le tube (2') en matériau brut pour réaliser un tube (2) de matériau vulcanisé ;
 une cinquième étape consistant à éjecter le tube (2) en matériau vulcanisé ainsi vulcanisé, hors du moule de vulcanisation (30) ;
 une sixième étape consistant à remplir de produit d'étanchéité (8) le compartiment (7) pour produit d'étanchéité, au travers d'un trou de remplissage (60) de produit d'étanchéité ; et
 une septième étape consistant à refermer le trou de remplissage (60) de produit d'étanchéité ;

 caractérisé en ce qu'auxdites troisième et quatrième étapes, le trou de remplissage (60) de produit d'étanchéité communiquant avec le compartiment (7) pour produit d'étanchéité est ouvert dans la paroi périphérique (4) du tube (2') en matériau brut, qui a été placé dans le moule à vulcaniser (30).

2. Procédé de fabrication d'une chambre à air (2) de pneumatique contenant un produit d'étanchéité selon la revendication 1, dans lequel, à la sixième étape, le compartiment (7) pour produit d'étanchéité est rempli avec le produit d'étanchéité (8) dans un état dans lequel le compartiment (3) pour air est rempli d'air.

3. Appareil de vulcanisation pour chambre à air (2) de pneumatique contenant un produit d'étanchéité, qui est apte à vulcaniser une chambre à air de pneumatique (2') en matériau brut insérée dans un moule spécifique (30), ladite chambre à air (2') en matériau brut ayant une configuration dans laquelle l'intérieur d'une paroi périphérique (4) présentant une section transversale de forme approximativement circulaire, est divisée par une cloison (5) en un compartiment (7) pour produit d'étanchéité, du côté périphérique extérieur, et en un compartiment (3) pour air, du côté périphérique intérieur,

 caractérisé en ce que ledit appareil comprend :

25

30

35

40

45

50

55
des moyens (50) d'ouverture de trou de remplissage destinés à ouvrir un trou de remplissage (60) de produit d'étanchéité communiquant avec le compartiment (7) pour produit d'étanchéité, par découpe d'une partie (40a) de la paroi périphérique (4).

4. Appareil de vulcanisation pour chambre à air (2) de pneumatique contenant un produit d'étanchéité selon la revendication 3, comprenant en outre un passage (33) par lequel le morceau découpé (40a) de la paroi périphérique (4) est enlevé.