METHOD OF FORMING AND PIERCING A TUBE
VERFAHREN ZUM FORMEN UND STANZEN EINES ROHRES
PROCEDE DE FORMAGE ET DE PER AGE D’UN TUBE

Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:
AL LT LV RO SI


Date of publication of application:
29.09.1999 Bulletin 1999/39

Proprietor: Greenville Tool & Die Company
Greenville, MI 48838 (US)

Inventor: ASH, Stanley, P.
Greenville, MI 48838 (US)

Representative: Rees, David Christopher et al
Kilburn & Strode
20 Red Lion Street
London WC1R 4PJ (GB)

References cited:
US-A- 4 829 803

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to piercing tubular materials.

[0002] Hole are typically made in formed metal sheet by a punch process. To allow a clean pierce and prevent distortion of the metal area surrounding the hole, a "die button" is used to back up the metal sheet while the punch pierces the metal sheet. However, in formed, bent tubes, it is difficult to provide a back-up during the punch process. The geometry of the bent tube may prevent access to the tube interior in order to provide back-up. For example, back-up of a punch operation is difficult if the formed tube has more than one bend along its axis or if the area to be punched is a substantial distance (e.g., more than about 30 cm (12 inches)) from the tube end. Further, bending a tube having holes can unacceptably distort holes. An example of a system in which a punch is backed up by a "die button" is shown in US-A-1693011, which document discloses the combination of features according to the pre-characterising part of claim 1.

[0003] High-pressure liquid in the interior of a tube can provide support when piercing the tube. However, as with tube hydroforming in cold forming metal tubes, this method requires additional expense and equipment to boost the internal hydraulic pressure of the tube. An example of pressure forming and piercing a hollow body can be found in document EP-A-0 758 565, which falls under Article 54(3) EPC and is thus only relevant for the question of novelty. This method involves forming an outward bulge, inverting the bulge while the tube is pressurised and then either piercing the tube walls with the punch or drilling through the walls.

[0004] The aforementioned problems are overcome in the present invention wherein a tube is punched in an outwardly bulged area to define a hole, as defined in claim 1.

[0005] Preferably, the method further includes compressing the outwardly bulged area subsequent to the simultaneous depressing and piercing steps.

[0006] The present invention eliminates the need to elevate the internal pressure of the tube prior to die stamping the tube. Further, the invention does not require hydroforming; that is, it does not require an additional step of elevating the internal pressure of the tube after die stamping in order to conform the walls of the stamped tube to the walls of the die cavity.

[0007] The present invention provides an effective method for piercing a tube to form a hole while minimizing the amount of deformation surrounding the hole. The method can be used to pierce a tube in locations along the tube for which back-up is difficult to provide with conventional punch processes.

[0008] These and other objects, advantages, and features of the invention will be more readily understood and appreciated by reference to the detailed description of the preferred embodiment and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Fig. 1 is a cross-sectional view of a prior art method wherein a tube is pierced by a punch to form a hole; Fig. 2 is a cross-sectional view of a tube formed having an outwardly bulged area within a forming press; Fig. 3 is a cross-sectional view similar to Fig. 2 showing the outwardly bulged area partially pierced and depressed; and Fig. 4 is a cross-sectional view similar to Fig. 3 showing the outwardly bulged area pierced and flattened.

[0010] Fig. 1 shows tube 4 pierced by a punch 110 to form slug 112 and define hole 114. As used herein, "piercing" includes lancing, punching, or equivalent methods of creating a hole; and "hole" includes any type of hole created by piercing, such as a pierced-and-extruded hole or lanced-tab hole. The interior 6 of the prior art tube does not contain any solid. Because tube wall 10 is not backed up during the punch process, tube wall 10 deforms in the areas 116 surrounding hole 114. This forms an unacceptable, poorly defined, deformed hole 114.

[0011] In one embodiment of the present invention, a tube is punched in an outwardly bulged area to define a hole. The method requires the following steps: First, a tube is formed to have an outwardly bulged area. Second, the formed tube is pierced in the outwardly bulged area to define a hole. Simultaneously to the piercing step, the outwardly bulged area is depressed. The outwardly bulged area in the resulting pierced tube is substantially flattened.

1. Forming a Tube Having a Bulged Area

[0012] Turning to Fig. 2, tube 140 has an outwardly bulged area 142 made up of wall portion 143. Wall portion 143 only extends throughout - that is, corresponds to - outwardly bulged area 142. Tube 140 can be formed to have outwardly bulged area 142 using any forming method known in the art such as, for example, die stamping a solid filled tube. The extent to which outwardly bulged area 142 protrudes from tube 140 is determined by trial and error, and depends on factors such as the type and thickness of tube material to be punched, the configuration of the tube and hole, and the type and size of the punch. Typically to make a round, pierced hole, outwardly bulged area 142 has a diameter about 3 times the diameter of the pierced hole and extends outwardly at its peak about 75 percent of the distance that a bulge inwardly extends if the tube is pierced without having an outwardly bulged area.

[0013] Tube 140 is held in place by supporting blocks 132 and 134. Outwardly bulged area 142 is centered beneath punch 144, which has cutting portion 150 and
flat portion 152.

2. Piercing the Outwardly Bulged Area

[0014] Referring to Fig. 3, the cutting portion 150 of punch 144 descends to contact outwardly bulged area 142. As the cutting portion 150 initially pierces wall portion 143, cutting portion 150 simultaneously depresses wall portion 143 of outwardly bulged area 142, forcing wall portion 143 toward the interior 154 of tube 140. Cutting portion 150 continues to descend to simultaneously depress and pierce wall portion 143, until cutting portion 150 substantially flattens outwardly bulged area 142 and creates hole 148. In this context, "substantially flattened" can include curved-wall configurations, for example, by comparing the amount of inward or outward bulge surrounding hole 148 relative to the curvature of the area immediately surrounding the formerly outwardly bulged area. Supporting blocks 132 and 134 support wall 10 in its pre-pierced configuration in areas other than wall portion 143.

[0015] Turning to Fig. 4, pierced tube 146 defines hole 148 created by cutting portion 150 of punch 144. The area 156 surrounding hole 148 has less deformation than a comparable tube pierced without having first formed outwardly bulged area 142 (Fig. 2). As an illustration compare pierced tube 146 of Fig. 4 - formed according to the present invention - with tube 4 of Fig. 1, which was pierced without first having formed an outwardly bulged area.

[0016] In an extended aspect of the present invention, a compressing step - subsequent to the simultaneous piercing and depressing steps - substantially flattens the outwardly bulged area. For example, after the cutting portion 150 of punch 144 has pierced tube wall 143, punch 144 extends to the bottom of its stroke to contact flat portion 152 of punch 144 with area 156 surrounding hole 148. This contact further compresses tube wall 143 to assure that it is substantially flat, as discussed above.

[0017] The outwardly bulged area 142 of tube 140 can be pierced and depressed while filled with liquid or solid. Preferably, however, tube 140 is simultaneously pierced and depressed while "empty" - that is, outwardly bulged area 142 of tube 140 is pierced and depressed without a liquid or solid filling. This provides the advantage of creating pierced tube 146 without the additional steps and expense of filling and/or sealing the tube to contain a liquid or solid.

Claims

1. A method of making a hole (148) in the outer wall (143) of a tube (140), comprising forming the tube (140), having inside and outside wall surfaces, to create an outwardly bulged area (142); characterised by the steps of: engaging the outside tube wall surface of the outwardly bulged area (142) with a punch (144); depressing the outwardly bulged area (142) of the unpressurized tube (140) with the punch (144) to pierce the tube (140) to define a hole (148) and substantially flatten the outwardly bulged area (142).

2. A method as claimed in Claim 1, characterised in that the piercing and substantial flattening occur simultaneously.

3. A method as claimed in Claim 1, characterised by compressing the outwardly bulged area (142) to substantially flatten it subsequent to the piercing step.

4. A method as claimed in any of Claims 1 to 3, characterised in that the punch (144) has a cutting portion (150) and a flat portion (152) adjacent to the cutting portion (150); the cutting portion (150) of the punch pierces the tube (140); and the flat portion (152) of the punch (144) substantially flattens the outwardly bulged area (142).

5. A method as claimed in any of Claims 1 to 4, characterised by supporting the outside tube surface with blocks (132,134) during the depressing step.

Patentansprüche

1. Verfahren zur Herstellung eines Loches (148) in die äußere Wand (143) eines Rohres (140), wobei das Rohr (140), das an der Innenseite und an der Außenseite Wandflächen aufweist, geformt wird, um einen nach außen gewölbten Bereich (142) zu erzeugen, gekennzeichnet durch folgende Schritte: Anlegen einer Stanze (144) an die äußere Rohrwandfläche des nach außen gewölbten Bereiches (142); Niederdrücken des nach außen gewölbten Bereiches (142) des nicht unter Druck stehenden Rohres mit der Stanze, um das Rohr (140) zur Bildung eines Loches (148) zu durchstoßen und den nach außen gewölbten Bereich (142) im wesentlichen flachzudrücken.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Durchstoßen und Überführen des gewölbten Bereiches in einen im wesentlichen flachen Zustand gleichzeitig durchgeführt wird.

3. Verfahren nach Anspruch 1, gekennzeichnet durch das Komprimieren des nach außen gewölbten Bereiches (142), um ihn nach dem Stanzschritt in den im wesentlichen flachen Zustand überzuführen.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Stanze (144) ei-
nen schneidenden Teil (150) und einen flachen Teil (152), angrenzend an den schneidenden Teil (150), aufweist; daß der schneidende Teil (150) der Stanze das Rohr (140) durchstößt und der flache Teil (152) der Stanze (144) den nach außen gewölbten Bereich (142) in einen im wesentlichen flachen Zustand überführt.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß während des Schrittes des Niederdrückens die Außenseite der Rohroberfläche mit Blöcken (132, 134) unterstützt wird.

Revidications

1. Procédé pour percer un trou (148) dans la paroi externe (143) d’un tube (140) comprenant le formage du tube (140), ayant des surfaces de paroi internes et externes, afin de créer une zone bombée vers l’extérieur (142) ; caractérisé par les étapes de mise en contact de la surface de paroi du tube extérieur de la zone bombée vers l’extérieur (142) avec un poinçon (144) ; d’abaissement de la zone bombée vers l’extérieur (142) du tube non mis sous pression (140) avec le poinçon (144) pour percer le tube (140) afin de définir un trou (148) et pour aplani substantiellement la zone bombée vers l’extérieur (142).

2. Procédé selon la revendication 1, caractérisé en ce que le perçage et l’aplanissement substantiel ont lieu simultanément.

3. Procédé selon la revendication 1, caractérisé par la compression de la zone bombée vers l’extérieur (142) pour l’aplanir substantiellement suite à l’étape de perçage.

4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que le poinçon (144) présente une partie coupante (150) et une partie plate (152) adjacente à la partie coupante (150) ; en ce que la partie coupante (150) du poinçon perce le tube (140) ; et en que la partie plate (152) du poinçon (144) aplanit substantiellement la zone bombée vers l’extérieur (142).

5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé par le supportage de la surface extérieure du tube avec des blocs (132, 134) au cours de l’étape d’abaissement.