EUROPEAN PATENT SPECIFICATION

(51) Int.Cl.: G11B 20/10

(54) Waveform equalizer for use in a recorded information reproducing apparatus

Wellenformentzerrer zum Benutzen in einem Wiedergabegerät für aufgezeichnete Informationen

Egalisateur de formes d'onde utilisé dans un appareil de reproduction d'information enregistrée

(84) Designated Contracting States:
DE FR GB

(30) Priority: 06.03.1998 JP 5548298

(43) Date of publication of application:
08.09.1999 Bulletin 1999/36

(73) Proprietor: PIONEER ELECTRONIC CORPORATION
Meguro-ku, Tokyo (JP)

(72) Inventors:
• Kuribayashi, Hiroki
Tsurugashima-shi, Saitama 350-2288 (JP)
• Miyanabe, Shogo
Tsurugashima-shi, Saitama 350-2288 (JP)

(74) Representative:
Klingseisen, Franz, Dipl.-Ing. et al Patentanwälte,
Dr. F. Zumstein,
Dipl.-Ing. F. Klingseisen,
Postfach 10 15 61
80089 München (DE)

(45) Date of publication and mention of the grant of the patent:
25.08.2004 Bulletin 2004/35

(1) European Patent Office
(11) EP 0 940 811 B1
(12) EUROPEAN PATENT SPECIFICATION
(21) Application number: 99102886.1
(22) Date of filing: 04.03.1999

(56) References cited:
EP-A-0 408 007
EP-A-0 441 548
EP-A-0 549 030
US-A-4 962 434

• TOBITA M ET AL: "VITERBI DETECTION OF PARTIAL REPONSE ON A MAGNETO-OPTICAL RECORDING CHANNEL" 9 February 1992, PROCEEDINGS OF THE SPIE, VOL. 1663, NR. 1, PAGE(S) 166 - 173 XP002057023 *the whole document*

• PATENT ABSTRACTS OF JAPAN vol. 097, no. 006, 30 June 1997 & JP 09 044983 A (PIONEER ELECTRON CORP), 14 February 1997

• HOLLMANN H D L: "THE GENERAL SOLUTION OF WRITE EQUALIZATION FOR RLL (D, K) CODES" IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 37, no. 3, 1 May 1991, pages 856-862, XP000204277

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The invention relates to a waveform equalizer for use in a recording information apparatus for reproducing recording information from a recording medium, and to a recording information apparatus for reproducing recording information from a recording medium using such a waveform equalizer.

2. Description of Related Art

[0003] Also, it is a known technique to perform a waveform equalization by executing a filtering process to emphasize high-frequency components for read signal, to improve the S/N ratio of the read signal read out from a recording medium on which digital data has been recorded at a high density. Although an improvement rate of the S/N ratio can be raised as a degree of emphasis of the high frequency components for the read signal is increased, there is a problem such that if the high frequency components are excessively emphasized, an intersymbol interference increases and a jitter contrarily occurs.

OBJECTS AND SUMMARY OF THE INVENTION

[0004] The present invention has been made to solve this problem and it is an object of the invention to provide a waveform equalizer which can improve an S/N ratio without causing a jitter in a read signal read out from a recording medium.

[0005] According to the invention, there is provided a waveform equalizer for obtaining an equalization correction read signal by performing a waveform equalization to a read signal read out from a recording medium, comprising: amplitude limiting means for obtaining an amplitude limitation read signal by limiting an amplitude of said read signal by a predetermined amplitude limitation value; and a high-frequency emphasizing filter for emphasizing a shortest wavelength signal to the read signal for generating a signal obtained by performing a filtering process to said amplitude limitation read signal as said equalization correction read signal, and a reproducing apparatus for reproducing recorded information from a recording medium using such a waveform equalizer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Fig. 1 is a diagram showing a construction of a recording information reproducing apparatus having a waveform equalizer according to the invention; Fig. 2 is a diagram showing an example of input/output characteristics in an amplitude limiting circuit 51; Fig. 3 is a diagram showing another example of input/output characteristics in the amplitude limiting circuit 51; Figs. 4A to 4D are diagrams showing the preventing operation of the occurrence of a jitter by the amplitude limiting circuit 51; Fig. 5 is a diagram showing an example of a FIR filter as a high-frequency emphasizing filter 52; Fig. 6 is a diagram showing another example of a FIR filter as a high-frequency emphasizing filter 52; Fig. 7 is a diagram showing another example of an internal construction of a waveform equalizer 5; Fig. 8 is a diagram showing a specific construction of the waveform equalizer 5 shown in Fig. 7; Fig. 9 is a diagram showing another example of an internal construction of a waveform equalizer 5; Fig. 10 is a diagram showing another example of an internal construction of a waveform equalizer 5; Fig. 11 is a diagram showing an example of an internal construction of the amplitude limiting circuit 51; Figs. 12A to 12G are diagrams showing examples of operation waveforms in an amplitude limitation value generating circuit 511 shown in Fig. 11; Fig. 13 is a diagram showing another example of an internal construction of the amplitude limiting circuit 51; Figs. 14A and 14B are diagrams showing examples of operation waveforms in the amplitude limiting circuit 51 shown in Fig. 13; Figs. 15A and 15B are diagrams showing examples of operation waveforms in the amplitude limiting circuit 51 shown in Fig. 13; Fig. 16 is a diagram showing another example of an internal construction of the amplitude limitation value generating circuit 511; Fig. 17 is a diagram showing a construction of a limiter 510; Fig. 18 is a diagram showing input/output characteristics of the limiter shown in Fig. 17; Fig. 19 is a diagram showing another construction of the limiter 510; and Figs. 20 and 21 are diagrams showing another construction of the limiter 510.
EMBODIMENTS

[0007] Embodiments of the invention will be described hereinafter.

[0008] Fig. 1 is a diagram showing a construction of a recording information reproducing apparatus having a waveform equalizer of the invention.

[0009] In Fig. 1, a pickup 1 reads recording information recorded on a recording disk 3 which is rotated by a spindle motor 2 and supplies a read signal obtained to an amplifier 4. The amplifier 4 amplifies the read signal to a desired level and supplies an obtained read signal R to a waveform equalizer 5.

[0010] An amplitude limiting circuit 51 in the waveform equalizer 5 converts a signal level of the read signal R in accordance with input/output characteristics as shown in Fig. 2 or 3, thereby performing amplitude limitation to the read signal R and supplying an obtained amplitude limitation read signal RLIM to a high-frequency emphasizing filter 52.

[0011] In the case where the amplitude limiting circuit 51 has the characteristics as shown in Fig. 2, when the signal level of the read signal R is smaller than a predetermined amplitude limitation value Th and is larger than an amplitude limitation read value -Th, the signal level of the read signal R is directly generated as an amplitude limitation signal RLIM. When the signal level of the read signal R is larger than the amplitude limitation value Th, the amplitude limitation value Th itself is generated as an amplitude limitation read signal RLIM. When the signal level of the read signal R is smaller than the amplitude limitation value -Th, the amplitude limitation value -Th itself is generated as an amplitude limitation read signal RLIM.

[0012] When the amplitude limiting circuit 51 has the characteristics as shown in Fig. 3, an amplitude limitation of the read signal R is performed in accordance with nonlinear saturation characteristics in which the signal level is saturated at the amplitude limitation values Th and -Th.

[0013] The high-frequency emphasizing filter 52 emphasizes the level of high frequency components of the amplitude limitation read signal RLIM supplied from the amplitude limiting circuit 51 and supplies a resultant signal as an equalization correction read signal RH to a binary value decision circuit 6. The binary value decision circuit 6 discriminates whether the signal level of the equalization correction read signal RH corresponds to either one of the logical levels "1" and "0", and generates a result of the discrimination as reproduction data.

[0014] The operation of the waveform equalizer 5 will now be described.

[0015] Reproducing characteristics of the recording information reproducing system as shown in Fig. 1 are LPF (low pass filter) characteristics in which a cut-off wavelength is determined by

\[\lambda/2NA \]

where \(\lambda \) represents the wavelength of a light source in the pickup 1, and NA represents the numerical aperture of an objective lens in the pickup 1.

[0016] In the case of DVD, for example, in order to increase a recording density, a signal of a shortest recording wavelength, that is, a signal corresponding to a run length of 3T (T denotes a bit interval of an information data series) in an 8/16 modulation is set to a value near the cut-off wavelength in the reproducing characteristics. The level of the read signal corresponding to the run length 3T, consequently, decreases.

[0017] In order to improve an S/N ratio for the signal of the run length 3T, the high frequency components corresponding to the signal of the run length 3T are raised by the high-frequency emphasizing filter 52.

[0018] If an excessive high-frequency emphasis is made by the high-frequency emphasizing filter 52, an intersymbol interference occurs and, conversely, a jitter occurs. In the waveform equalizer of the invention, however, the amplitude limiting circuit 51 is provided to prevent the occurrence of the jitter.

[0019] Figs. 4A to 4D are diagrams showing an operation principle of preventing the occurrence of the jitter due to the amplitude limiting circuit 51, with respect to a case of reproducing data recorded by using an RLL (Run Length Limited) code in which the minimum inversion interval is equal to 3T as in the case of the 8/16 modulation used in the DVD system.

[0020] In the recording data, three or more "1"s or "-1"s of the recording data continue invariably since the minimum inversion interval is equal to 3T. Therefore, when the data is inverted from "1" to "-1" between D4 and D5, D4 and D5 are determined to be "1" and D4 and D5 are determined to be "-1". It is shown that each of the data of D4 and before and the data of D4 and after shown by X can be equal to either "1" or "-1".

[0021] As a waveform of the read signal obtained when the recording data is read, although a number of patterns exist according to combinations of peripheral recording data patterns (each of the data of D4 and before and the data of D4 and after is equal to either "1" or "-1"), it is assumed that a value y0 at the zero-cross point of the waveform in any case is converged to zero (that is, the intersymbol interference (jitter) is equal to zero).

[0022] It is now assumed that the high-frequency emphasizing filter 52 is an FIR (Finite Impulse Response) filter as shown in Fig. 5.

[0023] The FIR filter shown in Fig. 5 is what is called a cosine equalizer comprising: unit delay elements FD1 to FD4; coefficient multipliers M1 to M3 each having multiplication coefficients {-k, 1, -k}; and an adder AD for generating a sum of outputs of the coefficient multipliers M1 to M3 as an equalization correction read signal RH.

[0024] In this case, a signal z0 obtained when the FIR filter executes the high-frequency emphasis at the zero-
cross point is

$$T_0 = (-k) \cdot y'_{-2} + y_0 + (-k) \cdot y'_2$$

where y'_{-2} represents the read signal level at the second position away from the position just after the zero-cross point, y_0 represents the read signal level at the zero-cross point, and y'_2 represents the read signal level at the second position away from the position just before the zero-cross point.

[0025] As shown in the various waveforms of the read signal R in Figs. 4A to 4D, however, since possible values of y_{-2} and y_2 vary according to the peripheral recording data patterns, if the high-frequency emphasis according to the above equation is simply performed, influences by variations in y_{-2} and y_2 appear as they are as an intersymbol interference.

[0026] The amplitude limitation is performed to the read signal R in accordance with the amplitude limitation values T_h and $-T_h$ by the amplitude limiting circuit 51, thereby forcibly suppressing the variations in y_{-2} and y_2 as shown by y'_{-2} and y'_2. The occurrence of a variation in y'_0 (jitter) can be prevented by executing the following arithmetic operation by using the signals y'_{-2} and y'_2.

$$Z'_0 = (-k) \cdot y'_{-2} + y_0 + (-k) \cdot y'_2$$

[0027] The operation enables a sufficient high-frequency emphasis to be executed by the high-frequency emphasizing filter 52 without causing an intersymbol interference.

[0028] The absolute value T_h in the amplitude limitation values T_h and $-T_h$ is set to a value which is larger than the read signal level of the run length 3T as a shortest wavelength and is smaller than the read signal level of 4T whose run length is the second shortest.

[0029] As a high-frequency emphasizing filter 52, an FIR filter having tap coefficients of $(-k, k, 1, k, -k)$ as shown in Fig. 6 is actually used. The FIR filter shown in Fig. 6 is what is called a cosine equalizer comprising: the unit delay elements FD1 to FD4; coefficient multipliers M1 to M5 each having multiplication coefficients $(-k, k, 1, k, -k)$; and the adder AD for generating a sum of outputs of the coefficient multipliers M1 to M5 as an equalization correction read signal R_H.

[0030] According to the high-frequency emphasizing filter 52 having the construction, the equalization correction read signal R_H which is generated at the zero-cross time point is obtained as follows.

$$R_H = (-k) \cdot y'_{-2} + k \cdot (y'_{-1}) + y'_0 + k \cdot (y'_{1}) + (-k) \cdot Y'_2$$

$$= y'_0 + k(y'_{-1} \cdot y'_{-2}) + k(y'_{1} \cdot y'_2)$$

[0031] If the conditions of $y'_{-1} = y'_{-2}$ and $y'_{1} = y'_2$ are satisfied, the intersymbol interference does not occur irrespective of the value of the coefficient k, that is, an emphasis amount of the high frequency components.

[0032] As mentioned above, the waveform equalizer 5 according to the invention has the construction such that, after performing the amplitude limitation to the read signal R by a predetermined amplitude limitation value, a filtering process by the high-frequency emphasizing filter 52 is executed. In this case, the amplitude limitation value is set to a value which is larger than the signal level of the shortest recording wavelength obtained when the recording data having the shortest run length (recording data having the run length of 3T) is read and is smaller than the read signal level obtained when the recording data having the second shortest run length (recording data having the run length of 4T) is read.

[0033] With this construction, therefore, a variation in the read signal levels before and after the zero-cross point in the read signal which becomes a cause of the occurrence of the intersymbol interference at the time of the high-frequency emphasis can be forcibly suppressed. Even if a sufficient high-frequency emphasis is executed by the high-frequency emphasizing filter 52, therefore, no intersymbol interference occurs.

[0034] The internal construction of the waveform equalizer 5 is not limited to that shown in Fig. 1.

[0035] Fig. 7 is a diagram showing another construction of the waveform equalizer 5.

[0036] In Fig. 7, the signal processes by the amplitude limiting circuit 51 and the high-frequency emphasizing filter 52 are the same as those shown in Fig. 1.

[0037] In the waveform equalizer shown in Fig. 7, however, a second high-frequency emphasizing filter 53 for executing a high-frequency emphasis to the read signal R which is supplied from the amplifier 4 is further provided. A value obtained by adding high-frequency emphasis read signals generated from the high-frequency emphasizing filters 52 and 53 by an adder 54 is supplied as an equalization correction read signal R_{45} to the binary value decision circuit 6.

[0038] Fig. 8 is a diagram showing a specific example of the waveform equalizer 5 shown in Fig. 7.

[0039] In Fig. 8, the high-frequency emphasizing filter 52 is realized by an FIR filter of tap coefficients $(-k, k, 0, -k, -k)$, comprising: the unit delay elements FD1 to FD4; the coefficient multipliers M_1, M_2, M_3, and M_4 each having multiplication coefficients $(-k, k, -k, -k)$; and the adder AD for generating a sum of outputs of the coefficient multipliers.

[0040] A principle of preventing the occurrence of the jitter in the invention is to forcibly suppress variations in y_{-2} and y_2 in Figs. 4A to 4D by limiting the amplitude of the read signal by the amplitude limiting circuit 51. In this case, since the signal level y_0 at the zero-cross point is equal to almost zero, the signal levels before and after the amplitude limitation do not change.

[0041] The effect of the prevention of the jitter occurrence by the amplitude limiting circuit 51 can also be
obtained by constructing in a manner such that the coefficient multiplication which is executed by the coefficient multiplier M in Fig. 6 is performed by the high-frequency emphasizing filter 53 as shown in Fig. 8 and a result is added (adder 54) to an output of the high-frequency emphasizing filter 52.

Although the case where there is no intersymbol interference in the read signal R and y₀ is converged to zero has been described with reference to Figs. 4A to 4D, when the intersymbol interference exists, it is also possible to construct such that the intersymbol interference is eliminated by executing a moderate high-frequency emphasis by the high-frequency emphasizing filter 53 shown in Fig. 8 and a signal in which y₀ is converged to zero is formed and added to an output of the high-frequency emphasizing filter 52.

According to the construction of the waveform equalizer 5 shown in Fig. 1, since the signal level in the low frequency components is limited by the amplitude limiting circuit 51, when the high-frequency emphasis is increased, there is a case that the signal level in the low frequency becomes lower than the signal level in the high frequency. With the construction shown in Fig. 8, however, the signal level in the low frequency is not decreased by the amplitude limiting circuit 51, so that its information reproducing accuracy is higher than that shown in Fig. 1.

Further, as a waveform equalizer 5, as shown in Fig. 9, a high-frequency emphasizing filter 55 for performing a high-frequency emphasis to the read signal R which is supplied from the amplifier 4 can be also provided at the front stage of the waveform equalizer 5 in Fig. 1 so as to preliminarily eliminate the intersymbol interference included in the read signal R.

Furthermore, as shown in Fig. 10, the waveform equalizer 5 can also have the high-frequency emphasizing filter 55 at the front stage of the waveform equalizer 5 in Fig. 7. In this case, the high-frequency emphasizing filter 55 is used to raise the level of the read signal corresponding to the run length of 3T, that is, the signal having the shortest wavelength when the level decreases extremely.

Although the embodiment has been described on the assumption that the amplitude limitation values Tₘ and -Tₘ in the amplitude limiting circuit 51 are set to predetermined fixed values, the amplitude limitation values can be also automatically formed according to the level of the read signal R.

Fig. 11 is a diagram showing an internal construction of the amplitude limiting circuit 51 formed in view of the above point.

In Fig. 11, an amplitude limitation value generating circuit 511 obtains an average of absolute values of read signal levels at sampling points closest to the zero-cross point in the read signal R and supplies the average as an amplitude limitation value Tₘ to a limiter 510. The limiter 510 obtains the amplitude limitation read signal Rₐ on the basis of the amplitude limitation value Tₘ.

The amplitude limitation value generating circuit 511 comprises an absolute value circuit 512, a low pass filter 513, a flip-flop 514, and a switch SW. Figs. 12A to 12G show examples of internal operation waveforms of the amplitude limitation value generating circuit 511 having the construction.

The absolute value circuit 512 in the amplitude limitation value generating circuit 511 obtains an absolute value of the read signal R and supplies the absolute value as a read signal absolute value Rₐ to the flip-flop D1. The flip-flop D1 supplies a value obtained by delaying the read signal absolute value Rₐ only by one sampling period as a delay read signal absolute value Rₐ to the switch SW. Only when the read signal R is set to the zero level, the zero level detecting circuit 513 generates a pulse signal Rₐ of the logical level "1". The flip-flops D2 and D3 supply a signal obtained by delaying the pulse signal Rₐ only by two sampling periods as a delay pulse signal Rₐ to the OR gate OR. The OR gate OR generates a switch on signal Rₐ of the logical level "1" only for a period of time during which either the pulse signal Rₐ or the delay pulse signal Rₐ has the logical level "1" and supplies the switch on signal Rₐ to the switch SW. The switch SW is held in an ON state as long as the switch on signal Rₐ of the logical level "1" is supplied and supplies the delay read signal absolute value Rₐ to the low pass filter 514. The low pass filter 514 obtains an average value of the delay read signal absolute values Rₐ and supplies the average value as an amplitude limitation value Tₘ to the limiter 510.

With this construction, the amplitude limitation value generating circuit 511 sets the average of absolute values {r₂, r₄, r₆, r₈, r₁₀} of sampling values {r₂, r₄, r₆, r₈, r₁₀} which are the closest to the zero-cross time point among sampling values {r₁, r₂, r₃} in the read signal R shown in Figs. 12A to 12G to the amplitude limitation value Tₘ.

The amplitude limiting circuit 51 is not limited to that shown in Fig. 11 but can also have a construction as shown in Fig. 13.

In the amplitude limiting circuit 51 shown in Fig. 13, while executing the amplitude limitation to the read signal by the amplitude limitation value Tₘ obtained by the amplitude limitation value generating circuit 511 in a manner similar to the construction shown in Fig. 11, a feedback control is performed so that the amplitude limitation value Tₘ is converged to a predetermined target amplitude limitation value Tₘₚ.

That is, an error value between the amplitude limitation value Tₘ and the target amplitude limitation value Tₘₚ is obtained by a subtractor 516 and a loop filter 517 and the read signal is amplified by a gain based on the error value. Namely, in place of the amplifier 4 shown in Fig. 1, a gain variable amplifier 4' as shown in Fig. 13 is used.

Figs. 14A and 14B are diagrams showing in-
ternal operation waveforms in the case where the amplitude limitation value T_h obtained by the amplitude limitation value generating circuit 511 is less than the target amplitude limitation value T_{hm}. A gain in the gain variable amplifier 4' is in an excessive state. In this case, therefore, the loop filter 517 generates a negative error value and a feedback control in the direction of reducing the gain of the gain variable amplifier 4' is executed. By this operation, the amplitude level of the read signal R becomes small as a whole.

[0056] On the other hand, Figs. 15A and 15B are diagrams showing internal operation waveforms when the amplitude limitation value T_h obtained by the amplitude limitation value generating circuit 511 exceeds the target amplitude limitation value T_{hm}. The gain of the gain variable amplifier 4' is in an excessive state. In this case, therefore, the loop filter 517 generates a negative error value and a feedback control in the direction of reducing the gain of the gain variable amplifier 4' is executed. By the operation, the amplitude level of the read signal R becomes small as a whole.

[0057] In the embodiment shown in Fig. 13, the limiter 510 uses the amplitude limitation value T_h obtained by the amplitude limitation value generating circuit 511. In place of the amplitude limitation value T_{hm}, the target amplitude limitation value T_{hm} can be also used.

[0058] The internal construction of the amplitude limitation value generating circuit 511 is not limited to that shown in Fig. 11. For example, a construction shown in Fig. 16 can be also employed.

[0059] In the amplitude limitation value generating circuit 511 shown in Fig. 16, the amplitude level of the read signal R is detected (amplitude detecting circuit 518) and a value obtained by multiplying the detected amplitude level by a predetermined value k (multiplier 519) is generated as an amplitude limitation value T_h. A gain in the gain variable amplifier 4' is in an excessive state. In this case, therefore, the loop filter 517 generates a negative error value and a feedback control in the direction of reducing the gain of the gain variable amplifier 4' is executed. By the operation, the amplitude level of the read signal R becomes small as a whole.

[0060] As a limiter 510 shown in Figs. 11 and 13, an analog limiter as shown in Fig. 17 can also be used.

[0061] In the analog limiter shown in Fig. 17, when a level of an input signal IN is

$$|(R2/R1) \cdot IN| < |V_d|$$

where, V_d represents the forward voltage of diodes $D1$ and $D2$, both of the diodes $D1$ and $D2$ are in an OFF state. The analog limiter, consequently, substantially operates as an inverting amplifier comprising resistors $R1$ and $R2$ and an operational amplifier OP.

[0062] That is, an output signal OUT is obtained by:

$$OUT = -(R2/R1) \cdot IN$$

[0063] When the level of the input signal IN satisfies the following relation:

$$-(R2/R1) \cdot IN < -V_d$$

since the diode $D2$ is forwardly biased and is made conductive, in this instance, the maximum level of the output signal OUT is limited by the forward voltage V_d of the diode $D2$.

[0064] When the level of the input signal IN satisfies the following relation:

$$-(R2/R1) \cdot IN < -V_d$$

since the diode $D1$ is forwardly biased and is made conductive, in this instance, the minimum level of the output signal OUT is limited by $-V_d$.

[0065] By the operation as mentioned above, the analog limiter shown in Fig. 17 realizes the amplitude limitation for the read signal by the input/output characteristics as shown in Fig. 18.

[0066] As a limiter 510 shown in Figs. 11 and 13, a construction as shown in Fig. 19 can be also used.

[0067] In Fig. 19, a comparator CM1 compares the input signal IN with the amplitude limitation value T_h. When the input signal IN is larger than T_h, the comparator CM1 generates a comparison result signal GT at the logical level "1". When the input signal IN is smaller than T_h, the comparator CM1 generates the signal GT of the logical level "0". The comparator supplies the signal GT to a selector SEL1. The selector SEL1 alternatively selects either one of the input signal IN and the amplitude limitation value T_h according to the logical level of the comparison result signal GT and supplies it to a selector SEL2. That is, the selector SEL1 selects the amplitude limitation value T_h and supplies it to the selector SEL2 when the comparison result signal GT is at the logical level "1", namely, in the case where the input signal IN between the input signal IN and amplitude limitation value T_h is larger than T_h. The selector SEL1 selects the input signal IN_h and supplies it to the selector SEL2 when the comparison result signal GT is at the logical level "0", namely, in the case where the input signal IN between the input signal IN and amplitude limitation value T_h is smaller than T_h.

[0068] A multiplier MU obtains the amplitude limitation value $-T_h$ in which the polarity of the amplitude limitation value T_h is inverted by multiplying the amplitude limitation value T_h by "-1" and supplies it to the selector SEL2 and a comparator CM2. The comparator CM2 compares the input signal IN with the amplitude limitation value $-T_h$. When the input signal IN is smaller than $-T_h$, the comparator CM2 generates a comparison result signal LT of the logical level "1". When the input signal IN is larger than $-T_h$, the comparator CM2 generates the comparison result signal LT of the logical level "0". The comparator CM2 supplies the signal LT to the selector SEL2. The selector SEL2 alternatively selects either one of the value supplied from the selector SEL1 and the ampli-
Attitude limitation value \(-T_h\) according to the logical level of the comparison result signal LT and generates it as an output signal OUT. That is, the selector SEL2 generates the amplitude limitation value \(-T_h\) when the comparison result signal LT is at the logical level "1," namely, in the case where the input signal IN between the input signal IN and amplitude limitation value \(-T_h\) is smaller than \(-T_h\).

The selector SEL2 generates the value supplied from the selector SEL1 when the comparison result signal LT is at the logical level "0," namely, in the case where the input signal IN is larger than \(-T_h\).

With the above construction, in the limiter shown in Fig. 19, the amplitude limitation for the read signal R is realized by the following input/output characteristics.

\[
\begin{align*}
\text{When } |IN| < T_h, & \quad OUT = IN \\
\text{When } IN > T_h, & \quad OUT = T_h \\
\text{When } IN < -T_h, & \quad OUT = -T_h
\end{align*}
\]

As another method of realizing the amplitude limiting circuit 51, there is a method of using an ROM having a memory table in which non-linear input/output characteristics as shown in Fig. 2 or 3 are replaced to the relation of the address/read data.

Fig. 20 is a diagram showing an example of a construction of the amplitude limiting circuit 51 embodied by using the ROM as mentioned above. Fig. 21 is a diagram showing an example of a memory table of the ROM.

As still another method of realizing the amplitude limiting circuit 51, there is a method of using an A/D converter. In this instance, a flash type is used as an A/D converter and a conversion table of an encoding circuit provided for the A/D converter is modified as shown in Fig. 21. That is, for an output out of a range of the amplitude limitation values \(T_h\) to \(-T_h\), a conversion table for converting the output to a fixed value of the amplitude limitation value \(T_h\) or \(-T_h\) is used.

In the embodiment, although an example of using the FIR filter as a high-frequency emphasizing filter 52 has been shown, an analog high-frequency emphasizing filter can be also used. Further, although the method of preventing the occurrence of a jitter according to an excessive high-frequency emphasis has been described in the invention, for example, the invention can be also applied to a case of preventing the occurrence of a jitter by an excessive attenuation of the high frequency. In this instance, it is sufficient to use a low pass filter to cut frequencies higher than the shortest wavelength signal (run length 3T) as a high-frequency emphasizing filter 52.

Claims

1. A waveform equalizer (5) for obtaining an equalization correction read signal \((R_H)\) by performing a waveform equalization to a read signal \((R)\) read out from a recording medium (3), comprising:
 - amplitude limiting means (51) for obtaining an amplitude limitation read signal \((R_LIM)\) by limiting an amplitude of said read signal \((R)\) by a predetermined amplitude limitation value \((T_H)\);
 - and
 - a high-frequency emphasizing filter (52) for emphasizing a shortest wavelength signal to the read signal for generating a signal obtained by performing a filtering process to said amplitude limitation read signal \((R_LIM)\) as said equalization correction read signal \((R_H)\).

2. A waveform equalizer as claimed in claim 1, further comprising:
 - an additional filter (53) receiving said read signal \((R)\); and
 - an adder (54) for adding signals obtained by filtering processes of said high-frequency emphasizing filter (52) and said additional filter (53) and for outputting a resultant signal as said equalization correction read signal \((R_H)\).

3. A waveform equalizer as claimed in claim 1, further comprising:
 - a second high-frequency emphasizing filter (55) for performing a filtering process to said read signal \((R)\), wherein said second high-frequency emphasizing filter (55) is provided at a stage preceding said amplitude limiting means (51).

4. A waveform equalizer as claimed in claim 2, further comprising:
 - a second high-frequency emphasizing filter (55) for performing a filtering process to said read signal \((R)\), wherein said second high-frequency emphasizing filter (55) is provided at a stage preceding said amplitude limiting means (51) an said additional filter (53).

5. A waveform equalizer according to any one of claims 1-4, wherein said amplitude limiting means (51) converts the amplitude level of said read signal \((R)\) by non-linear input/output characteristics which are saturated by said amplitude limitation value \((T_H)\) and sets a resultant signal as said amplitude limitation read signal \((R_LIM)\).
6. A waveform equalizer according to any one of claims 1-4, wherein said amplitude limiting means (51) obtains an average value of sampling values before and after a zero-cross time point of said read signal (R) and sets said average value as said amplitude limitation value (RLIM).

7. A waveform equalizer according to claim 6, further comprising a variable gain amplifier (4') for adjusting a signal level of said read signal (R) so as to equalize said average value with a predetermined value.

8. A waveform equalizer according to any one of claims 1-4, wherein said amplitude limitation value (TH) is larger than a signal level of said read signal (R) which is obtained when recording data of a shortest run length in recording data recorded on said recording medium (3) is read out and is smaller than a signal level of said read signal (R) which is obtained when recording data of a next shortest run length is read out.

9. A waveform equalizer according to claim 8, wherein said recording data of said shortest run length is recording data of a run length 3T and said recording data of said next shortest run length is recording data of a run length 4T.

10. A waveform equalizer according to claim 1 or 2, wherein said high-frequency emphasizing filter (52) emphasizes a shortest wavelength signal in said read signal (R).

11. A waveform equalizer according to claim 3 or 4, wherein each of said high-frequency emphasizing filter (52) and said second high-frequency emphasizing filter emphasizes a shortest wavelength signal in said read signal (R).

12. A waveform equalizer according to any one of claims 1 - 4, wherein said high-frequency emphasizing filter is an FIR filter having tap coefficients (-k, k, 1, k, -k).

13. A waveform equalizer according to claim 2 or 4, wherein said high-frequency emphasizing filter is an FIR filter having tap coefficients (-k, k, 0, k, -k).

14. A reproducing apparatus for reproducing recorded information from a recording medium (3), comprising:

 a pickup (1) for reading a signal (R) representing said recorded information from said recording medium (3);

 a waveform equalizer (5) according to any one of claims 1 - 13 for performing a waveform equalization to a read signal (R) read out by said pickup (1), to produce an equalization correction read signal (R_H); and

 a demodulator for demodulating said equalization correction read signal (R_H), to output a reproduction signal.

Patentansprüche

1. Wellenform-Abgleicher (5) zum Erhalten eines Abgleichungskorrektur-Lesesignals (R_H) durch Ausführen einer Wellenform-Abgleichung an einen Lesesignal (R), welches von einem Aufzeichnungsmedium (3) gelesen wird, umfassend:

 Amplitudenbegrenzungsmittel (51) zum Erhalten eines Amplitudenbegrenzungs-Lesesignals (R_LIM) durch Begrenzen einer Amplitude des Lesesignals (R) um einen vorbestimmteten Amplitudenbegrenzungswert (TH); und

 einen Hochfrequenz-HervorhebungsfILTER (52) zum Hervorheben eines Signals der kürzesten Wellenlänge in dem gelesenen Signal zur Erzeugung eines Signals, welches durch Ausführen eines Filtervorgangs an dem Amplitudenbegrenzungs-Lesesignal (R_LIM) als dem Abgleichungskorrektur-Lesesignal (R_H) erhalten wird.

2. Wellenform-Abgleicher gemäß Anspruch 1, des weiteren umfassend:

 einen zusätzlichen Filter (53), welcher das Lesesignal (R) empfängt; und

 einen Addierer (54) zum Addieren von Signalen, welche durch Filtervorgänge des Hochfrequenz-Hervorhebungsfilters (52) und des zusätzlichen Filters (53) erhalten werden, und zum Ausgeben eines sich ergebenden Signals als das Abgleichungskorrektur-Lesesignal (R_H).

3. Wellenform-Abgleicher gemäß Anspruch 1, des weiteren umfassend:

 einen zweiten Hochfrequenz-HervorhebungsfILTER (55) zum Ausführen eines Filtervorgangs an dem Lesesignal (R), wobei der zweite Hochfrequenz-Hervorhebungsfilter (55) an einer Stufe vorgesehen ist, welche dem Amplitudenbegrenzungsmittel (51) vorhergeht.

4. Wellenform-Abgleicher gemäß Anspruch 2, des weiteren umfassend:

 einen zweiten Hochfrequenz-HervorhebungsfILTER (55) zum Ausführen eines Filterprozesses
an dem Lesesignal (R), wobei der zweite Hochfrequenz-Hervorhebungsfilter (55) an einer Stufe vorgesehen ist, welche dem Amplitudenbegrenzungsmitel (51) und dem zusätzlichen Filter (53) vorhergeht.

5. Wellenform-Abgleicher gemäß einem der Ansprüche 1 bis 4, wobei das Amplitudenbegrenzungsmitel (51) das Amplituden-Niveau des Lesesignals (R) durch nicht-lineare Eingangs-/Ausgangs-Kennlinien konvertiert, welche durch den Amplitudenbegrenzungswert (Th) gesättigt sind und ein sich ergebendes Signal als das Amplitudenbegrenzungs-Lesesignal (RLIM) einstellt.

6. Wellenform-Abgleicher gemäß einem der Ansprüche 1 bis 4, wobei das Amplitudenbegrenzungsmitel (51) einen Durchschnittswert von Probewerten vor und nach einem Nullnullübergangs-Zeitpunkt des Lesesignals (R) erhält und den Durchschnittswert als den Amplitudenbegrenzungswert (RLIM) einstellt.

8. Wellenform-Abgleicher gemäß einem der Ansprüche 1 bis 4, wobei der Amplitudenbegrenzungswert (Th) größer als ein Signal-Niveau des Lesesignals (R) ist, welches erhalten wird, wenn Aufzeichnungsdaten der kürzesten Laufstrecke in Aufzeichnungsdaten, die auf dem Aufzeichnungsmedium (3) aufgezeichnet sind, ausgelesen werden und kleiner als ein Signal-Niveau des Lesesignals (R) ist, welches erhalten wird, wenn Aufzeichnungsdaten der zweikürzesten Laufstrecke ausgelesen werden.

9. Wellenform-Abgleicher gemäß Anspruch 8, wobei die Aufzeichnungsdaten der kürzesten Laufstrecke Aufzeichnungsdaten einer Laufstrecke 3T sind und die Aufzeichnungsdaten der zweikürzesten Laufstrecken Aufzeichnungsdaten einer Laufstrecke 4T sind.

10. Wellenform-Abgleicher gemäß Anspruch 1 oder 2, wobei der Hochfrequenz-Hervorhebungsfilter (52) ein Signal der kürzesten Wellenlänge in dem Lesesignal (R) hervorhebt.

12. Wellenform-Abgleicher gemäß einem der Ansprüche 1 bis 4, wobei der Hochfrequenz-Hervorhebungsfilter ein FIR-Filter mit Klopfkoeffizienten (-k, k, 1, k, -k) ist.

13. Wellenform-Abgleicher gemäß Anspruch 2 oder 4, wobei der Hochfrequenz-Hervorhebungsfilter ein FIR-Filter mit Klopfkoeffizienten (-k, k, 0, k, -k) ist.

14. Wiedergabevorrichtung zur Wiedergabe von aufgezeichneten Information von einem Aufzeichnungmedium (3), umfassend:

 einen Aufnehmer (1) zum Lesen eines Signals (R) von dem Aufzeichnungsmedium (3), welches die aufgezeichnete Information repräsentiert;
 einen Wellenform-Abgleicher (5) gemäß einem der Ansprüche 1 bis 13 zum Ausführen einer Wellenform-Abgleichung an einem Lesesignal (R), welches durch den Aufnehmer (1) ausgelesen wurde, um ein Abgleichungskorrektur-Lesesignal (RLIM) zu erzeugen; und
 einen Demodulator zum Demodulieren des Abgleichungskorrektur-Lesesignals (RLIM), um ein Reproduktionssignal auszugeben.

Revendications

1. Égaliseur de forme d'onde (5) pour obtenir un signal de lecture de corrigé en égalisation (RH) en réalisant une égalisation de forme d'onde sur un signal de lecture (R) extrait d'un support d'enregistrement (3), comprenant :

 un moyen de limitation d'amplitude (51) pour obtenir un signal de lecture limité en amplitude (RLIM) en limitant une amplitude dudit signal de lecture (R) par une valeur de limitation d'amplitude prédéterminée (Th) ;
 un filtre d'accentuation haute Séquence (52) pour accentuer un signal de longueur d'onde la plus courte dans le signal de lecture pour générer un signal obtenu en réalisant un traitement de filtrage sur ledit signal de lecture limité en amplitude (RLIM) comme ledit signal de lecture corrigé en égalisation (RH).

2. Égaliseur de forme d'onde comme revendiqué dans la revendication 1, comprenant en outre :

 un filtre supplémentaire (53) recevant ledit signal de lecture (R) ;
 un additionneur (54) pour additionner des signaux obtenus par des traitements de filtrage du dit filtre d'accentuation haute fréquence (52) et du dit filtre supplémentaire (53) et pour fournir
en signal résultant ledit signal de lecture de corrigé en égalisation (R_{H}).

3. Égaliseur de forme d'onde comme revendiqué dans la revendication 1, comprenant en outre :
 un second filtre d'accentuation haute fréquence (55) pour réaliser un traitement de filtrage sur ledit signal de lecture (R), dans lequel ledit second filtre d'accentuation haute fréquence (55) est placé à un étage précédent ledit moyen de limitation d'amplitude (51).

4. Égaliseur de forme d'onde comme revendiqué dans la revendication 2, comprenant en outre :
 un second filtre d'accentuation haute fréquence (55) pour réaliser un traitement de filtrage sur ledit signal de lecture (R), dans lequel ledit second filtre d'accentuation haute fréquence (55) est placé à un étage précédent ledit moyen de limitation d'amplitude (51) et ledit filtre supplémentaire (53).

5. Égaliseur de forme d'onde selon l'une quelconque des revendications 1 à 4, dans lequel ledit moyen de limitation d'amplitude (51) convertit le niveau d'amplitude dudit signal de lecture (R) à l'aide de caractéristiques d'entrée/sortie non-linéaires qui sont saturées par ladite valeur de limitation d'amplitude (TH) et positionne un signal résultant comme ledit signal de lecture limité en amplitude (R_{LIM}).

6. Égaliseur de forme d'onde selon l'une quelconque des revendications 1 à 4, dans lequel ledit moyen de limitation d'amplitude (51) obtient une valeur moyenne des valeurs d'échantillonnage avant et après un instant de passage par zéro dudit signal de lecture (R) et positionne ladite valeur moyenne comme ladite valeur limité en amplitude (R_{LIM}).

7. Égaliseur de forme d'onde selon la revendication 6, comprenant en outre un amplificateur à gain variable (4') pour ajuster un niveau de signal dudit signal de lecture (5), afin d'égaliser ladite valeur moyenne avec une valeur prédéterminée.

8. Égaliseur de forme d'onde selon l'une quelconque des revendications 1 à 4, dans lequel ladite valeur limité en amplitude (T_{H}) est supérieure à un niveau de signal dudit signal de lecture (R) qui est obtenu lorsque des données d'enregistrement d'une longueur d'exécution la plus courte dans des données d'enregistrement enregistrées sur ledit support d'enregistrement (3) sont extraites et sont inférieures à un niveau de signal dudit signal de lecture (R) qui est obtenu lorsque des données d'enregistrement d'une longueur d'exécution la plus courte sui-

9. Égaliseur de forme d'onde selon la revendication 8, dans lequel lesdites données d'enregistrement d'une longueur d'exécution la plus courte sont des données d'enregistrement d'une longueur d'exécution 3T et lesdites données d'enregistrement de ladite longueur d'exécution la plus courte suivante sont des données d'enregistrement d'une longueur d'exécution 4T.

10. Égaliseur de forme d'onde selon la revendication 1 ou 2, dans lequel ledit filtre d'accentuation haute fréquence (52) accentue un signal de longueur d'onde la plus courte dans ledit signal de lecture (R).

11. Égaliseur de forme d'onde selon la revendication 3 ou 4, dans lequel chacun dudit filtre d'accentuation haute fréquence (52) et dudit second filtre d'accentuation haute fréquence accentue un signal de longueur d'onde la plus courte dans ledit signal de lecture (R).

12. Égaliseur de forme d'onde selon l'une quelconque des revendications 1 à 4, dans lequel ledit filtre d'accentuation haute fréquence est un filtre FIR ayant des coefficients de paramétrage (-k, k, 1, k, -k).

13. Égaliseur de forme d'onde selon la revendication 2 ou 4, dans lequel ledit filtre d'accentuation haute fréquence accentue un signal de longueur d'onde la plus courte dans ledit signal de lecture (R).

14. Appareil de reproduction pour reproduire des informations enregistrées à partir d'un support d'enregistrement (3), comprenant :

 un lecteur (1) pour lire un signal (R) représentant lesdites informations enregistrées à partir dudit support d'enregistrement (3) ; un égaliseur de forme d'onde (5) selon l'une quelconque des revendications 1 à 13 pour réaliser une égalisation de forme d'onde sur un signal de lecture (R) extrait par ledit lecteur (1), pour produire un signal de lecture de corrigé en égalisation (R_{H}); et un démodulateur pour démoduler ledit signal de lecture corrigé en égalisation (R_{H}), pour fournir un signal de reproduction.
FIG. 4A
RECORDING DATA

FIG. 4B
READ SIGNAL R

FIG. 4C
AMPLITUDE LIMITED READ SIGNAL R_LIM

FIG. 4D
EQUALIZATION CORRECTED READ SIGNAL R_H
FIG. 16

READ SIGNAL R

AMPLITUDE DETECTING CIRCUIT

518

519

AMPLITUDE LIMITED VALUE T_h
FIG. 17

510

![Diagram of a circuit with diodes, resistors, and an operational amplifier.](image)

FIG. 18

![Graph showing the input-output relationship with voltage levels Vd, -Vd, and Vd on the axes.](image)