EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
05.12.2001 Bulletin 2001/49

(21) Application number: 98116683.8
(22) Date of filing: 03.09.1998

(54) Delay elements arranged for a signal controlled oscillator

Verzögerungselemente für einen signalgesteuerten Oszillator
Eléments à retard pour un oscillateur commandé par un signal

(43) Date of publication of application:
18.08.1999 Bulletin 1999/33

(84) Designated Contracting States:
DE FR GB

(30) Priority:
12.02.1998 US 22464

(73) Proprietor: Hewlett-Packard Company,
A Delaware Corporation
Palo Alto, CA 94304 (US)

(72) Inventors:
• Tsai, Li Ching
Fort Collins, CO 80525 (US)
• Zhang, Johnny Q.
Fort Collins, CO 80525 (US)
• Hollenbeck, David B.
Fort Collins, CO 80526 (US)

(51) Int Cl.7: H03K 3/0231

(74) Representative: Schoppe, Fritz, Dipl.-Ing.
Schoppe, Zimmermann & Stöckeler
Patentanwälte
Postfach 71 08 67
81458 München (DE)

(56) References cited:
US-A- 5 262 735
US-A- 5 767 748

• BEHZAD RAZAVI: "ANALYSIS, MODELING, AND SIMULATION OF PHASE NOISE IN MONOLITHIC VOLTAGE-CONTROLLED OSCILLATORS"

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] The invention generally relates to oscillators of the type having a number of delay elements interconnected in a closed ring, and more particularly relates to such oscillators wherein the delay is controlled by a signal so as to vary the frequency of oscillation.

Background of the Invention

[0002] Various ring oscillator are known in the prior art. Inverters are used as delay elements and are interconnected in a closed ring. An amount of delay of each delay element is controlled by supplying a flow of current available for charging of parasitic capacitance associated with each inverter.

[0003] Ring oscillator design presents various challenges. Some oscillator designs of the prior art have limited high frequency operation. Some other oscillator designs have an oscillation frequency or amplitude that vary over a wide spread in relation to variability in a process used in fabricating such oscillators. Still other oscillator designs have substantial sensitivity to power supply variability and have asymmetric rise and fall times.

[0004] What is needed in a ring oscillator that provides high frequency operation, substantially symmetric rise and fall time, while limiting spread in oscillation frequency and spread in amplitude in relation to fabrication process variability and power supply variability.

[0005] JP 09214299 A discloses a voltage controlled oscillator comprising a plurality of delay elements interconnected in a closed ring arrangement. Each delay element comprises an NMOS differential transistor pair having current source inputs connected to a current source NMOS transistor. The gate electrodes of the NMOS differential transistor pair are connected to input signals. PMOS and NMOS transistors serve as active loads for the NMOS differential transistor pair.

[0006] It is the object of the present invention to provide an apparatus having a high frequency operation with substantially symmetric rise and fall time, while limiting spread in oscillation frequency and spread in amplitude in relation to fabrication process variability and power supply variability.

[0007] This object is achieved by an apparatus according to claim 1.

[0008] Briefly and in general terms, the invention includes a ring-type signal controlled oscillator comprising a series of active delay elements, each including a respective differential pair of transistors. The inputs and outputs of the differential pair transistors are interconnected in a closed ring to produce oscillations at a frequency determined by the delay of each delay element. The differential pair of transistors further has a pair of current source inputs for controlling an amount of delay of the delay element, and a pair of load inputs for stabilizing the amount of delay.

[0009] For the active delay element, a first and a second signal controlled current source are each coupled with a respective one of the current source inputs of the differential pair of transistors. The first signal controlled current source is adapted for receiving a first control signal for controlling the first signal controlled current source. The second signal controlled current source is adapted for receiving a first bias signal for controlling the second signal controlled current source. These current sources are "matching" in that transistors of the first and second signal controlled current source are similarly configured in a matching arrangement of transistors of the same type.

[0010] Furthermore, the delay element includes a first and a second signal controlled active load, each coupled with a respective one of the load inputs of the differential pair of transistors. The first and second signal controlled active loads are adapted for receiving a second control signal and a second bias signal.

[0011] Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.

Brief Description of the Drawings

[0012] FIG. 1A is a block diagram of a preferred embodiment of the invention.

FIG. 1B is a more detailed diagram of the preferred embodiment of the invention.

FIG. 1C is a block diagram of an alternative embodiment of the invention.

FIG. 2 is a diagram illustrating symmetric rise and fall time of oscillations of the invention.

FIG. 3 is a diagram illustrating the invention's limited spread in oscillation frequency in relation to fabrication process variability.

FIG. 4 is a diagram illustrating the invention's limited spread in oscillation frequency in relation to power supply variability.

Detailed Description of Preferred Embodiment

[0013] FIG. 1A shows a block diagram of a preferred embodiment of the invention. The invention includes a ring type signal controlled oscillator comprising a series of active delay elements, each including a respective differential pair of source coupled transistors. As shown in FIG. 1A an odd number of active delay elements are...
used in the preferred embodiment, beginning with Active Delay Element 1, and ending with Active Delay element 2n+1. A preferred number of active delay elements is three to seven active delay elements.

As shown in FIG. 1A, each differential pair of transistors has both inverting and non-inverting types of delay inputs and outputs: In, Out, and Out. The inputs and outputs of the differential pair of transistors are interconnected, as shown, in a closed ring to produce oscillations at a frequency determined by the delay of each delay element. As shown, each differential pair of source coupled transistors has a pair of current source inputs 101, 103, and further has a pair of load inputs 105, 107.

For the active delay element, a first and a second signal controlled current source are each coupled with a respective one of the current source inputs 101, 103 of the differential pair of source coupled transistors. The first signal controlled current source is adapted for receiving a first control signal VCO_N for controlling the first signal controlled current source. Furthermore, as will be discussed in further detail subsequently herein, the invention advantageously includes both the first and second control signals, so that adjustment of the first and second control signals in relation to each other provides the beneficial rise and fall time symmetry of the oscillator.

The second signal controlled current source is adapted for receiving a first bias signal, bias_N, for controlling the second signal controlled current source. As will be discussed in further detail subsequently herein, the invention advantageously includes both the first and second bias signals, to advantageously limit spread in oscillation frequency and spread in amplitude of the oscillator in relation to fabrication process variability and power supply variability.

In the preferred embodiment the first and second bias signals are both used, and are held substantially constant by coupling with a current mirror (not shown in the figures). In the preferred embodiment the current mirror and all of the components of the oscillator are fabricated on a single monolithic semiconductor substrate, using integrated circuit fabrication techniques. Accordingly manufacturing process variability of the current mirror tracks manufacturing process variability of the other components of the oscillator.

Furthermore, the delay element includes a first and a second signal controlled active load, each coupled with a respective one of the load inputs of the differential pair of source coupled transistors. As shown in FIG. 1A, the first and second signal controlled active loads are adapted for receiving the second control signal, VCO_P, and the second bias signal, bias_P.

FIG. 1B shows a more detailed diagram of the preferred embodiment of the invention. Dashed lines in FIG. 1B designate the functional blocks as discussed previously herein with respect to FIG. 1A. In the preferred embodiment, the first signal controlled current source includes a transistor 115 having a drain coupled with one of the current source inputs 101 of the differential pair of source coupled transistors. Transistor 115 is preferably an N type MOSFET having a gate coupled with the first control signal, VCO_N. Accordingly, in the preferred embodiment, the first control signal, VCO_N, is used to control the N-type of MOSFET.

As shown in FIG. 1B, the first and second current sources are "matching" in that transistors of the first and second signal controlled current source are similarly configured in a matching arrangement of transistors of the same type. In particular, in the preferred embodiment the first and second signal controlled current sources both include N-type MOSFETs.

Just as in the first signal controlled current source, the second signal controlled current source includes a transistor 125 having a drain coupled with the second one of the current source inputs 103 of the differential pair of source coupled transistors. Transistor 125 has a gate coupled with the first bias signal, bias_N. The first bias signal, bias_N, is used to stabilize operation of the N-type of MOSFET over manufacturing variability of the oscillator.

In the preferred embodiment, the first signal controlled active load comprises a pair of drain coupled transistors, wherein one member of the pair has a gate coupled with the second control signal, VCO_P, and the other member has a gate coupled with the second bias signal, bias_P. Similarly, the second signal controlled active load comprises another pair of drain coupled transistors, wherein one member of the pair has a gate coupled with the second control signal, VCO_P, and the other member of the pair has a gate coupled with the second bias signal, bias_P. The transistors of the first and second signal controlled active loads are all of the same type, and preferably are P-type MOSFETs. Accordingly, in the preferred embodiment, the second control signal, VCO_P, controls the P-type of MOSFET. The second bias signal, bias_P, stabilizes operation of the P-type of MOSFET over manufacturing variability of the oscillator.

The invention is not limited to an oscillator using an odd number of active delay elements. As shown in an alternative embodiment in FIG. 1C, an even number of active delay elements are used, beginning with Active Delay Element 1, and ending with Active Delay Element 2n. A preferred number of active delay elements for the alternative embodiment is two to six active delay elements. It is particularly worth noting the reversed arrangement of outputs, Out, and Out, of the last Active Delay Element 2n, for providing oscillation of the even number of active delay elements.

FIG. 2 is a diagram illustrating symmetric rise and fall time of high frequency oscillations of the invention, as predicted by simulation. A horizontal axis of FIG. 2 shows time in nanoseconds. A vertical axis of FIG. 2 shows amplitude that is normalized based on supply voltage, VDD. As pointed out previously herein, and as illustrated by FIG. 2, the invention advantageously in-
includes both the first and second control signals, VCO_N and VCO_P, so that adjustment of the first and second control signals in relation to each other provides the beneficial rise and fall time symmetry of the oscillator.

[0025] Varying the first and second control signals varies the amount of delay of each delay element, thereby varying frequency of the oscillator. Coarse adjustment of both the first and second control signals together is used to control oscillation frequency of the oscillator. Refined adjustment of the first and second control signals in relation to each other is used to control symmetry of rise and fall times of the oscillation of the oscillator.

[0026] FIG. 3 is a diagram illustrating the invention's limited spread in oscillation frequency in relation to fabrication process variability. A horizontal axis of FIG. 3 shows values for one of the control signals, on a scale normalized to the supply voltage, VDD. A vertical axis of FIG. 3 shows corresponding frequency of oscillation of the invention in Gigahertz as predicted by simulation. A first trace of FIG. 3, trace 1, shows simulation prediction of frequency versus normalized control signal when fabrication process variability factors slow down oscillation frequency. A second trace of FIG. 3, trace 2, shows simulation prediction of frequency versus normalized signal when manufacturing process variability factors speed up oscillation frequency. As pointed out previously herein, and as illustrated by FIG. 3, the invention advantageously includes both the first and second bias signals, to advantageously limit spread in oscillation frequency of the oscillator in relation to fabrication process variability. Similarly, the first and second bias signals also advantageously limit spread in amplitude of the oscillator in relation to fabrication process variability.

[0027] FIG. 4 is a diagram illustrating the invention's limited spread in oscillation frequency in relation to power supply variability. A horizontal axis of FIG. 4 shows values for one of the control signals, on a scale normalized to the supply voltage, VDD. A vertical axis of FIG. 4 shows corresponding frequency of oscillation of the invention in Gigahertz as predicted by simulation. A first trace of FIG. 4, trace 1, shows simulation prediction of frequency versus normalized control signal for power supply voltage, VDD, at a low supply value of 1.6 volts. A second trace of FIG. 4, trace 2, shows simulation prediction of frequency versus normalized control signal for power supply voltage, VDD, at a nominal supply value of 1.8 volts. A third trace of FIG. 4, trace 3, shows simulation prediction of frequency versus normalized control signal for power supply voltage, VDD, at a high supply value of 2.0 volts. As pointed out previously herein, and as illustrated by FIG. 4, the invention advantageously includes both the first and second bias signals, to advantageously limit spread in oscillation frequency of the oscillator in relation to power supply variability. Similarly, the first and second bias signals also advantageously limit spread in amplitude of the oscillator in relation to small power supply variability, such as power supply noise.

[0028] As discussed, the present invention provides an oscillator with substantially symmetric rise and fall time, while limiting spread in oscillation frequency and spread in amplitude in relation to fabrication process variability and power supply variability. Although specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated, and various modifications and changes can be made without departing from the scope of the invention. Within the scope of the appended claims, therefore, the invention may be practiced otherwise than as specifically described and illustrated.

Claims

1. An apparatus comprising:
 a plurality of active delay elements interconnected in a closed ring arrangement so as to provide a ring oscillator, wherein each active delay element includes:
 a differential pair of transistors having both inverting and non-inverting types of delay inputs and outputs (IN, IN, OUT, OUT), and further having a pair of current source inputs (101, 103), and a pair of load inputs (105, 107);
 a first signal controlled current source coupled with the current source inputs (101, 103) of the differential pair of transistors and controlled by a first control signal (VCO_N);
 a second signal controlled current source coupled with the current source inputs (101, 103) of the differential pair of transistors and controlled by a first bias signal (BIAS_N); and
 first and second signal controlled active loads each coupled with a respective one of the load inputs of the differential pair of transistors and each controlled by a second control signal (VCO_P) and by a second bias signal (BIAS_P).

2. An apparatus as in claim 1 wherein the first signal controlled current source includes a transistor (115) having a channel terminal coupled with one (101) of the current source inputs of the differential pair of transistors.

3. An apparatus as in claim 2 wherein the first signal
controlled current source includes a transistor (115) having a gate coupled with the first control signal.

4. An apparatus as in claim 1 wherein the second signal controlled current source includes a transistor (125) having a channel terminal coupled with one (103) of the current source inputs of the differential pair of transistors.

5. An apparatus as in claim 4 wherein the second signal controlled current source includes a transistor (125) having a gate coupled with the first bias signal.

6. An apparatus as in claim 1 wherein the first and second signal controlled current source include transistors (115, 125) configured in matching arrangements.

7. An apparatus as in claim 1 wherein the first and second signal controlled current source include transistors (115, 125) of matching dopant types.

Patentansprüche

1. Eine Vorrichtung mit folgenden Merkmalen:

 einer Mehrzahl von aktiven Verzögerungselementen, die in einer geschlossenen Ringanordnung verbunden sind, um einen Ringoszillator zu schaffen, wobei jedes aktive Verzögerungselement folgende Merkmale aufweist:

 ein Differentialpaar von Transistoren, das einen invertierenden und einen nichtinvertierenden Typ von Verzögerungseingängen und -ausgängen (EIN, EOUT, AUS und AUS) und ferner ein Paar von Stromquelleingängen (101, 103) und ein Paar von Lasteingängen (105, 107) aufweist;

 eine erste signalgesteuerte Stromquelle, die mit den Stromquelleingängen (101, 103) des Differentialpaars von Transistoren gekoppelt ist und durch ein erstes Steuerungssignal (VCO_N) gesteuert wird;

 eine zweite signalgesteuerte Stromquelle, die mit den Stromquelleingängen (101, 103) des Differentialpaars von Transistoren gekoppelt ist und durch ein zweites Vorspannungssignal (BIAS_P) gesteuert wird.

2. Eine Vorrichtung gemäß Anspruch 1, bei der die erste signalgesteuerte Stromquelle einen Transistor (115) umfaßt, der einen Kanalanschluß aufweist, der mit einem (101) der Stromquelleingänge des Differentialpaars von Transistoren gekoppelt ist.

3. Eine Vorrichtung gemäß Anspruch 2, bei der die erste signalgesteuerte Stromquelle einen Transistor (115) umfaßt, der ein Gate aufweist, das mit dem ersten Steuerungssignal gekoppelt ist.

4. Eine Vorrichtung gemäß Anspruch 1, bei der die zweite signalgesteuerte Stromquelle einen Transistor (125) umfaßt, der einen Kanalanschluß aufweist, der mit einem (103) der Stromquelleingänge des Differentialpaars von Transistoren gekoppelt ist.

5. Eine Vorrichtung gemäß Anspruch 4, bei der die zweite signalgesteuerte Stromquelle einen Transistor (125) umfaßt, der ein Gate aufweist, das mit dem ersten Vorspannungssignal gekoppelt ist.

6. Eine Vorrichtung gemäß Anspruch 1, bei der die erste und die zweite signalgesteuerte Stromquelle Transistoren (115, 125) aufweisen, die in übereinstimmenden Anordnungen konfiguriert sind.

7. Eine Vorrichtung gemäß Anspruch 1, bei der die erste und die zweite signalgesteuerte Stromquelle Transistoren (115, 125) übereinstimmender Dopierstofftypen umfassen.

Revendications

1. Un appareil qui comprend:

 une série d'éléments actifs à retard connectés entre eux en un agencement en anneau fermé de façon à réaliser un oscillateur annulaire, dans lequel chaque élément actif de retard inclut:

 une paire différentielle de transistors qui comportent les deux types, à inversion et sans inversion, d'entrées et de sorties (IN, IN, OUT, OUT) de retard, et qui inclut en outre une paire d'entrées (101, 103) de sources de courant, et une paire d'entrées (105, 107) de charges;

 une source de courant réglée par un pre-
mier signal et couplée aux entrées (101, 103) de sources de courant de la paire différentielle de transistors et réglée par un premier signal de réglage (VCO_N); une source de courant réglée par un deuxième signal et couplée aux entrées (101, 103) de sources de courant de la paire différentielle de transistors et réglée par un premier signal de polarisation (BIAS_N); et des charges actives réglées par un premier et un deuxième signaux et couplées chacune à une entrée respective parmi les entrées de charge de la paire différentielle de transistors et réglées chacune par un deuxième signal de réglage (VCO_P) et par un deuxième signal de polarisation (BIAS_P).

2. Un appareil selon la revendication 1 dans lequel la source de courant réglée par un premier signal inclut un transistor (115) dont une borne de canal est couplée à l’une (101) des entrées de source de courant de la paire différentielle de transistors.

3. Un appareil selon la revendication 2 dans lequel la source de courant réglée par un premier signal inclut un transistor (115) dont une grille est couplée au premier signal de réglage.

4. Un appareil selon la revendication 1 dans lequel la source de courant réglée par un deuxième signal inclut un transistor (125) dont une borne de canal est couplée à l’une (103) des entrées de sources de courant de la paire différentielle de transistors.

5. Un appareil selon la revendication 4 dans lequel la source de courant réglée par un deuxième signal inclut un transistor (125) dont une grille est couplée au premier signal de polarisation.

6. Un appareil selon la revendication 1 dans lequel les sources de courant réglées par un premier et un deuxième signaux incluent des transistors (115, 125) configurés selon des agencements concordants.

7. Un appareil selon la revendication 1 dans lequel les sources de courant réglées par un premier et un deuxième signaux incluent des transistors (115, 125) dont les types de dopants concordent.