Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to an electrical connector system consisting of a pair of electrical connectors for connecting a pair of electrical cables.

[0002] Japanese UM patent application Kokoku No. 8-9899 discloses an electrical connector system consisting of male and female connectors each comprising a connector housing, a male or female terminal unit provided in the housing, and a retainer provided in the housing, respectively.

[0003] As Fig. 20 shows, the male terminal unit 130 is made by providing an insulation block 134 for supporting a male terminal 133 in the tubular section 132 of a shield member 131 and crimping a pair of press-connection tabs 136 and a pair of outer sheath press-connection tabs 140 on the outer conductor (meshed or wounded shield) 139 and the outer sheath 141 of a shield cable 137, respectively, to connect under pressure the inner conductor 142 of the shield cable 137 to the press-connection section 143 of the male terminal 133.

[0004] Also, the female terminal unit is made by providing an insulation block with a female terminal in the shield tubular section of a shield member, crimping a pair of shield press-connection tabs and a pair of outer sheath press-connection tabs on the outer conductor and the outer sheath of a shield cable, respectively, to connect under pressure the inner conductor of the shield cable to the press-connection section of the female terminal.

[0005] The male and female connectors are plugged into each other by fitting the fitting section of the female connector to the fitting cavity of the male connector and inserting the shield tubular section of the female connector into the shield tubular section 132 of the male connector to bring the male and female shield members into contact with each other, and engaging the male and female lock members.

[0006] As Fig. 21 shows, the shield cable 137 comprises a pair of core wires 145 each having a plurality of inner conductors 142 provided with an insulation layer cover, an outer conductor 139 covering the core wires 145, and an outer sheath 141 covering the outer conductor 139.

[0007] In the above conventional electrical connector, however, the inner conductor 142 of the shield cable 137 is not connected to the press-connection section 133 of the male terminal 133 so that if the shield cable 137 receives a pull, the inner conductor 142 is separated from the press-connection tabs 143, making the connection unreliable.

[0008] The above shield cable has various cross-sections and the core wires 145 is so close to the outer conductor 139 that the cutting blade of an automatic machine does not work. If the cutting amount is too small, the outer sheath 141 and conductor 139 cannot be stripped. If the cutting amount is too large, the outer conductor 139 and/or the core wire 142 is damaged. Thus, setting a proper cutting amount has been too difficult to provide an automatic termination operation.
Fig. 14 is a perspective view of a female terminal unit;
Fig. 15 is a perspective view of the female terminal unit from which the shield cable is removed;
Fig. 16 is an electrical connector system according to the second embodiment of the invention under connection conditions;
Fig. 17 is a perspective view of a male terminal unit of a male connector;
Fig. 18 is a perspective view of a male holding block of the male terminal unit according to the second embodiment;
Fig. 19 is a schematic sectional view of the male terminal unit of the male connector;
Fig. 20 is a perspective view of a male terminal unit of a conventional electrical connector; and
Fig. 21 is a cross-section of a conventional shield cable.

[0013] In Fig. 1, an electrical connector system (A) consists of a male connector 1 and a female connector 2. The male connector comprises a male connector housing 10, a male terminal unit 20, and a male retainer 60.

[0014] In Figs. 1 and 2, the male connector housing 10 has a cylindrical housing body 10A which has a re-attaching section 11 at the rear end. A male lock member 12 and an attaching section 13 are provided on the side of the housing body 10A.

[0015] In Fig. 2, a terminal unit attaching section 14 is provided in the housing body 10A defining an annular fitting section 15 between the terminal unit attaching section 14 and the housing body 10A. A cutout portion 16 is provided in the terminal unit attaching section 14 at a position opposite to the male lock member 12. A lance 17 is provided at a bottom of the cutout portion 16. A resilient seal member 18 is set at the fitting section 15.

[0016] In Figs. 3-10, the male terminal unit 20 comprises a male shield member 21 including a male shield cover 64, a male insulation block 22, a male holding block 23 made of an insulation material, and a pair of male terminals 24-1 and 24-2.

[0017] In Fig. 4, the male shield member 21 has a shield section 25 and a press-connection section 26. The shield section 25 has a male shield tubular portion 28 and a male holding block shield portion 29. The male tubular portion 28 has a square cross-section and a lance engaging portion 30 on the bottom 28A. See Fig. 2.

[0018] The male holding block shield portion 29 has a pair of male shield plates 32 extending upwardly from a bottom 29A which continues to the bottom 28A. The shield plates 32 are separated from side walls 28B and 28C of the male shield tubular portion 26 by means of cuts 35. A pair of engaging recess 33 are provided in each of the male shield plates. A male engaging projection 34 extends inwardly from the shield plate 32 between the engaging recesses 33. The press-connection section 26 has a pair of shield crimping tabs 35 and a pair of jacket crimping tabs 36.

[0019] In Fig. 5, the male insulation block 22 has a block body 22A which has a flat press-connection terminal attaching portion 37 at the rear end. A fitting projection 38 extending forwardly from the block body 22A.

[0020] The male terminals 24-1 and 24-2 are pushed into the block body 22A. It may be formed by an insert molding method. The male terminals 24-1 and 24-2 have a male contact portion 39-1 or 39-2 and two pairs of press-connection blades 40-1 or 40-2, respectively, which are located on the press-connection terminal attaching portion 37. The male contact portions 39-1 and 39-2 project from the front end of the block body 22A.

[0021] In Figs. 7-9, the male holding block 23 has a rectangular block body 23A which has a bottom surface 23a consisting of two different levels; a first level surface 41 and a second level surface 42 which is higher than the first level surface 41, forming a shoulder 43. A pair of male-side inner conductor (core wire) insertion channels 44 and 45 are provided in the bottom surface 23a.

The insertion channels 44 and 45 are made parallel to the bottom surface 23a so that they are bent at the shoulder 43 of the bottom surface 23a, which works as shield wire engaging shoulders 44-1 and 45-1. As shown in Fig. 9, the wire engaging shoulders 44-1 and 45-1 each consist of a bottom surface 44a of the insertion channel 44 or 45 and a vertical surface 44b normal to the bottom surface 44a.

[0022] Four press-connection tab receiving slits 47 are provided in a middle wall 46 between the male inner conductor receiving channels 44 and 45. Two pairs of press-connection tab receiving slits 48 and 49 are provided on the side walls opposite to the middle wall 46, respectively, corresponding to the respective pairs of slits 47. An indentation 50 is provided on each outside of the block body 23A, and a pair of engaging projections 51 are provided across the indentation 50.

[0023] The male insulation block 22 is inserted and locked in the male shield tubular section 28 of the male shield member 28 such that the press-connection terminal attaching portion 37 is located in the male holding block section 29 to support the press-connection blades 40-1 and 40-2 of the male terminals 24-1 and 24-2 while the male shield plates 32 are located by the press-connection blades 40-1 and 40-2.

[0024] In Fig. 8, a shield cable 52 is connected to the male holding block 23. As shown in Fig. 11, the shield cable 52 comprises a pair of core wires 55-1 and 55-2 having inner conductors 53 and an insulation layer 53A around the conductors 53, an inner sheath 54 around the core wires 55, an outer conductor (meshed shield) 56 around the inner sheath 54, and an outer sheath 57 around the outer conductor 56 and has a circular cross-
In Figs. 1 and 2, the male retainer 60 has a cap-shaped retainer body 60A which has a hole 61 in the end face. An elastic seal member 62 is placed in the retainer body 60A. The elastic seal member 62 is made by providing a mold around the male retainer 60 and filling the mold with rubber to form the elastic seal member having a through-hole 63 concentric with the hole 61.

The shield cable 52 is connected to the holding block 23 by putting the shield cable 52 through the hole 61 and through-hole 63 to attach the shield cable 52 to the male retainer 60, then, as shown in Fig. 13, removing lengths of the outer sheath 57 and the outer conductor 56 to expose the two core wires 55-1 and 55-2, and placing the core wires 55-1 and 55-2 in the inner conductor receiving channels 44 and 45, respectively.

Then, the core wires 55-1 and 55-2 are connected under pressure to the press-connection blades 40-1 and 40-2 of the male terminals 24-1 and 24-2, respectively, by placing the male holding block 23 in the male holding block shield section 29 such that the core wires 55-1 and 55-2 are opposed to the press-connection blades 40-1 and 40-2 of the male terminals 24-1 and 24-2 placed on the press-connection attaching section 37 and placing the press-connection blades 40-1 and 40-2 in the press-connection receiving slits 47 and 48.

Then, the press-connection tabs 35 of the male shield member 21 and the sheath press-connection tabs 36 are crimped on the outer conductor 56 and the outer sheath 57, respectively.

The male shield cover 64 is attached to the male holding block shield section 21 so as to cover the holding block 23. As shown in Fig. 6, the L-shaped cover 64 is provided with a pair of engaging sides 65 having engaging holes 65a. The male terminal unit 20 is made by engaging the male engaging projections 34 of the male shield plates 32 with the engaging holes 65a of the male shield cover 64. In the above press-connection operation, when the male holding block 23 is inserted into the male holding block shield section 29, the male shield plates 32 are flexed outwardly by the contact between the engaging projections 34 and the block body 23A. When the male engaging projections 34 are inserted into the indentations 50 of the block body 23A, the male shield plates 32 are flexed back by their elasticity so that the engaging projections 51 of the block body 23A are engaged with the engaging recesses 33 of the male shield plates 32, thus making a lock. The male engaging projections 34, the indentations 50, the engaging projections 51, and the engaging recesses 33 constitute a male lock unit.

Since the core wires 55-1 and 55-2 are connected under pressure to the press-connection blades 40-1 and 40-2 of the male terminals 24-1 and 24-2, respectively, such that they are bent at the engaging shoulders 44-1 and 45-1 of the inner conductor receiving channels 44 and 45, the press-connection is reliable even if the core wires 55-1 and 55-2 are pulled.

The male connector 1 is made by placing the male terminal unit 20 in the terminal unit attaching section of the male connector housing 10 such that the lance 17 is engaged with the lance engaging portion 30 of the male shield tubular member 28 and fitting the male retainer 60 in the retainer attaching section 11 of the male housing 10.

The female connector 2 consists of a female housing 70, a female terminal unit 80, and a female retainer 120.

In Figs. 1 and 2, the female connector housing 70 has a tubular housing body 70A which has a retainer attaching section 71 at the rear end and a female lock member 72 on the side. The housing body 70A is provided with a terminal unit attaching section 74 which has a lance 77.

In Fig. 14, the female terminal unit 80 comprises a female shield member 81 having a female shield cover 124, a female insulation block 82, a female holding block 83 made of an insulation material, and a pair of female terminals 84-1 and 84-2.

In Figs. 15, the female shield consists of a shield section 85 and a press-connection section 86. The shield section 85 has a female shield tubular member 88 a female holding block shield section 89. The Female shield tubular section 88 has a square cross-section and a lance engaging portion 90 on the bottom surface 88A.

The female holding block shield 89 has a pair of female shield plates 92 extending upwardly from a bottom section 89a of a bottom surface 88A. The female shield plates 92 are separated from the side wall 88B and 88C of the female shield tubular member 88. A pair of engaging recesses 93 are provided on each of the female shield plates 92, and a female engaging projection 94 extends inwardly from the shield plate 92 between the engaging recesses 93. The press-connection section 86 has a pair of shield press-connection tabs 95 and a pair of sheath press-connection tabs 96.

In Figs. 2 and 15, the female insulation block 82 has a block body 82A which has a press-connection terminal attaching section 97 at the rear end and a fitting cavity 97 at the front end. A pair of female terminals 84-1 and 84-2 are pushed into the block body 82A. This may also be done by the insert molding method. The female terminals 84-1 and 84-2 have a bifurcated female contact 99-1 and 99-2 and two pairs of press-connection tabs 100-1 and 100-2, respectively, which are located on the press-connection terminal attaching section 97. The female contacts 99-1 and 99-2 are located in the contact holes 100 at the front end of the block body 22A.

The female holding block 83 has a structure identical with that of the male holding block 23, and the same reference numbers are provided, and the description is omitted.

In Figs. 2 and 15, the female insulation block 82 is placed and locked in the female shield tubular section 88 of the female shield member 81 such that the press-connection terminal attaching section 87 is located in the female holding block shield 89 to support the press-
connection blades 100-1 and 100-2 of the female terminals 84-1 and 84-2 by the female shield plates 92 located.

[0040] In Fig. 2, a shield cable 102 is connected to the female holding block 83. The shield cable 102 and the female retainer 120 have structures identical with the aforementioned shield cable 102 and the retainer 60, respectively.

[0041] After the shield cable 102 is attached to the female retainer 120 via the through-hole 61, the two core wires 55-1 and 55-2 are exposed at the end and placed in the female inner conductor receiving channels 44 and 45 to connect the shield cable 102 to the female holding block 83.

[0042] Then, the female holding block 83 is placed in the female holding block shield 92 such that the two core wires 55-1 and 55-2 are opposed to the press-connection blades 100-1 and 100-2 of the female terminals 84-1 and 84-2 on the press-connection terminal attaching section 87. Then, two pairs of press-connection blades 100-1 and 100-2 are fitted in the press-connection tab receiving slits 47 and 48 of the female holding block 83 so as to connect under pressure the core wires 55-1 and 55-2 to the press-connection blades 100-1 and 100-2 of the male terminals 84-1 and 84-2, respectively.

[0043] Each pair of press-connection tabs 95 and the insulation press-connection tabs 96 are crimped on the outer conductor 56 and the outer sheath 57 of the core wires 55-1 and 55-2, respectively.

[0044] Then, the female shield cover 124 is attached to the female holding block shield member 92 so as to cover the female holding block 83. The female shield cover 124 has a structure identical with that of the shield cover 64, and the female engaging projections 94 are engaged with the engaging holes 65a by sliding the engaging pieces 65 on the inside of the female shield plates 92.

[0045] When the female holding block 83 is inserted in the female holding block shield member 89, the female engaging projections 94 are brought into contact with the block body 83A to flex the female shield plates 92 outwardly. When the female engaging projections 94 are inserted in the engaging indentations 49, the female shield plates 92 are flexed back with their resiliency so that the engaging projections 51 of the block body 83A are engaged with the engaging recesses 93 of the shield plates 92, thus making a lock. The engaging projections 94 and 51 and the engaging recesses 49 and 93 constitute a female lock unit.

[0046] The core wires 55-1 and 55-2 of the shield cable 102 are placed in the female inner conductor receiving channels 44 and 45 of the female holding block 83 to connect under pressure to the press-connection blades 100-1 and 100-2 of the female terminals 84-1 and 84-2, respectively, such that the core wires 55-1 and 55-2 are bent at the engaging shoulder 44-1 and 45-1. Consequently, if the core wires 55-1 and/or 55-2 are pulled, they are hooked at the engaging shoulders 44-1 and/or 45-1 so that no force is applied to the press-connection portion, thus stabilizing the press-connection.

[0047] Then, the female terminal unit 80 is placed in the terminal unit attaching section 74 of the female connector housing 70 so as to engage the lance 77 with the lance engaging portion 90 provided on the bottom 88A of the female shield tubular member 88 while the female retainer 120 is fitted in the retainer attaching section 71 of the female connector housing 70 to provide the female connector 2.

[0048] The plugging operation between the male and female connectors 1 and 2 will be described below.

[0049] The male connector 1 is plugged into the female connector by fitting the female connector housing 70 of the female connector 2 into the fitting cavity 15 of the male connector housing 10 to compress the elastic seal member 18, providing water-proof fitting, then, inserting the female shield tubular member 88 of the female shield member 81 into the male shield tubular section 28 of the male shield member 21 for contact to each other, and finally engaging the male lock member 12 with the female lock member 72.

[0050] The connection between the male and female connectors 1 and 2 is released by performing the above procedure in the reverse order.

[0051] In Fig. 16, the male connector 1-1 is made as a substrate mounting type and the female connector 2-1 is made so as to have the same structure as that of the above female connector 2. Since the female connector 2-1 is the same as the female connector 2, the same reference numerals are provided, with the description omitted.

[0052] The male connector 1-1 consists of a male connector housing 10-1 and a male terminal unit 20-1. The male connector housing 10-1 has a tubular housing body 10A-1 which has an opening 11-1 at the rear end and a male lock member 12-1 and a mounting section 13-1 on the side.

[0053] The housing body 1DA-1 is provided with a terminal unit attaching section 14-1, defining a fitting section 15-1 between the terminal unit attaching section 14-1 and the housing body 10A-1. A slot 16-1 is provided in the terminal unit attaching section 14-1 opposite to the male lock member 12-1, and a lance 17-1 is provided at the rear end of the slot 16-1. An elastic seal member 18-1 is set at the rear end of the fitting section 15-1.

[0054] In Fig. 17, the male terminal unit 20-1 consists of a male shield member 21-1, a male insulation block 22-1, and a pair of male terminals 24-4. The male insulation block 22-1 has a L-shaped block body 22A-1 which has a fitting projection 38-1 at the front end. A pair of male terminals 24-4 are provided at the block body 22A-1 by the insert molding method such that the male contact portions 39-4 project from the front end 22-2 of the block body 22A-1 while the connection legs 24-5 project from...
the mounting surface 22-3 of the male insulation block 22-1.

0055 The male shield member 21-1 covers the male insulation block 22-1 except for the front end 22-2 and the mounting surface 22-3 of the male insulation block 22-1. Connection legs 21-4 extend from the mounting ends 21-3 of the male shield member 21-1. A lance engaging portion 21-5 is provided in the male shield member 21-1.

0056 The male terminal unit 20-1 is inserted into the terminal unit attaching section 14-1 of the male connector housing 10-1 from the rear opening 11-1 while the lance 17-1 is engaged with the lance engaging portion 21-5 of the male shield member 21-1 to form the male connector 1-1.

0057 The connection legs 24-5 of the male terminals 24-4 are soldered to the conductor pattern on the printed circuit board (P), with the mounting section 13-1 abutted against the PCB while the connection legs 21-4 of the male shield member 21-1 are connected to the shield portion of the PCB to mount the male connector 1-1 on the PCB.

0058 The male and female connectors 1-1 and 2-1 are connected by fitting the female connector housing 70 of the female connector 2-1 into the fitting cavity 15-1 of the male connector housing 10-1 to compress the elastic seal member 18, thus making water-proof, and inserting the female shield tubular section 88 of the female shield member 81 into the male shield member 21-1 of the male connector 1-1 to bring them into contact, and inserting the fitting projection 38 of the male insulation block 22-1 into the cavity 98 of the female insulation block 82 while the male contact portions 39-4 of the male terminals 24-4 is inserted into the female contact portions 99-1 and 99-2 of the female terminals 84-1 and 84-2 to bring them into contact, and finally engaging the male lock member 12-1 with the female lock member 72.

0059 In Fig. 11, the shield cable 52 or 102 is made by covering a pair of core wires 55-1 and 55-2, which are made by applying an insulation to the inner conductors 53, with a sheath 54, covering the inner sheath 54 with an outer conductor (mesh shield) 56, and covering the outer conductor 56 with an outer sheath 57. The inner sheath 54 separates the core wires 55-1 and 55-2 from the outer conductor 56 by the thickness of the inner sheath 54. By making the cross-section of the inner sheath 54 circular, it is possible to make the outer conductor 56 and the outer sheath 57 concentric regardless of the shape of cross-section of the core wires 55-1 and 55-2.

0060 When the outer sheath 57 or outer conductor 56 is removed, the cutting blade works very well with such a shield cable 52 or 102. The inner sheath 54 between the outer conductor 56 and the core wires 55-1 and 55-2 makes it possible to set a large amount of cut to thereby make automatic termination possible.

0061 The shield cable 52 or 102 is connected to the male holding block 23 or female holding block 83 by stripping the outer sheath 57 and cutting the outer conductor 56 and dummy wire 58 to expose two core wires 55-1 and 55-2 and inserting the core wires 55-1 and 55-2 into the inner conductor receiving channels 44 and 45, respectively.

0062 In Fig. 9, when the core wires 55-1 and 55-2 of the shield cable 52 or 102 are inserted into the male inner conductor receiving channels 44 and 45 of the male or female holding block 23 or 83 to connect under pressure the core wires 55-1 and 55-2 to the press-connection blades 40-1 or 100-1, and 40-2 or 200-2 of the male or female terminals 24-1 or 24-2, the core wires 55-1 and 55-2 of the shield cable 52 or 102 are bent at the engaging shoulder 44-1 or 45-1 of the male or female inner conductor receiving channels 44 or 45. Consequently, if the core wires 55-1 or 55-2 is pulled, the force is stopped at the male or female engaging shoulder 44-1 or 45-1, thus stabilizing the press connection. The inner sheath 54 between the core wires 55-1 and 55-2 and the outer conductor 56 makes effective both the pull resistance and the insulation strength, thereby providing a high-performance electrical connector.

0063 When the shield cable 52 or 102 is used for a water-proof electrical connector, the cross-section of the shield cable 52 or 102 becomes substantially circular. Thus, when the shield cable 52 or 102 is put through the hole 61 and the through-hole 63 of the male or female retractor 60 or 120, the shield cable 52 or 102 is brought into close contact with the hole 61 and the through-hole 63, thereby improving the water-proof performance.

0064 Alternatively, as shown in Fig. 12, the shield cable 52 or 102 is made by twisting a pair of insulated core wires 55-1 and 55-2 with a pair of dummy wires 58 of synthetic thread and covering the wires and threads with an inner sheath 54, then the inner sheath 54 with an outer conductor (meshed shield) 56, and finally the outer conductor 56 with an outer sheath 57. The shield cable 52 or 102 becomes so circular that it is brought into close contact with the water-proof, thus improving the water-proof performance.

0065 Alternatively, as shown in Fig. 18, the engaging shoulders 44-1 and 45-1 are made by bending the inner conductor receiving channels 44 and 45 in the surface of the male holding block 23.

0066 Alternatively, as shown in Fig. 19, the shield cable core wires 52 in the male inner conductor receiving channels 44 and 45 are connected under pressure to the male press-connection tabs 40-1 of the male terminal 24-1 by providing the male inner conductor receiving channels 44 and 45 having no engaging shoulders 44-1 and 45-1 in the male holding block 23, inserting the shield cable core wires 52-1 and 55-2 into the male inner conductor receiving channels 44 and 45, making them loose (curved), and placing the male holding block 23 on the male insulation block 22. The same is applied to the female terminal unit 80.

0067 Consequently, when the shield cable 52 is pulled, no force is applied to the press-connection portion.
of the shield cable 52, thus stabilizing the press-connection while the loose portion of the shield cable core wires 52-1 or 52-2 absorbs the force thereby assuring the press-connection of the shield cable 52.

[0068] Alternatively, the shield cable core wire 52-1 and 52-2 in the male inner conductor receiving channels 44 and 45 are connected under pressure to the male press-connection blades 40-1 and 40-2 of the male terminal 24-1 and 24-2 by providing the male inner conductor receiving channels 44 and 45 having engaging shoulders 44-1 and 45-1 in the male holding block 23, placing the shield cable 52 in the male inner conductor receiving channels 44 and 45 and making them loose (curved), and placing the male holding block 23 on the male insulation block 22. The same is applied to the female unit 80.

[0069] According to the invention described above, the insulated core wires of a cable are placed in the inner conductor receiving channels and held by the engaging shoulders so that if the cable is pulled, the pull is prevented by the engaging shoulders from acting on the press-connection portions thus stabilizing the press-connection and providing a reliable electrical connector.

[0070] Since the cable wires are placed in the male inner conductor receiving channels and held by the engaging shoulders while the cable wires are placed in the female inner conductor receiving channels and held by the engaging shoulders, if the cable is pulled, the force is stopped at the male and female engaging shoulders so that no force is applied to the press-connection portions, thus stabilizing the press-connection and providing a reliable electrical connector.

[0071] When the holding block is placed in the holding block shield member, the shield plates are flexed outwardly by the lock unit and then returned to an automatic lock condition, making the assembling easy.

[0072] With an electrical connector according to the invention, it is possible to shield the terminals completely. Also, it is possible to mount one of the connectors on a board and to place the cable wires in the inner conductor receiving channels such that the cable wires are held at the engaging shoulders so that if the cable is pulled, the pulling force is stopped by the engaging shoulders. Consequently, no pulling force is applied to the press-connection portions of the cables, thus stabilizing the press-connection and providing a reliable electrical connector.

[0073] In addition, it is possible to make the engaging shoulders by the bent portions of the inner conductor receiving channels. Also, it is possible to make the engaging shoulder with a bottom surface of the inner conductor receiving channel, and side walls perpendicular to the bottom surface.

[0074] Moreover, it is possible to make the engaging shoulder with the bend portion of a bent inner conductor receiving channel provided in the holding block. Also, it is possible to connect the connector water-proof. Further, it is possible to separate the outer conductor from the core wires by the thickness of the inner sheath and to make the outer conductor and sheath concentric by making the inner sheath circular regardless of the cross-sectional shape of the core wires. Since there is the inner sheath between the outer conductor and the core wires, it is possible to maximize the amount of cut into the outer sheath and conductor, thus making possible automation of the termination operation.

[0075] Since the core wires are bent at the engaging shoulders, even if they are pulled, no pulling force is applied to the press-connection portion, thus stabilizing the press-connection portion. Under such conditions, the inner sheath between the core wires and the outer conductor makes effective both the pulling and insulation strengths, thus providing a high-performance electrical connector.

[0076] In addition, it is possible to make the cross-section of the cable circular by twisting a plurality of core wires and a plurality of dummies and covering them with an inner sheath, to thereby improve the water-proof performance. If the cable is pulled, the pulling force is stopped at the engaging shoulder, and no force is applied to the press-connection portion of the cable, thus stabilizing the press-connection portion and providing a reliable electrical connector. If the cable is pulled, the pulling force is stopped by the engaging shoulder so that no force is applied to the press-connection portion, thus stabilizing the press-connection portion and providing a reliable electrical connector.

Claims

1. An electrical connector for a cable (12) including at least one core wire (55-1; 55-2), said electrical connector comprising:

- a shield member (21; 81);
- an insulation block (22; 82) provided in said shield member;
- a terminal unit (20; 80) supported by said insulation block and having a plurality of press-connection blades (40-1, 40-2, 100-1, 100-2);
- a holding block (23; 83) having a bottom surface (23a) comprising a first level surface (41) and a second level surface (42) separated by a shoulder (43);
- said holding block further having an inner conductor receiving channel (44, 45) formed parallel with the bottom surface for receiving said core wire (55-1 or 55-2) of said cable and having an engaging shoulder (44-1, 45-1) such that said core wire is hooked at said engaging shoulder of said inner conductor receiving channel; and
- said holding block (23; 83) being placed on said insulation block (22; 82) such that said core wire of said cable in said inner conductor receiving channel is connected under pressure to said press-connection blades of said terminal at a location spaced apart from said engaging shoul-
An electrical connector system comprising a first housing, whereby if the cable is pulled, the pulling force is stopped at the engaging shoulder, and no force is applied to the press-connection blades.

2. An electrical connector according to claim 1, wherein said shield member comprises a shield tubular section for accommodating said insulation block and a holding block shield section for accommodating said holding block; said holding block shield section comprising a pair of opposing shield plates having lock means made such that when said holding block is inserted, said shield plates are flexed outwardly and then returned to lock said holding block.

3. An electrical connector according to claim 1 or 2, further comprising a shield cover for covering said holding block locked to said holding block shield section.

4. An electrical connector according to claim 1, 2, or 3, wherein said engaging shoulder comprises a bottom surface and a vertical surface extending at right angles with said bottom surface.

5. An electrical connector according to any preceding claim wherein said cable comprises a core wire having an insulated inner conductor; an inner sheath provided over said core wire; an outer conductor provided over said inner sheath; and an outer sheath provided over said outer conductor.

6. An electrical connector according to any preceding claim wherein said cable comprises a core wire having an insulated inner conductor; an inner sheath provided over said core wire; an outer conductor provided over said inner sheath; and an outer sheath provided over said outer conductor.

7. An electrical connector according to any one of claims 1 to 5, wherein said cable comprises a plurality of core wires having a plurality of insulated inner conductors; a plurality of dummy threads twisted with said core wires to provide a twisted wire assembly; an inner sheath provided over said twisted wire assembly; an outer conductor provided over said inner sheath; and an outer sheath provided over said outer conductor.

8. An electrical connector system, comprising a pair of electrical connectors according to any preceding claim, each connector further comprising a housing, said housings being complementary to one another and the terminals of the respective connectors being complementary to one another.

9. An electrical connector system comprising a first electrical connector according to any one of claims 1 to 6, and a second electrical connector of the surface-mounting type having a terminal adapted to engage the terminal of the first electrical connector.

Revendications

1. Connecteur électrique pour un câble (12) comportant au moins une âme unifilaire (55-1 ; 55-2), ledit connecteur électrique comprenant :
 - un élément de blindage (21 ; 81) ;
 - un bloc isolant (22 ; 82) lequel est prévu dans ledit élément de blindage ;
 - une unité borne (20 ; 80) qui est soute aunque ledit bloc isolant et qui possède une pluralité de lames de connexion par pression (40-1 ; 40-2 ; 100-1 ; 100-2) ;
 - un bloc de maintien (23 ; 83) avec une surface inférieure (23a) comprenant une surface de premier niveau (41) et une surface de deuxième niveau (42) qui sont séparées par un épaulement (43) ;
 - ledit bloc de maintien comportant en outre une section interne en U (44, 45) de réception d’âme, qui est formée en parallèle avec la surface inférieure, et est destinée à recevoir ladite âme unifilaire (55-1 ou 55-2) dudit câble et ayant un épaulement d’engagement (44-1, 45-1) de telle sorte que ladite âme unifilaire soit accrochée au niveau dudit épaulement d’engagement sur ladite section interne en U de réception d’âme ; et
 - ledit bloc de maintien (23 ; 83) étant placé sur ledit bloc isolant (22 ; 82) de telle sorte que ladite âme unifilaire dudit câble, posé dans ladite section interne en U de réception d’âme, soit connectée sous pression auxdites lames de connexion par pression de ladite borne au niveau d’un emplacement qui est espacé dudit épaulement d’engagement, cas dans lequel si on tire sur le câble, la force de traction est arrêtée au niveau de l’épaulement d’engagement, et aucune force ne sera donc appliquée sur les lames de connexion par pression.

2. Connecteur électrique, selon la revendication 1, dans lequel ledit élément de blindage comporte une section tubulaire de blindage afin de recevoir ledit bloc isolant et une section de blindage de bloc de maintien afin de recevoir ledit bloc de maintien ; alors que ladite section de blindage de bloc de maintien comporte une paire de plaques de blindage opposées possédant des moyens de verrouillage qui sont réalisés de telle sorte qu’au moment de l’introduction dudit bloc de maintien, lesdites plaques de blindage sont fléchies vers l’extérieur et puis reviennent en arrière pour verrouiller ledit bloc de maintien.

3. Connecteur électrique, selon la revendication 1 ou 2, comprenant en outre une couverture de blindage afin de recouvrir ledit bloc de maintien qui est verrouillé à ladite section de blindage de bloc de maintien.
4. Connecteur électrique, selon la revendication 1, 2 ou 3, dans lequel le dit épaulement d’engagement comprend une surface inférieure ainsi qu’une surface verticale laquelle s’étend à angles droits par rapport à ladite surface inférieure.

5. Connecteur électrique, selon l’une quelconque des revendications 1 à 4, dans lequel le dit connecteur électrique est rendu imperméable à l’eau.

6. Connecteur électrique, selon l’une quelconque des revendications précédentes, dans lequel le dit câble comprend une âme unifilaire ayant un conducteur interne isolé ; une gaine interne qui est prévue au-dessus de ladite âme unifilaire ; un conducteur externe qui est prévu au-dessus de ladite gaine interne ; et une gaine externe qui est prévue au-dessus dudit conducteur externe.

7. Connecteur électrique, selon l’une quelconque des revendications 1 à 5, dans lequel le dit câble comprend une pluralité d’âmes unifilaires ayant une pluralité de brins fictifs lesquels sont torsadés avec desdites âmes unifiliaires afin de constituer un ensemble à fils torsadés ; une gaine interne qui est prévue au-dessus dudit ensemble à fils torsadés ; un conducteur externe qui est prévu au-dessus de ladite gaine interne ; et une gaine externe qui est prévue au-dessus dudit conducteur externe.

8. Système de connecteur électrique, comprenant une paire de connecteurs électriques, selon l’une quelconque des revendications précédentes, chaque connecteur comprenant en outre un logement, lesdits logements étant complémentaires les uns des autres, et les bornes des connecteurs respectifs étant complémentaires les unes des autres.

9. Système de connecteur électrique, comprenant un premier connecteur électrique, selon l’une quelconque des revendications 1 à 6, et un deuxième connecteur électrique du type à montage en surface munie d’une borne qui est adaptée pour s’engager avec la borne du premier connecteur électrique.

Patentansprüche

1. Elektrischer Verbinder für ein Kabel (12), das mindestens einen Kerndraht (55-1; 55-2) einschließt, wobei der genannte elektrische Verbinder aufweist:

- ein Abschirmelement (21; 81);
- einen Isolierblock (22; 82), der in dem genannten Abschirmelement vorgesehen ist;
- eine Anschlusseinheit (20; 80); die durch den genannten Isolierblock gehalten wird und eine Mehrzahl von Pressverbindungsmessern (40-1, 40-2; 100-1, 100-2) aufweist;
- einen Halteblock (23; 83) mit einer Bodenfläche (23a), die eine Oberfläche (41) einer ersten Ebene und eine Oberfläche (42) einer zweiten Ebene getrennt durch einen Schulte (43) aufweist; wobei der genannte Halteblock ferner einen inneren Leiteraufnahmekanal (44, 45) aufweist, der parallel mit der Bodenfläche zum Aufnehmen des genannten Kermdrahts (55-1 oder 55-2) des genannten Kabels ausgebildet ist und eine Eingriffsschulter (44-1, 45-1) aufweist, so dass der genannte Kermdraht an der genannten Eingriffsschulter des genannten inneren Leiteraufnahmekanals eingehakt wird; und
der genannte Halteblock (23; 83) so auf dem genannten Isolierblock (22; 82) platziert wird, dass der genannte Kermdraht des genannten Kabels in dem genannten inneren Leiteraufnahmekanal unter Druck mit den genannten Pressverbindungsmessern des genannten Anschlusses an einer von der genannten Eingriffs- schulter beabstandeten Position verbunden wird, wodurch, wenn das Kabel gezogen wird, die Zugkraft an der Eingriffsschulter gestoppt wird und keine Kraft auf die Pressverbindungsmesser ausgeübt wird.

2. Elektrischer Verbinder nach Anspruch 1, bei dem das genannte Abschirmelement einen röhrenförmigen Abschirmabschnitt zum Unterbringen des genannten Isolierblocks und einen Halteblockabschnitt zum Unterbringen des genannten Halteblocks aufweist; wobei der genannte Halteblockabschnitt ein Paar gegenüberliegender Abschirmplatten mit derart gebildeten Verriegelungsmitteln aufweist, dass, wenn der genannte Halteblock eingeführt wird, die genannten Abschirmplatten nach außen gebogen und anschließend zum Verriegeln des genannten Halteblocks zurückgeführt werden.

3. Elektrischer Verbinder nach Anspruch 1 oder 2, der ferner eine Abschirmabdeckung zum Bedecken des genannten Halteblocks aufweist, der an dem genannten Halteblockabschnitt verriegelt ist.

4. Elektrischer Verbinder nach Anspruch 1, 2 oder 3, bei dem die genannte Eingriffsschulter eine Bodenfläche und eine vertikale Oberfläche aufweist, die sich in rechten Winkeln zu der genannten Bodenfläche erstreckt.

5. Elektrischer Verbinder nach einem der Ansprüche 1 bis 4, wobei der genannte elektrische Verbinder wasserdicht ausgebildet ist.

6. Elektrischer Verbinder nach einem vorhergehenden
Anspruch, bei dem das genannte Kabel Folgendes umfasst: einen Kedraht mit einem isolierten Innenleiter; einen Innenmantel, der über dem genannten Kedraht vorgesehen ist; einen Außenleiter, der über dem genannten Innenmantel vorgesehen ist; und einen Außenmantel, der über dem genannten Außenleiter vorgesehen ist.

7. Elektrischer Verbinde nach einem der Ansprüche 1 bis 5, bei dem das genannte Kabel Folgendes umfasst: eine Mehrzahl von Kerndrähten mit einer Mehrzahl isolierter Innenleiter; eine Mehrzahl von Blindfäden, die mit den genannten Kerndrähten verdrillt sind, um eine verdrillte Drahtbaugruppe bereitzustellen; einen Innenmantel, der über der genannten verdrillten Drahtbaugruppe vorgesehen ist; einen Außenleiter, der über dem genannten Innenmantel vorgesehen ist; und einen Außenmantel, der über dem genannten Außenleiter vorgesehen ist.

8. Elektrisches Verbindersystem, das ein Paar elektrischer Verbinde nach einem vorhergehenden Anspruch aufweist, wobei jeder Verbinde ferner ein Gehäuse aufweist, und die genannten Gehäuse komplementär zueinander sind und die Anschlüsse der jeweiligen Verbinde komplementär zueinander sind.

9. Elektrisches Verbindersystem, das einen ersten elektrischen Verbinde nach einem der Ansprüche 1 bis 6 aufweist, und einen zweiten elektrischen Verbinde des Oberflächeneinbautyps mit einem Anschluss aufweist, der zum Ergreifen des Anschlusses des ersten elektrischen Verbinders angepasst ist.
FIG. 21

PRIOR ART