EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 28.06.2006 Bulletin 2006/26

Application number: 99300666.7

Date of filing: 29.01.1999

Recording apparatus, recording method, and storage medium
Aufzeichnungsgerät, Aufzeichnungsverfahren und Speichermedium
Appareil d’enregistrement, méthode d’enregistrement, et moyen de stockage

Designated Contracting States: DE FR GB IT NL

Priority:
02.02.1998 JP 2085898
25.06.1998 JP 17898198

Date of publication of application:
04.08.1999 Bulletin 1999/31

Proprietor: CANON KABUSHIKI KAISHA Tokyo (JP)

Inventors:
- Kyogoku, Hiroshi
 Ohta-ku,
 Tokyo (JP)
- Sasaki, Takashi
 Ohta-ku,
 Tokyo (JP)
- Shiraiwa, Yoshinobu
 Ohta-ku,
 Tokyo (JP)
- Takahashi, Kenji
 Ohta-ku,
 Tokyo (JP)
- Hirai, Shinya
 Ohta-ku,
 Tokyo (JP)

Representative: Beresford, Keith Denis Lewis et al
BERESFORD & Co.
16 High Holborn
London WC1V 6BX (GB)

References cited:
- EP-A- 0 557 137
- EP-A- 0 534 794
- EP-A- 0 600 593

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a recording apparatus for recording by driving a recording head to transfer ink from an ink sheet carrying sequential colours to a recording medium in accordance with image data, the apparatus being capable of recording on a plurality of different sizes of recording media and being capable of using plural ink sheets corresponding to the different sizes of recording media, as well as to relate to a recording method and a storage medium therefore.

Related Background Art

[0002] In recent years, video cameras, digital cameras, and the like have been used widely. Along with the popularization of such equipment which is capable of recording images, the demand for color printers has become increasingly more as a recording apparatus that can output the photographed and stored images on a recording medium, such as a recording sheet.

[0003] As recording methods of color images, there have been known various ones, among some others, such as the ink jet method for recording by discharging ink, the electronic photographing method for forming images by use of toner, the thermal transfer method for transferring ink to a recording medium by the application of thermal energy with an ink sheet having ink coated on it. Also, of the thermal transfer methods, there have been known a thermal fusion type that uses an ink sheet coated with ink which is fused when heat is applied, and a thermal sublimation type that uses an ink sheet coated with ink which is sublimated when heat is applied, and so on.

[0004] Of the various recording methods, the recording apparatus that adopts the thermal transfer method using the ink sheet makes it easier to maintain the apparatus. Here, particularly, the sublimation type transfer method facilitates the formation of full color images of the higher quality which is equal to that of a silver salt photography. Also, there is inevitably a need for the transfer method using the ink sheet to adopt an ink sheet corresponding to the size of a recording sheet used for recording. Therefore, this method is suitable for a recording apparatus that records on a recording sheet of comparatively small size.

[0005] When an image, which is obtained using an equipment, such as a video camera, should be output on a recording sheet, the recording sheet of comparatively small size is mainly used often. The output images should desirably be recorded in the higher quality equal to that of a silver salt photography. Here, therefore, the aforesaid thermal transfer type recording apparatus is anticipated to function as a color printer adoptable as output means of the video camera, digital camera, or the like.

[0006] In general, the recording sheets are housed in a sheet feed cassette or set in a sheet feed unit of the thermal transfer type recording apparatus. Then, each of the recording sheets is picked up by the rotation of a sheet feed roller to carry it to the recording unit. Here, the thermal head installed in the recording unit is driven with respect to the recording sheet thus carried to this unit in a state where the thermal head is pressed to the platen through the ink sheet and the recording sheet as well. In this way, the ink which is coated on the ink sheet is transferred to the recording sheet for recording images on it.

[0007] Here, depending on the user of a recording apparatus, the sizes of images to be recorded, the sizes of recording sheets on which the images should be output, and the kinds of recording sheets to be used for recording may differ variously. Therefore, it is desired to provide a recording apparatus capable of recording on various sizes and kinds of recording sheets as the case may be.

[0008] Also, for the aforesaid thermal transfer type recording apparatus, it is generally practiced to use ink sheet having ink of plural colors coated on each of them sequentially for recording a color image. Then, there has been known a method whereby to arrange the area on which ink of each color is coated corresponding to the size of a recording sheet to be used, hence preventing the wasteful consumption of ink sheets.

[0009] As has been described, the user should select the size of a recording sheet and set on a recording apparatus the ink sheet which corresponds to the size of that particular recording sheet used for recording when he intends to output an image in a desired size using such recording apparatus that may be able to deal with a plurality of recording sheets of different sizes.

[0010] For the recording apparatus that may be able to deal with a plurality of recording sheets of different sizes, it is generally known to select a recording sheet and execute the recording control in accordance with the size of recording sheet thus selected by the designation which is made by the user through his key entry or the like. However, if the user inputs an erroneous designation or forget inputting designation, the resultant recording is not made on the recording sheet as he has intended. Thus, the recording sheets are wastefully used after all. Particularly, for the aforesaid thermal sublimation type recording apparatus, it is usual to adopt recording sheets dedicated for its use in order to attain the higher quality recording. As compared with an ordinary sheet, this specially treated recording sheet is expensive, and it costs the user more if the recording sheets are wastefully used. Also, when recording is made on a recording sheet whose size is smaller than the size of the image that should be recorded, ink adheres to the platen in the recording apparatus and to the circumference thereof, because recording is made even on the portion where no recording sheet is present. Hence, there is a possibility that the recording sheet used for the next recording is stained by the adhesion of such ink.
In the specification of Japanese Patent Publication 06-030922, a method is proposed to automatically determine the size of an image to be recorded by the detection of a recording sheet both in length and breadth when recorded with the arrangement of an array sensor dedicated for this use, which is installed on the carry path of the recording sheet. However, the arrangement of this method is such that while an expensive array sensor is provided, the image is resized automatically without giving any caution or issuing any warning to the user in this particular aspect. Also, in some cases, a print-out, which is not needed, may be made eventually.

As described above, for the recording apparatus capable of using, by an appropriate selection, recording sheets of different sizes and ink sheets having different sizes, each corresponding to a recording sheet to be used, there are such problems that when the size of a recording sheet used for recording is not in agreement with the size of an ink sheet to be used, when the sheet feed cassette is carelessly replaced, or when the user forgets designating the size of a recording sheet to be used, images are not recorded suitably and the interior of the recording apparatus may be stained inevitably.

It is also desired to provide a recording apparatus capable of recording on a recording sheet (hereinafter referred to as a seal sheet) having a adhesive layer on it. The recording sheet is peeled off from the base sheet to make its adhesion to some other object possible so that the recorded image can be used as a seal. When recording is made on such seal sheet, it is desirable to edit or process the image in various ways in order to enhance the value thereof as a seal. As such edit or process of an image of the kind, there are cited a process in which a new image is formed by allowing some other image or characters to be overlaid on such image, a process in which images are contracted and arranged one after another so that a plurality of images can be arranged on one seal sheet in order to produce plural seals from one seal sheet. Also, for the production of plural seals, 16 to 30 seals, for example, from one seal sheet of the kind, it is known to perforate the seal sheet along the size of each seal to be peeled off. Also, it is generally practiced to select and execute the aforesaid edit or process by the designation through his key entry or the like by the user.

However, the user may wrongly select the kind of recording sheet to be used or wrongly execute the edit or the process or he may execute recording without recognizing the kind of recording sheets stored in a sheet feed cassette that supplies recording sheets. In such case, some other images, which are not suitable for the seal formation, may be recorded while seal sheets are stored in the sheet feed cassette or a larger image may be recorded against a perforated seal sheet. Thus, the seal sheets which are more expensive than ordinary sheets are consumed wastefully after all.

Also, for the recording apparatus capable of using recording sheets of various sizes, there is a problem that a smaller image is recorded on a sheet whose size is larger than that of the target image eventually.

In another aspect, the present invention provides a recording apparatus as set out in claim 1.

An embodiment of the invention provides a recording apparatus capable of recording without recording improperly any smaller images that may be unfit for the size of the recording sheet or staining the platen even when the recording medium and the ink sheet installed thereon are different in its sizes or the user does not designate the size of the recording medium to be used, and a recording method and a storage medium therefor.

In accordance with the present invention, it becomes possible to record the image that has been adjusted to the size and kind of a recording sheet and the size of the recording sheet corresponding to the ink sheet without the user’s complicated operation, hence reducing the possibility that an image of wrong size is recorded or the platen and others in the interior of the apparatus are stained.

Other aspects and advantages besides those discussed above will be apparent to those skilled in the art from the description of a preferred embodiment of the invention which follows, in the description, reference is made to accompanying drawings, which form a part hereof, and which illustrate an example of the invention. Such example, however, is not exhaustive of the various embodiments of the invention, and therefore reference is made to the claims which follow the description for determining the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a cross-sectional view which shows the principal structure of a recording apparatus not falling within the scope of the invention claimed. Figs. 2A, 2B, 2C and 2D are views which illustrate recording sheets of different sizes and ink sheets each corresponding to the recording sheets of different sizes. Fig. 3 is a perspective view which shows the structure of a cassette formed to supply recording sheets.
Fig. 4 is a block diagram which shows a recording apparatus and the principal structure of the control unit of the recording apparatus.

Figs. 5A and 5B are views which illustrate images to be recorded in specific formulas.

Fig. 6 is a flowchart which shows the control flow of the recording apparatus represented in Fig. 4.

Fig. 7 is a cross-sectional view which shows the principal structure of the recording apparatus in accordance with an embodiment of the present invention.

Figs. 8A and 8B are views which illustrate the sizes of recording sheets.

Fig. 9 is a view which schematically shows the arrangement of keys in the operation unit provided for a recording apparatus.

Figs. 10A, 10B and 10C are views which schematically shows the editing screen.

Fig. 11 is a block diagram which shows the principal structure of the recording apparatus in accordance with the embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0023] The present invention is not necessarily limited to the recording apparatus, but it may be possible to implement the invention by a recording method, and further, in the form of a storage medium, such as a CD-ROM or a floppy disc. Example not falling within the scope of the claims

[0024] Now, with reference to the accompanying drawings, the detailed description will be made of an example not falling within the scope of the claims

[0025] This example is arranged to provide a recording apparatus capable of executing the recording operation appropriately without recording an image whose size is made improperly larger than the recording sheet even when the size of the recording sheet used for recording and the size of the corresponding ink sheet are different, and also, this example provides a recording method therefor.

[0026] Fig. 1 is a cross-sectional view which shows the principal structure of a recording apparatus in accordance with this example.

[0027] At first, the description will be made of the entire structure of the recording apparatus. Each one of recording sheets P is carried separately from a sheet cassette 2 having the recording sheets P stored in it to a apparatus main body 1 by means of a sheet feed roller 3. At the same time, the recording sheet P is pinched by a pair of carrier rollers 4 to make its reciprocation possible to and from the recording unit. In the recording unit, a platen roller 5 and a thermal head 6 which gives heat in accordance with recording information are arranged to face each other with the carrier path of the recording sheet between them. Then, each of ink sheets 8 having thermal fusion or thermal sublimation ink coated on them, which are stored in an ink sheet cassette (may be referred to as an ink cassette) 7, is pressed to the recording sheet P by means of the thermal head 6. At the same time, the heat generating devices of the thermal head 6 are selectively heated to record the required images on the recording sheet P. As shown in Fig. 2A, each ink portion of yellow (Y), magenta (M), and cyan (C) is coated sequentially on the ink sheet 8 substantially in the same size as the recording sheet P shown in Fig. 2B. When each one of these colors is transferred, the recording sheet P is returned to a position P1 where the recording is initiated. Thus, such recording is made one after another by the ink portion corresponding to each color. In this manner, the recording sheet P reciprocates by use of the pair of the carrier rollers 4 in the same numbers as those of colors. Lastly, the recording sheet is guided to a pair of exhaust rollers 9 to be exhausted outside of the apparatus, hence completing the current recording.

[0028] As represented in Fig. 1, each of the recording sheets P stored in the sheet cassette 2 is, as shown in Fig. 2B, in the A-7 size which is approximately a half of A-6 size recording sheet Ps shown in Fig. 2D. However, the position (indicated by solid lines) before recording in the case of the A-6 size (indicated by solid lines), and the position immediately after the recording (indicated by broken lines) are also represented in Fig. 1.

[0029] Fig. 2B shows the recording sheet P of A-7 size. Fig. 2D shows the recording sheet Ps of A-6 size. Therefore, the recording sheet P shown in Fig. 2B has a size which is a half the recording sheet Ps as shown in 2D. Hereinafter, the recording sheet Ps may also be referred to as the standard size, while the recording sheet P as the half size.

[0030] In this respect, the description will be made on the assumption that the pixel numbers recorded on the recording sheet of the A-7 size are (M2 x L), and that the pixel numbers recorded on the recording sheet Ps of the A-6 size are (M1 x L). Here, it is defined that L > M2, M1 > L and, at the same time, L is the pixel numbers that can be recorded by means of the heat generating devices of the thermal head 6.

[0031] As shown in Figs. 2A to 2D, it is necessary to use the ink sheets having the ink portions whose sizes correspond respectively to that of the recording sheets. In other words, it is fundamentally required to use the recording sheets and the ink sheet cassettes correspondingly in terms of the sizes thereof. To this end, the recording apparatus shown in Fig. 1 is provided with a sensor 10 to discriminate the kinds of the ink sheet cassettes. For the recording sheets, it is more reliable fundamentally if the sheet cassettes are arranged each per sheet size, thus making the discrimination easier. However, with costs in view, it is generally practiced to arrange a guide plate 11 which is movable along a guide groove 12 and set by the user in accordance with the kind of the record-
ing sheet to be used for the current operation.

[0033] In Fig. 1, there is no representation of the detection sensor for the size of each recording sheet. For example, however, it is possible to detect the size of the recording sheet by detecting the presence or absence of an edge portion 13 of the guide plate 11 shown in Fig. 3 which is movable along the guide groove 12. In this case, if the user forgets setting the guide plate 11 when he sets the recording sheets of A-7 size, which is a half the size of the standard sheet, there is the problem of erroneous recognition that the ink sheet cassette for the A-6 standard size has been set. Here, when the recording sheet is carried provisionally to the position P1 for initiating the current recording, the length of the recording sheet in use can be measured by measuring the time or the like required for the recording sheet to pass a leading end detection sensor 14. Therefore, it is possible to discriminate the difference of the size of the ink sheet cassette for the A-7 recording sheet and exhaust the recording sheet immediately, thus avoiding the erroneous recording.

[0034] As shown in Fig. 4, the image control unit comprises means 15 for detecting an ink sheet cassette; means 16 for detecting the size of a recording sheet; a buffer memory 17; an image processing unit 18 for executing the reduction or enlargement of an image, the rotation thereof, or the like; a thermal head 19; a thermal control unit 20 therefor; a carrier motor 21; and a driving control pulse generation unit 22. More specifically, when an image of A-6 size should be recorded, the intended recording is executed as it is if the size of the recording sheet is as shown in Fig. 2B, and the size of the ink sheet is as shown in Fig. 2C, which indicates that both of them are of the A-6 size identically. However, if the combination of the recording sheet and ink sheet cassette currently installed on the recording apparatus can be determined by the output contents of the detection means 15 and 16.

[0035] With the recording apparatus thus structured, the inputted image can be edited to provide an image form having the optimal size and direction for recording without any particular entry of the size of the recording sheet for the current recording, because both the kinds of the recording sheet and ink sheet cassette currently installed on the recording apparatus can be determined by the output contents of the detection means 15 and 16.

[0036] More specifically, when an image of A-6 size should be recorded, the intended recording is executed as it is if the size of the recording sheet is as shown in Fig. 2B, and the size of the ink sheet is as shown in Fig. 2C, which indicates that both of them are of the A-6 size identically. However, if the combination of the recording sheet and ink sheet is such as those shown in Fig. 2B and Fig. 2C or Fig. 2D and Fig. 2A, which indicates that either one of them is different at least with respect to the size or the direction, a warning is issued or an error message is indicated, hence prohibiting the execution of recording process.

[0037] After that, if the recording sheet is replaced from the A-6 size to the set of the A-7 (half size) which makes it possible to perform recording faster at lower costs (that is, the combination of those shown in Fig. 2A and Fig. 2B), the recording apparatus automatically resizes (modification of image size) and changes the direction of recording (executes the image rotation process) in accordance with information from the recording size detection means 16 based on the image information of the A-6 size.

[0038] Now, with reference to a flowchart shown in Fig. 6, the description will be made of the resizing process whereby to modify the image sizes and the image rotation process thereby to convert the length and breadth (which may be referred to as "length and breadth conversion process").

[0039] At first, the recording sheets are discriminated in step S1.

[0040] Here, the recording sheets usable for the recording apparatus shown in Fig. 1 are not necessarily limited to the paper sheets whose sizes are different as shown in Fig. 2B and Fig. 2D, but the transfer sheet is also useable, with which an image can be transferred to some other medium by use of a heating equipment such as an iron. When recording is performed on such transfer sheet as this, the transferred image is inverted. Therefore, the recorded image should be converted into its mirror image.

[0041] As to the recording sheet discrimination in the step S1, it is determined whether the size is A-7 like the recording sheet P shown in Fig. 2B or A-6 like the recording sheet P, shown in Fig. 2D. At the same time, it is determined whether or not the current sheet is a transfer sheet. Also, for the transfer sheet, it is determined whether it is of the A-6 size or of the A-7 size. The discrimination of the recording sheets is possible by use of the sheet feed cassettes 2 as to the sizes thereof. The discrimination of whether it is an ordinary sheet or a transfer sheet is possible in accordance with the user’s key entry through an operation unit (not shown). The method of recording sheet determination is not necessarily limited to those described above. It may be possible to arrange the structure so that both the sizes and kinds of recording sheets are determined in accordance with the designation made by the user.

[0042] In accordance with the results of discrimination in step S1, a flag flg_sheet is set as given below to indicate the kind and size of the recording sheet.

Ordinary sheet of A-6 size \(\text{flg_sheet} = 0 \)
Ordinary sheet of A-7 size \(\text{flg_sheet} = 1 \)
Transfer sheet of A-6 size \(\text{flg_sheet} = 2 \)
Transfer sheet of A-7 size \(\text{flg_sheet} = 3 \)

[0043] Here, the description will be made on the assumption that the pixel number indicated by the image data used for recording is \(m \times n \). Also, the pixel number required for recording per recording sheet is \(M_1 \times L \) (\(M_1 > L \)) as described earlier in the case of A-6 size (\(\text{flg_sheet} = 0 \) or \(\text{flg_sheet} = 2 \)) or it is \(M_2 \times L \) (\(L > M_2 \)) in the case of A-7 size (\(\text{flg_sheet} = 1 \) or \(\text{flg_sheet} = 3 \)).

[0044] In step S2, the process is executed to obtain the enlargement (reduction) factor \(h \) in the resizing process whereby to modify the size of an image. Here, the description will be made of a case where the size is modified so that no image is made larger than the recording sheet currently in use for any one of images irrespective
of its aspect ratio.

[0045] The enlargement (reduction) factor \(h \) in the resizing process is arranged to adopt the pixel numbers required for recording, as well as the smaller factor of the respective ratios of the sizes in the length and the breadth of the original image. In other words, it is assumed that when the \(\text{flg}_\text{sheet} = 0 \) or 2, \(h = (\text{the smaller one of M/1/m and L/n}) \), and when the \(\text{flg}_\text{sheet} = 1 \) or 3, \(h = (\text{the smaller one of M/2/n and L/m}) \). By the adoption of the smaller factor for the ratios in the length and breadth, it becomes possible to record an image without making it larger than the recording sheet irrespective of its aspect ratio.

[0046] Then, in step S3, the resizing process, and the image rotation process whereby to convert the length and breadth of the image are executed. The pixel position of the original image is indicated by the \((x, y)\), and the pixel position of the resized image is indicated by the \((X, Y)\). Also, the value of the position \((x, y)\) of the original image is defined as \(f(x, y) \), and the value of the position \((X, Y)\) of the resized image is defined as \(g(X, Y) \). Then, the resizing is executed using the following formula:

\[

g(X, Y) = \begin{cases} f(x, y) & \text{in the case of (flg_sheet = 0)} \\ f(m-x, y) & \text{in the case of (flg_sheet = 1)} \\ f(m-y, x) & \text{in the case of (flg_sheet = 2)} \\ f(x, y) & \text{in the case of (flg_sheet = 3)}
\end{cases}
\]

However, \(x = \lceil X/h \rceil \), \(y = \lceil Y/h \rceil \) (where \([a]\) is the largest integer which does not exceed \(a \)) or \(0 \leq X \leq \lceil hm \rceil \), \(0 \leq Y \leq \lceil hn \rceil \).

[0047] With the execution of the above processes, it becomes possible to perform an appropriate recording without any special operation made by the user even when combination is improper between the size of an image to be recorded and that of the recording sheet set for the recording apparatus, and the size of the ink sheet to be used.

[0048] Also, as shown in Figs. 5A and 5B, it becomes possible to automatically record the same image in a specific form in multiple frames if the length of a recording sheet, such as a seal sheet having half perforations as shown in Fig. 5A, is modified from the A-7 size as shown in Fig. 5A so that such recording sheet is arranged to be a (specific) size which is dedicated for the intended use, and then, such dedicated size is arranged to be detectable by use of the detection means 16 or the leading end detection sensor 14.

[0049] As described above, in accordance with the present example, it is possible to operate recording corresponding to the respective sizes of recording sheet and ink sheet without the user's special operation to modify the size of an image and execution of the image rotation process thereof. It is also possible to automatically suspend the operation if the recording is not executable due to the improper size of the recording sheet mounted on the recording apparatus. Therefore, there is no possibility that recording sheets and ink sheets are consumed wastefully, and that the interior of the apparatus is stained by ink. Further, by use of a recording sheet of a specific size, it becomes possible to record automatically in a specific form on a recording sheet, such as a plurality of the image which is smaller than the size of the recording sheet.

[0050] As described above, it is possible to record corresponding to the sizes of a recording sheet and ink sheet without any complicated operation to be executed by the user. Also, in a case where the intended recording is impossible due to the erroneous setting of the sizes of a recording sheet and ink sheet, a warning is issued before initiating such recording operation or the recording sheet is exhausted without recording. As a result, an appropriate recording is possible at all the time, and there is no possibility that an improperly smaller image is recorded on a recording sheet or an image is recorded in a form larger than the recording sheet currently in use so that it exceeds the recordable area of the recording sheet to stain the interior of the recording apparatus.

EMBODIMENTS OF THE INVENTION

[0051] Fig. 7 is a cross-sectional view which shows the structure of a recording apparatus which is applicable to the present embodiment. The same reference numerals are applied to the same constituents shown in Fig. 1. Now, at first, the entire structure of the recording apparatus will be described. Each one of the recording sheets P is carried separately from the sheet cassette 2 having the recording sheets P stored in it to the apparatus main body 1 by means of the sheet feed roller 3. At the same time, the recording sheet is pinched by a pair of the carrier rollers 4 to make its reciprocation possible to and from the recording unit. In the recording unit, the platen roller 5 and the thermal head 6 which gives heat in accordance with recording information are arranged to face each other with the carrier path of the recording sheet between them. Then, each of the ink sheets 8 having thermal fusion or thermal sublimation ink coated on them, which are stored in the ink sheet cassette 7, is pressed to the recording sheet P by means of the thermal head 6. At the same time, the heat generating devices of the thermal head 6 are selectively heated to transfer and record the required images on the recording sheet P. The ink sheet 8 which has been described earlier is such that each ink portion of yellow (Y), magenta (M), and cyan (C) is coated sequentially almost in the same size as the recording sheet P. After each one color of them is transferred, the recording sheet P is returned to the position P1 where the recording is initiated. Thus, recording is made one after another by the ink portion corresponding to each color. In this manner, the recording sheet P reciprocates by means of the pair of the carrier rollers 4 in the same numbers as those of colors. Lastly, the recording sheet is guided to a pair of the exhaust rollers 9 to be exhausted outside of the housing, hence completing the current recording.

The recording sheets P stored in the cassette 2 vary such
as the A-6 size (postcard size) as shown in Fig. 8A, the A-7 size which is approximately a half thereof as shown in Fig. 8B, and the panorama size (not shown) whose length is two times the length of the one shown in Fig. 8A.

[0052] It is necessary to change the size of the ink sheet 8 in the longitudinal direction of each ink portion thereof so as to make it agreeable with the size of the recording sheet P. In other words, the recording sheet and the ink cassette where ink sheets are stored should be used in a pair fundamentally. To this end, the recording apparatus shown in Fig. 7 is provided with the sensor 10 to discriminate the kinds of the ink sheet cassettes 7. For the recording sheets, it is more reliable fundamentally if the sheet cassettes are arranged each per sheet size, thus making the discrimination easier. However, with costs in view, it is generally practiced to arrange the guide plate 11 which is movable along the guide groove and set by the user in accordance with the kind of the recording sheet to be used for the current operation. In Fig. 7, there is no representation of the detection sensor for the size of each recording sheet. For example, however, it is possible to detect the size of the recording sheet by detecting the presence or absence of the edge portion of the guide plate 11 which is movable along the guide groove (not shown). In this case, if the user forgets setting the guide plate 11 when he sets the recording sheets of A-7 size, which is a half the size of the standard sheet, a problem is encountered, provided that the ink sheet cassette for the A-6 standard size has been set. Here, when the recording sheet P1 is carried provisionally to the position P1 for initiating the current recording, the length of the recording sheet P in use can be measured by measuring the time or the like required for the recording sheet P to pass the leading end detection sensor 14. Therefore, it is possible to discriminate the difference of the size of the ink sheet cassette before recording is initiated and exhaust the recording sheet, thus avoiding the erroneous recording.

[0053] Fig. 9 and Figs. 10A to 10C are views which illustrate the structure related to the operation unit. Fig. 9 shows the arrangement of operational keys. Fig. 10 shows the editing screen. When recording the inputted target image, a print key 91 of the operational keys shown in Fig. 9 is depressed to execute it. If an edit is necessary, a menu key 92 in Fig. 9 is depressed to call the menu screen as shown in Fig. 10A. Then, selection is made by means of four arrow keys 93 shown in Fig. 9 as needed, and determined by depressing the execution key 94. Of the contents of the menu shown in Fig. 10A, the numeral 1 designates the setting of the "printed numbers of sheets", and the [1] is the default setting which indicates one sheet. With the selection of the [N] by use of the key "->" of the arrow keys 93, the numeral can advance beginning with 2. Then, when the desired number appears, the execution key 94 is depressed to determine the printed numbers of sheet for execution. The numeral 2 indicated on the menu shown in Fig. 10A designates the selection of the "multiple screen", which makes it possible to select 2 screens, 4 screens, 9 screens, or the like for the number of images to be recorded from one recording sheet. If the seal sheet, such as shown in Fig. 8A, which is divided by perforations, 16 screens can be selected to make each image usable as a seal. The numeral 3 designates the "image to be inlaid" which is prepared for use of superimposition in advance. With the selection of [yes], it is possible to select one inlayer image from among several kinds of images for synthesizing use (not shown) which are prepared for the production of seal sheets. The numeral 4 designates the selection of "panoramic image", which makes it possible to record on the panorama sheet by synthesizing a plurality of sheets having on them the images which have been continuously photographed (not shown), the numeral 5 designates the "title phrase" such as "A Merry Christmas" "A Happy New Year" or some other specific expression which is prepared in advance for use of superimposition for the standard postcard size. The numeral 6 designates the "image quality adjustment". If this designation is selected with "yes" mark, it becomes possible to adjust the contrast, darkness of colors, or the like. These have been one example. It may be possible to provide many other selections, such as frames for use of superimposition, patterns of famous sites and landscapes, special effects or the like.

[0054] As shown in Fig. 11, the control system that deals with the above operations comprises an ink cassette detection sensor 51; a recording sheet size detection sensor 52; a key entry circuit 53; a control unit 54 of the recording apparatus, while the ink cassette for A-6 seal sheet use is set as the ink cassette 7, the detection of A-6 size is made by use of the recording sheet size sensor 52, and also, the detection of the ink cassette for use of A-6 seal sheet is made by use of the ink cassette detection sensor 52. Consequently, then, the menu is indicated on the display as shown in Fig. 10B. On the menu shown in Fig. 10B, only the framed items are effective, and, for example, only such portion is indicated by solid line or by the reversed characters, while the other portions are indicated by broken line or the like to make its selections impossible. Here, the multiple screen selection is restricted to the 16 screens so that the number 16 is automatically set if this is selected. Also, the next item, that is, the image for inlaying use, may be used for recording as it is without being superimposed in some cases, but it is mostly used for the superimposition. Therefore, the screen which is used in this respect is assumed to be the one immediately before the execution button is depressed. Also, it is arranged to display the information that indicates the seal sheet at A in Fig. 10B in accordance with the discriminating signals from the ink cassette detection sensor 51 which may
sense the respective ink ribbon marks for determination as shown in Fig. 11.

[0056] Also, if, for example, the ordinary sheet of A-6 size is set in the recording apparatus, while the ink cassette for use of ordinary sheet of A-6 size as the ink cassette 7, the A-6 size is detected by use of the recording sheet size sensor 52, and the ink cassette for use of the ordinary sheet which corresponds to the A-6 size is detected by use of the ink cassette detection sensor 51. Consequently, then, the printed numbers of sheet, the multiple screen, the title phrase, and the image quality adjustment are indicated on the menu. Thus, whereas the "title phrase" is made selective, it becomes impossible to select the "image to be inlaid"; and then, the information of the "full size" is indicated at A in Fig. 10B.

[0057] Fig. 10C shows the edit screen when the half size recording sheet, which is illustrated in Fig. 8B, is set, and also, the ink cassette for the half size use is set. In this case, since the recording sheet is small, it automatically becomes impossible to select the multiple screen, the title phrase, or the like. Only the limited items are indicated, and the information that indicates the "half size" appears at A in Fig. 10C.

[0058] For the above embodiment, it is assumed that the seal sheet is mainly used as the A-6 size sheet, and the seal sheet cannot be sensed directly. Therefore, there is a drawback that the edit screen for use of sheet is not displayed even when the seal sheet is set if the ink cassette is for the use of the ordinary sheet.

[0059] To cope with this drawback, therefore, it is arranged to make the size of the seal sheet of A-6 size slightly longer in its length for the formation of a specially-sized sheet, hence making it possible for the recording sheet size detection sensor to sense such seal sheet directly. In this way, the seal sheet is detected by the recording sheet size detection sensor, and it is arranged to illuminate the item indications on the seal sheet edit screen if the seal sheet is detected by use of the ink cassette detection sensor. It may also be arranged to blink the item indications on the seal sheet edit screen to issue warning if the seal sheet is set but not the ink cassette for use of the seal sheet and vice versa. For the combination which causes this blinking, a fairly good image is still obtainable, although it is impossible to obtain the optimal one. Therefore, it may be possible to ignore such warning.

[0060] Also, for a simplified system, it may be possible to determine the item indications on the edit screen depending only on the detection output of the recording sheet size detection sensor. In this case, when the A-6 size is detected, such menu that contains the printed numbers of sheet, the multiple screen, the title phrase, the image quality adjustment is indicated on the display. When a special A-6 size is detected, the aforesaid menu for use of the seal sheet is indicated on it. When the panorama size is detected, such menu that contains the printed numbers of sheet, the panorama, the title phrase, and the image quality adjustment is indicated on it. When the A-7 size is detected, the menu which is represented in Fig. 10C is indicated on it, that is, the printed numbers of sheet, and the image quality adjustment.

[0061] In this way, as regards the images inputted into the recording apparatus, it is made possible to select the size of the recording sheet installed on the recording apparatus or only the items that can be edited to obtain the image mode adjust to the kind of the ink cassette without manually inputting the size of the sheet on which to record the images. Hence, it becomes easier to record the images adjusted to match the size and kind of a recording sheet. In this respect, it is of course possible for the present invention to arrange the variations of its embodiment in accordance with various sizes of the recording sheet and the particularity of the sheet to be used.

[0062] Also, the recording sheet and the ink cassette are used correspondingly in a proper combination. It is, therefore, desirable to detect both the kind of the recording sheet and the size of the ink cassette in order to prevent them from being used in a wrong combination. It is of course possible to execute the operation in accordance with the result of the detection of either one of them. Since it costs more to provide detection means for both of them, the manufacture costs of the apparatus can be suppressed by the implementation of the present invention with only one of the detection means.

Claims

1. A recording apparatus for recording by driving a recording head (6) to transfer ink from an ink sheet (8) carrying sequential colours to a recording medium (P) in accordance with image data, the apparatus being capable of recording on a plurality of different sizes of recording media and being capable of using plural ink sheets corresponding to the different sizes of recording media, the apparatus comprising:

recording medium carrying means (2) for carrying the recording medium;
ink sheet carrying means (7) for carrying the ink sheet;
determination means (51, 52, 54) for determining at least one of the size of the recording medium (P) to be used for recording and the size of the recording medium corresponding to the ink sheet (8) to be used for recording; characterised by
output means (56) for outputting to a display (57) information for indicating to user the recording option items available for a recording operation; and
control means (54, 55) for controlling the recording option item information output by the output means (56) in accordance with the result of the determination by the determination means (51, 52, 54) to control the output means (56) to
cause the display to indicate as available recording option items the recording option items that correspond to the at least one of the size of the recording medium and the size of the recording medium corresponding to the ink sheet determined by the determination means (51, 52, 54).

2. A recording apparatus according to claim 1, wherein the output means (56) is operable to output the contents to be indicated on an indication means of the equipment externally connected with the recording apparatus, and the output means (56) is operable to output information to display an editing screen regarding the contents of the operation, on the indication means.

3. A recording apparatus according to claim 1 or 2, further comprising: means for detecting the length of the recording medium in the carrying direction of the carrying means, wherein the determination means (51, 52, 54) is operable to determine the size of the recording medium in accordance with the detected length of the recording medium.

4. A recording apparatus according to claim 1 or 2, wherein the recording medium carrying means (2) comprises a sheet feed unit for containing the recording medium, the sheet feed unit being provided with a movable member (11) movable by a user to a position corresponding to the size of the recording medium (P) to be contained and wherein the determination means (51, 52, 54) is operable to determine the size of the recording medium (P) in accordance with the position of the movable member.

5. A recording apparatus according to claim 4, wherein the recording sheet feed unit (2) is in the form of a cassette detachably mountable on the recording apparatus.

6. A recording apparatus according to any preceding claim, wherein each area of the region having ink of each color coated thereon of the plural ink sheets is different in accordance with the size of the recording medium corresponding thereto.

7. A recording apparatus according to any preceding claim, wherein the ink sheet carrying means is in the form of an ink sheet cassette containing ink sheets (8) and is arranged to be detachably mountable on the recording apparatus, and the determination means (51, 52, 54) is operable to determine the size of the ink sheet in accordance with the condition of the ink sheet cassette.

8. A recording apparatus according to any preceding claim, further comprising: image data processing means for processing image data to execute an editing process on the image data, the image data processing means being operable to arrange a plurality of images processed by an image size reduction process, the control means (54, 55) being operable to control the output of the output means (56) to indicate the contents for executing the recording operation by arranging a plurality of the same image on the recording medium using the image data processing means when the size of the determined recording medium (P) or the recording medium corresponding to the determined ink sheet (8) is a specific size.

9. A recording apparatus according to any preceding claim, further comprising the ink sheet and wherein the ink coated on the ink sheet has the property of subliming when thermal energy is applied.

10. A recording apparatus to any of claims 1 to 8, further comprising the ink sheet and wherein the ink coated on the ink sheet has the property of fusing when thermal energy is applied.

11. A recording apparatus according to any preceding claim, wherein the option items include a plurality of items corresponding to respective different editing processes, and the control means (54, 55) is operable to cause one or more of the plurality of editing items to be selectable so that only an editing operation or operations suitable for the determined size of the recording medium and the type of the ink sheet carrying means (7) can be permitted, and to make the indication for selectable items different from the indication for not selectable items.

12. A method of recording using a recording apparatus which is capable of recording on a plurality of different sizes of recording medium and of using plural ink sheets corresponding to the different sizes of recording medium and is provided with recording medium carrying means (2) carrying recording medium (P), ink sheet carrying means carrying ink sheet (8) having ink of plural colors coated sequentially thereon, and a recording head (6) for transferring ink from the ink sheet to the recording medium in accordance with image data, the recording method comprising the steps of:

- determining at least either one of the size of the recording medium (P) to be used for recording and the size of the recording medium corresponding to the ink sheet (8) to be used for recording; and characterised by the steps of outputting to a display (57) information for indicating to user the recording option items available for a recording operation; and controlling the output recording option item
information in accordance with the determined recording medium size to cause the display to indicate as available recording option items the recording option items that correspond to the at least determined one of the size of the recording medium and the size of the recording medium corresponding to the ink sheet.

13. A recording method according to claim 12, wherein the controlling step outputs the contents to be displayed on an indication unit of equipment externally connected with the recording apparatus, and outputs information to display an editing screen for the contents of the operation, on the indication unit.

14. A recording method according to claim 12 or 13, further comprising the steps of:

- detecting the length of the recording medium in the carrying direction of the recording medium carrying means and determining the size of the recording medium (P) in accordance with the detected recording medium length.

15. A recording method according to claim 12 or 13, wherein the determination step determines the size of the recording medium in accordance with the position of a movable member (11) of a sheet feed unit of the medium carrying means (2), the movable member being movable by a user to a position corresponding to the size of the recording medium contained in the sheet feed unit.

16. A recording method according to any of claims 12 to 15, wherein the recording sheet feed unit (2) is in the form of a cassette detachably mountable on the recording apparatus.

17. A recording method according to any of claims 12 to 16, wherein the ink sheet carrying means is in the form of an ink sheet cassette containing the ink sheet and detachably mountable on the recording apparatus, and wherein the determination step determines the size of the ink sheet in accordance with the condition of the ink sheet cassette (8).

18. A recording method according to any of claims 12 to 17, further comprising the step of:

- processing image data to execute an editing process of the image data prior to the recording operation, the step of processing image data arranging a plurality of images processed by an image size reduction process, and wherein the controlling step controls the output to display the contents of the execution of the recording operation by arranging a plurality of the same image on the recording medium in the processing step when the size of the detected recording medium is a specific size.

19. A recording method according to claim 18, wherein the processing step can execute enlargement and reduction processes to change the size of image to be recorded in accordance with the image data, and the image rotation process to change the orientation of the image.

20. A recording method according to any of claims 12 to 19, wherein the ink coated on the ink sheet has the property of sublimating when thermal energy is applied.

21. A recording method according to any of claims 12 to 19, wherein the ink coated on the ink sheet has the property of fusing when thermal energy is applied.

22. A recording method according to any of claims 12 to 21, wherein the option items include a plurality of items corresponding to respective different editing processes, and the controlling step causes one or more of the plurality of edit items to be selectable so that only an editing operation or operations of edition suitable for the determined size of the recording medium and the type of ink sheet carrying means can be permitted, and makes the indication for selectable items different from the indication for not selectable items.

23. A storage medium storing program instructions for programming processor means to carry out a method in accordance with any of claims 12 to 22.

Patentansprüche

1. Aufzeichnungsvorrichtung zur Aufzeichnung durch Ansteuern eines Aufzeichnungskopfes (6) zum Übertragen von Tinte von einem sequenziellen Farbentintenblatt (8) auf ein Aufzeichnungsmedium (P) gemäß Bilddaten, wobei die Vorrichtung zum Aufzeichnen auf einer Vielzahl verschiedener Größen von Aufzeichnungsmedien in der Lage ist und zum Verwenden einer Vielzahl verschiedener Größen von Aufzeichnungsmedien in der Lage ist, wobei die Vorrichtung umfasst:

- eine Aufzeichnungsmediumtransporteinrichtung (2) zum Transportieren des Aufzeichnungsmediums,
- eine Tintenblatttransporteinrichtung (7) zum Transportieren des Tintenblatts,
- eine Bestimmungseinrichtung (51, 52, 54) zur Bestimmung der Größe des zum Aufzeichnen
zu verwendenden Aufzeichnungsmediums (P) und/oder der Größe des Aufzeichnungsmediums, das dem zum Aufzeichnen zu verwendenden Tintenblatt (8) entspricht, gekennzeichnet durch eine Ausgabeeinrichtung (56) zur Ausgabe von Informationen zu einer Anzeige (57), um für einen Benutzer die für einen Aufzeichnungsbetrieb zur Verfügung stehenden Aufzeichnungsoptionsmerkmale anzuzeigen, und eine Steuereinrichtung (54, 55) zur Steuerung der durch die Ausgabeeinrichtung (56) ausgegebenen Aufzeichnungsoptionsmerkmalsinformationen gemäß dem Ergebnis der Bestimmung durch die Bestimmungseinrichtung (51, 52, 54) zum Steuern der Ausgabeeinrichtung (56), um die Anzeige zu denjenigen Aufzeichnungsoptionsmerkmale, die der der Größe des Aufzeichnungsmediums und/oder der Größe des Aufzeichnungsmediums, das dem durch die Bestimmungseinrichtung (51, 52, 54) bestimmten Tintenblatt entspricht, entsprechen, als zur Verfügung stehende Aufzeichnungsoptionsmerkmale zu veranlassen.

2. Aufzeichnungsvorrichtung gemäß Anspruch 1, wobei die Ausgabeeinrichtung (56) zur Ausgabe der Inhalte, die auf einer extern mit der Aufzeichnungseinrichtung verbundenen Anzeigeeinrichtung der Anlage anzuzeigen sind, betreibbar ist, und die Ausgabeeinrichtung (56) zur Ausgabe von Informationen zum Anzeigen eines Editierschirms hinsichtlich der Inhalte des Betriebs auf der Anzeigeeinrichtung betreibbar ist.

3. Aufzeichnungsvorrichtung gemäß Anspruch 1 oder 2, ferner mit: einer Einrichtung zur Erfassung der Länge des Aufzeichnungsmediums in der Transportrichtung der Transporteinrichtung, wobei die Bestimmungseinrichtung (51, 52, 54) zur Bestimmung der Größe des Aufzeichnungsmediums gemäß der erfassten Länge des Aufzeichnungsmediums betreibbar ist.

4. Aufzeichnungsvorrichtung gemäß Anspruch 1 oder 2, wobei die Aufzeichnungsmediumtransporteinrichtung (2) eine Blattzuführseinrichtung zur Beibehaltung des Aufzeichnungsmediums umfasst, wobei die Blattzuführseinrichtung mit einem beweglichen Element (11) versehen ist, das durch einen Benutzer zu einer der Größe des zu beibehaltenden Aufzeichnungsmediums (P) entsprechenden Position bewegbar ist, und wobei die Bestimmungseinrichtung (51, 52, 54) zur Bestimmung der Größe des Aufzeichnungsmediums (P) gemäß der Position des beweglichen Elements betreibbar ist.

5. Aufzeichnungsvorrichtung gemäß Anspruch 4, wobei die Aufzeichnungsblattzuführseinrichtung (2) in der Form einer an der Aufzeichnungsvorrichtung entfernbar anbringbaren Kassette vorliegt.

7. Aufzeichnungsvorrichtung gemäß einem der vorstehenden Ansprüche, wobei die Tintenblatttransporteinrichtung in der Form einer Tintenblätterkassette enthaltenden Tintenblattkassette vorliegt und dazu eingereicht ist, an der Aufzeichnungsvorrichtung entfernbar anbringbar zu sein, und die Bestimmungseinrichtung (51, 52, 54) zur Bestimmung der Größe des Tintenblatts gemäß dem Zustand der Tintenblattkassette betreibbar ist.

8. Aufzeichnungsvorrichtung gemäß einem der vorstehenden Ansprüche ferner mit: einer Bildblatttransporteinrichtung zur Verarbeitung von Bilddaten, um einen Editiervorgang bei den Bilddaten auszuführen, wobei die Bilddatenverarbeitungseinrichtung zum Anordnen einer Vielzahl durch einen Bildgrößenverkleinerungsvorgang verarbeiteter Bilder betreibbar ist, wobei die Steuereinrichtung (54, 55) zur Steuerung der Ausgabe der Ausgabeeinrichtung (56) zum Anzeigen der Inhalte, um den Aufzeichnungsbetrieb durch Anordnen einer Vielzahl desselben Bildes auf dem Aufzeichnungsmedium unter Verwendung der Bilddatenverarbeitungseinrichtung auszuführen, wenn die Größe des bestimmten Aufzeichnungsmediums (P) oder die des bestimmten Tintenblatts (8) entsprechenden Aufzeichnungsmediums eine spezifische Größe ist, betreibbar ist.

9. Aufzeichnungsvorrichtung gemäß einem der vorstehenden Ansprüche, die ferner das Tintenblatt umfasst, und wobei die auf dem Tintenblatt aufgebrachte Tinte die Eigenschaft des Sublimierens aufweist, wenn thermische Energie eingebracht wird.

10. Aufzeichnungsvorrichtung gemäß einem der Ansprüche 1 bis 8, die ferner das Tintenblatt umfasst, und wobei die auf dem Tintenblatt aufgebrachte Tinte die Eigenschaft des Schmelzens aufweist, wenn thermische Energie eingebracht wird.

11. Aufzeichnungsvorrichtung gemäß einem der vorstehenden Ansprüche, wobei die Optionsmerkmale einer Vielzahl jeweils unterschiedlichen Editiervorgängen entsprechender Merkmale enthalten, und die Steuereinrichtung (54, 55) dazu betreibbar ist, einen oder mehrere der Vielzahl von Editiermerkmalen derart zum Anwählbarsein zu veranlassen, dass le-
diglich ein Editivorgang oder Vorgänge zugelas-

12. Verfahren zum Aufzeichnen unter Verwendung ei-
ner Aufzeichnungsvorrichtung, die zum Aufzeichnen
auf einer Vielzahl verschiedener Größen eines Auf-
zeichnungsmediums und zum Verwenden einer
Vielzahl den verschiedenen Größen eines Aufzeich-
nungsmediums entsprechender Tintenblätter in der
Lage ist und mit einer das Aufzeichnungsmedium
(P) transportierenden Aufzeichnungsmediumtrans-
porteinrichtung (2), einer Tintenblattportein-
richtung, die das Tintenblatt (8) transportiert, das die
darauf sequenziell aufgebrachte Tinte einer Vielzahl
von Farben aufweist, und einem Aufzeichnungskopf
(6) zum Übertragen von Tinte von dem Tintenblatt
auf das Aufzeichnungsmedium gemäß Bilddaten
versehen ist, wobei das Aufzeichnungsverfahren die
Schritte umfasst:

Bestimmen der Größe des zum Aufzeichnen zu
verwendenden Aufzeichnungsmediums (P)
und/oder der Größe des dem zum Aufzeichnen
towards verwendenden Tintenblatt (8) entsprechen-
den Aufzeichnungsmediums, und
gekenn-
zeichnet ist durch die Schritte
Ausgeben von Informationen zu einer Anzeige
(57), um für einen Benutzer die für einen Auf-
zeichnungsbetrieb zur Verfügung stehenden Aufzeichnungsmerkmale anzuzeigen, und
Steuern der ausgegebenen Aufzeichnungsopti-
onsmerkmalinformationen gemäß der be-
stimmten Mediumsgröße, um die Anzeige zum
Anzeigen derjenigen Aufzeichnungsmerkmale,

die der bestimmten Größe des
Aufzeichnungsmediums und/oder der Größe
des dem Tintenblatt entsprechenden Aufzeich-
nungsmediums entsprechen, als zur Verfügung
stehende Aufzeichnungsmerkmale zu
veranlassen.

13. Aufzeichnungsverfahren gemäß Anspruch 12, wo-
bei der Steuerschritt die Inhalte ausgibt, die auf einer
extern mit der Aufzeichnungseinrichtung einer An-
lage verbundenen Anzeigeinheit anzuzeigen sind, und
Informationen zum Anzeigen eines Editierschirms für der Inhalte des Betriebs auf der Anzei-

14. Aufzeichnungsverfahren gemäß Anspruch 12 oder
13, das ferner die Schritte umfasst:

Erfassen der Länge des Aufzeichnungsmedi-
ums in der Transportrichtung der Aufzeich-
nungsmediumtransporteinrichtung und Bestim-
men der Größe des Aufzeichnungsmediums (P)
gemäß der erfassten Aufzeichnungsmedium-
länge.

15. Aufzeichnungsverfahren gemäß Anspruch 12 oder
13, wobei der Bestimmungsschritt die Größe des
Aufzeichnungsmediums gemäß der Position eines
beweglichen Elements (11) einer Blattzuführung
Der Mediumstransporteinrichtung (2) bestimmt, wo-
bei das bewegliche Element durch einen Benutzer
to einer Position bewegbar ist, die der Größe des in

der Blattzuführung enthaltenen Aufzeichnungs-
mediums entspricht.

16. Aufzeichnungsverfahren gemäß einem der Ansprü-
che 12 bis 15, wobei die Aufzeichnungsschritte (2) in der Form einer an der Aufzeich-

17. Aufzeichnungsverfahren gemäß einem der Ansprü-
che 12 bis 16, wobei die Tintenblatttransporteinrich-
tung in der Form einer das Tintenblatt enthaltenden
Tintenblattkassette vorliegt und wobei der Bestim-
mungsschritt die Größe des Tintenblattkassettes gemäß dem
Zustand der Tintenblattkassette (8) bestimmt.

18. Aufzeichnungsverfahren gemäß einem der Ansprü-
che 12 bis 16 ferner mit dem Schritt:

Verarbeiten von Bilddaten, um einen Editivorgang
bei den Bilddaten vor dem Aufzeichnungs-
betrieb auszuführen, wobei der Schritt des Ver-
arbeitens eine Vielzahl durch einen Bildgrößen-
verkleinerungsvorgang verarbeiteter Bilder an-
ordnet,

wobei der Steuerschritt die Ausgabe zum Anzeigen

19. Aufzeichnungsverfahren gemäß Anspruch 18, wo-
bei der Verarbeitungsschritt Vergrößerungs- und
Verkleinerungsvorgänge zum Ändern der Größe des
aufzuzeichnenden Bildes gemäß den Bilddaten und
den Bildänderungsvorgänge zum Ändern der Orientie-
rung des Bildes ausführen kann.

20. Aufzeichnungsverfahren gemäß einem der Ansprü-
che 12 bis 19, wobei die auf dem Tintenblatt aufge-

brachte Tinte die Eigenschaft des Sublimierens auf-
1. Appareil d’enregistrement destiné à enregistrer en attaquant une tête d’enregistrement (6) afin de transférer une encre d’une feuille encreuse (8) portant des couleurs successives à un support d’enregistrement (P) conformément à des données d’image, l’appareil étant capable d’enregistrer sur plusieurs formats différents de supports d’enregistrement et étant capable d’utiliser plusieurs feuilles encreuses correspondant aux différents formats de support d’enregistrement, l’appareil comportant :

- un moyen (2) de transport de support d’enregistrement destiné à transporter le support d’enregistrement ;
- un moyen (7) de transport de feuille encreuse destiné à transporter la feuille encreuse ;
- un moyen (51, 52, 54) de détermination destiné à déterminer au moins l’un du format du support d’enregistrement (P) devant être utilisé pour l’enregistrement et du format du support d’enregistrement correspondant à la feuille encreuse (8) devant être utilisée pour l’enregistrement ;

 caractérisé par

un moyen de sortie (56) destiné à délivrer en sortie à un afficheur (57) une information pour indiquer à l’utilisateur les options d’enregistrement disponibles pour une opération d’enregistrement ; et

un moyen de commande (54, 55) destiné à comman-
des revendications précédentes, dans lequel le moyen de transport de feuille encreuse se présente sous la forme d'une cassette pour feuilles encreuses contenant des feuilles encreuses (8) et est agencé de façon à pouvoir être monté de manière amovible sur le support d'enregistrement, et le moyen de détermination (51, 52, 54) peut être mis en oeuvre pour déterminer le format de la feuille encreuse en fonction de l’état de la cassette pour feuilles encreuses.

8. Appareil d’enregistrement selon l’une quelconque des revendications précédentes, comportant en outre : un moyen de traitement de données d’image destiné à traiter des données d’image pour exécuter un processus d’édition sur les données d’image, le moyen de traitement de données d’image pouvant être mis en oeuvre pour agencer plusieurs images traitées par un processus de réduction de format d’image, le moyen de commande (54, 55) pouvant être mise en oeuvre pour commander la sortie du moyen de sortie (56) afin d’indiquer le contenu pour exécuter l’opération d’enregistrement en agençant plusieurs fois la même image sur le support d’enregistrement en utilisant le moyen de traitement de données d’image lorsque le format du support d’enregistrement déterminé (P) ou du support d’enregistrement correspondant à la feuille encreuse déterminée (8) est un format spécifique.

10. Appareil d’enregistrement selon l’une quelconque des revendications 1 à 8, comportant en outre la feuille encreuse et dans lequel l’encre revêtant la feuille encreuse a pour propriété d’être sublimée lorsque de l’énergie électrique est appliquée.

11. Appareil d’enregistrement selon l’une quelconque des revendications précédentes, dans lequel les options comprennent une pluralité de points correspondants à différents processus respectifs d’édition, et le moyen de commande (54, 55) peut être mis en oeuvre afin d’amener un ou plusieurs de la pluralité de points d’édition à pouvoir être sélectionnés en sorte que seule une opération d’édition ou des opérations d’édition conduisant au format déterminé du support d’enregistrement et au type du moyen (7) de transport de feuille encreuse soient autorisées, et pour rendre l’indication pour des points pouvant être sélectionnés différente de l’indication pour des points ne pouvant pas être sélectionnés.

12. Procédé d’enregistrement utilisant un appareil d’enregistrement qui est capable d’enregistrer sur plusieurs formats différents de support d’enregistrement et d’utiliser plusieurs feuilles encreuses correspondant aux différents formats de support d’enregistrement et est pourvu d’un moyen (2) de transport du support d’enregistrement transportant un support d’enregistrement conformément à la feuille encreuse (8) portant en revêtement une encre de plusieurs couleurs successives, et d’une tête d’enregistrement (6) destinée à transférer de l’encre de la feuille encreuse au support d’enregistrement conformément à des données d’image, le procédé d’enregistrement comprenant les étapes qui consistent :

à déterminer au moins l’un du format du support d’enregistrement (P) devant être utilisé pour un enregistrement et du format du support d’enregistrement correspondant à la feuille encreuse (8) devant être utilisée pour l’enregistrement ; et caractérisé par les étapes qui consistent à délivrer en sortie à un afficheur (57) une information pour indiquer à un utilisateur les options d’enregistrement disponibles pour une opération d’enregistrement ; et à commander la sortie de l’information d’options d’enregistrement conformément au format déterminé du support d’enregistrement afin d’amener l’afficheur à indiquer en tant qu’options d’enregistrement disponibles les options d’enregistrement qui correspondent au, au moins un, déterminé du format du support d’enregistrement et du format du support d’enregistrement correspondant à la feuille encreuse.

14. Procédé d’enregistrement selon la revendication 12 ou 13, comprenant en outre les étapes qui consistent :

à détecter la longueur du support d’enregistrement dans la direction de transport du moyen de transport du support d’enregistrement et à déterminer le format du support d’enregistrement (P) conformément à la longueur détectée du support d’enregistrement.

15. Procédé d’enregistrement selon la revendication 12 ou 13, dans lequel l’étape de détermination détermine le format du support d’enregistrement en fonction de la position d’un élément mobile (11) d’une unité d’alimentation en feuilles du moyen (2) de transport.
de support, l’élément mobile pouvant être amené par un utilisateur dans une position correspondant au format du support d’enregistrement contenu dans l’unité d’alimentation en feuilles.

16. Procédé d’enregistrement selon l’une quelconque des revendications 12 à 15, dans lequel l’unité (2) d’alimentation en feuilles d’enregistrement se présente sous la forme d’une cassette pouvant être montée de façon amovible sur l’appareil d’enregistrement.

17. Procédé d’enregistrement selon l’une quelconque des revendications 12 à 16, dans lequel le moyen de transport de feuille encreuse se présente sous la forme d’une cassette à feuilles encreuses contenant la feuille encreuse et pouvant être montée de façon amovible sur le support d’enregistrement, et dans lequel l’étape de détermination détermine le format de la feuille encreuse conformément à l’état de la cassette (8) de feuilles encreuses.

18. Procédé d’enregistrement selon l’une quelconque des revendications 12 à 17, comprenant en outre l’étape qui consiste :

à traiter des données d’image pour exécuter un processus d’édition des données d’image avant l’opération d’enregistrement, l’étape de traitement de données d’image agençant plusieurs images traitées par un processus de réduction de format d’image, et

dans lequel l’étape de commande commande la sortie pour afficher le contenu de l’exécution de l’opération d’enregistrement en agençant plusieurs fois la même image sur le support d’enregistrement dans l’étape de traitement lorsque le format du support d’enregistrement détecté est un format spécifique.

19. Procédé d’enregistrement selon la revendication 18, dans lequel l’étape de traitement peut exécuter des processus d’agrandissement et de réduction pour modifier le format d’une image devant être enregistrée conformément aux données d’image, et le processus de rotation d’image pour modifier l’orientation de l’image.

22. Procédé d’enregistrement selon l’une quelconque des revendications 12 à 21, dans lequel les options comprennent plusieurs points correspondant à des processus d’édition différents respectifs, et l’étape de commande amène un ou plusieurs des multiples points d’édition à pouvoir être sélectionnés afin que seule une opération d’édition ou des opérations d’édition convenant au format déterminé du support d’enregistrement et au type de moyen de transport de feuille encreuse soient permises, et rend l’indication pour des points pouvant être sélectionnés différente de l’indication pour des points ne pouvant pas être sélectionnés.

23. Support de stockage stockant des instructions de programme pour programmer un moyen à processeur afin qu’il exécute un procédé selon l’une quelconque des revendications 12 à 22.
FIG. 5A

FIG. 5B

FIG. 6

DISCRIMINATE RECORDING PAPER \(\sim S_1 \)

OBTAIN MAGNIFICATION FACTOR FOR RE-SIZING \(\sim S_2 \)

RESIZE AND CONVERT BETWEEN LENGTH AND WIDTH \(\sim S_3 \)
FIG. 10A

[**MENU**]

1. PRINTED NUMBER OF SHEETS: [1] N
2. MULTI-SCREEN: [1] N
3. IMAGE INSERTION: [NO] YES
4. PANORAMA: [NO] YES
5. TITLE: [NO] YES
6. ADJ OF IMAGE QUALITY: [NO] YES

FIG. 10B

[**MENU**]

- PRINTED NUMBER OF SHEETS: [1] N
- MULTI-SCREEN: 1 [16]
- IMAGE INSERTION: NO [YES]
- PANORAMA: [NO] YES
- TITLE: [NO] YES
- ADJ OF IMAGE QUALITY: [NO] YES

FIG. 10C

[**MENU**]

- PRINTED NUMBER OF SHEETS: [1] N
- MULTI-SCREEN: [1] N
- IMAGE INSERTION: [NO] YES
- PANORAMA: [NO] YES
- TITLE: [NO] YES
- ADJ OF IMAGE QUALITY: [NO] YES

A

SEAL

HALF SIZE

A