EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 25.04.2007 Bulletin 2007/17

Application number: 98303290.5

Date of filing: 28.04.1998

Stator winding method and system
Statorwickelverfahren und Statorwickelsystem
Procédé et système de bobinage de stator

Designated Contracting States:
BE CH DE ES FR GB IT LI NL SE

Priority: 14.11.1997 JP 31358697

Date of publication of application: 19.05.1999 Bulletin 1999/20

Proprietor: TAMAGAWA SEIKI KABUSHIKI KAISHA
Iida-shi,
Nagano-ken (JP)

Inventor: Ooshita, Hiromi
Iida-shi,
Nagano-ken (JP)

Representative: Kidd, Piers Burgess et al
Marks & Clerk,
90 Long Acre
London WC2E 9RA (GB)

References cited:
WO-A-95/15607

• BODEN: "Automatische Positionierung loser Wicklungsdrhtenden bewickelter Statoren"
ANTRIEBSTECHNIK, vol. 31, no. 9, 1992, pages 84-87, XP000291684 Mainz, Germany

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a stator winding method and a stator winding structure, and more specifically, to a novel improvement in the vibration resistance and impact resistance of windings and the prevention of the break thereof caused by a temperature change, the improvement being achieved by forming slack portions to the windings when they are wound around the teeth of a stator and connected to terminals.

[0002] In general, the structure shown in FIG. 1 is conventionally employed as this type of the stator winding method and the stator winding structure. That is, what is denoted by numeral 1 in FIG. 1 is a stator which is formed to a ring-shape as a whole and has a plurality of teeth 2 projecting inward and stator insulation covers 3 formed to a ring-shape are disposed to the stator 1 so as to cover the respective teeth 2. Windings 4 are wound around the respective teeth 2 through the outer peripheries of the stator insulation covers 3 by a specific winding method using a not shown winding machine and the ends 4a of the windings 4 are caused to automatically become entangled with and directly connected to the respective terminals 6 of the terminal plate 5 of the stator insulation covers 3.

[0003] Since the prior art stator winding method and stator winding structure are arranged as described above, they have the following problems.

[0004] Since the ends of the windings which are wound around the respective teeth are directly wound around the terminals, these ends are stretched between the teeth and the terminals under a tension without any slack. Thus, the ends have low reliability of impact resistance and vibration resistance and prevention of break thereof in use. Thus, the improvement of the reliability has been desired.

[0005] WO 95/15607 discloses a stator lead wire connection method in which a plurality of lead wires are arranged to extend from a stator core so as to pass through receptacle slots in a corresponding plurality of terminal receptacles. It is disclosed that in order to avoid a right-angled bend in the wire at the bottom of the respective terminal receptacle slot, each lead wire is coursed over one of a corresponding plurality of guide fingers so as to produce a gradually rounded bend in the lead wire.

[0006] An object of the present invention made to solve the above problems is to provide a stator winding method and a stator winding structure capable of improving the vibration resistance and impact resistance of windings and preventing the break thereof caused by a temperature change by forming slack portions to the windings when the windings wound around the teeth of a stator are connected to terminals.

[0007] According to a first aspect of the present invention, a stator winding method of winding windings around the respective teeth of a stator and connecting the ends of the windings to terminals attached to the terminal plate of the stator insulation covers provided with the stator, the method comprising the steps of positioning a longitudinal rod member between the teeth and the terminals; connecting the windings to the terminals in the state that the windings stride over the longitudinal rod member; and removing the longitudinal rod member to thereby form slack portions to the windings which are located between the teeth and the terminals. Further, according to a second aspect of the present invention, a stator winding system is provided as set out in Claim 2.

[0008] The invention will now be described, by way of example, with reference to the accompanying drawings, in which:

FIG. 1 is a view showing the arrangement of prior art stator windings;
FIG. 2 is a view showing a stator winding method and a stator winding structure according to the present invention; and
FIG. 3 is a view showing the state that winding is being performed in FIG. 1.

[0009] A preferred embodiment of a stator winding method and a stator winding structure according to the present invention will be described with reference to the drawings. Parts similar to those of the prior art are described using the same numerals.

[0010] As shown in FIG. 3, a stator 1 which is formed to a ring-shape and has a plurality of teeth 2 projecting inward and ring-shaped stator insulation covers 3 are disposed to the respective teeth 2 of the stator 1 to insulate the teeth 2 from windings 4. The windings 4 are wound around the respective teeth 2 through the outer peripheries of the stator insulation covers 3 by a known specific winding method using a not shown winding machine. Since a longitudinal rod member 10 provided with the winding machine is inserted and positioned between the teeth 2 and the terminals 6 above the teeth 2 before the ends 4a of the windings 4 are connected to the terminals 6 of a terminal plate 5 disposed to the stator 1 integrally with the stator insulation covers 3, the ends 4a are connected to the respective terminals 6 by being caused to become entangled therewith while coming into contact with the upper surface of the longitudinal rod member 10. On the completion of the connection of the ends 4a to the terminal pins 6, slack portions 4aA are formed to the ends 4a as shown in FIG. 2 when the longitudinal rod member 10 is removed in the direction of an arrow A. The longitudinal rod member 10 may be assembled to the winding machine or arranged as an independent system. In addition, the stator 1 may be applicable to various types of known rotating machines such as a resolver, motor, synchro and the like.

[0011] Since the stator winding method and the stator winding structure according to the present invention are arranged as described above, the slack portions can be formed to the ends of the windings wound around the teeth, whereby vibration resistance and impact resistance can be improved as well as the break of the windings.
caused by a temperature change can be prevented. Thus, the reliability of various rotating machines can be greatly improved.

Claims

1. A stator winding method of winding a plurality of windings (4) around a corresponding plurality of teeth (2) of a stator (1) and connecting an end of each of the plurality of windings to a respective one of a plurality of terminals (6) attached to a terminal plate (5) formed integrally with stator insulation covers (3) provided with the stator (1), comprising the steps of:

- positioning a longitudinal rod member (10) between the plurality of teeth (2) and the plurality of terminals (6);
- connecting each of the plurality of windings (4) to a said respective one of the plurality of terminals (6) so that the plurality of windings (6) stride over the longitudinal rod member (10); and
- removing the longitudinal rod member (10) to thereby form slack portions (4aA) in the plurality of windings (4) which are located between the plurality of teeth (2) and the plurality of terminals (6).

2. A stator winding system comprising a stator winding machine for winding a plurality of windings around a corresponding plurality of teeth (2) of a stator (1) and for connecting an end of each of the plurality of windings (4) to a respective one of a plurality of terminals (6) attached to a terminal plate (5) formed integrally with stator insulation covers (3) provided with the stator (1), the system further comprising a longitudinal rod member (10) arranged in use to be disposed between the plurality of teeth (2) and the plurality of terminals (6) so as to enable the stator winding machine to connect each of the plurality of windings (4) to a said respective one of the plurality of terminals (6) so that the plurality of windings (6) stride over the longitudinal rod member (10), wherein the system is operable such that the removal of the longitudinal rod member (10) from between the plurality of teeth (2) and the plurality of terminals (6) forms slack portions (4aA) in the plurality of windings (4) between the plurality of teeth (2) and the plurality of terminals (6).

Revendications

1. Procédé d’enroulement statorique pour enrouler plusieurs enroulements (4) autour d’une pluralité correspondante de dents (2) d’un stator (1) et pour relier une extrémité de chacun de la pluralité d’enroulements à une borne respective d’une pluralité de bornes (6) fixée à une plaque de bornes (5) réalisée intégralement avec des couvercles d’isolation de stator (3) réalisés avec le stator (1), comprenant les étapes consistant à :

- positionner un élément de tige longitudinale (10) entre la pluralité de dents (2) et la pluralité de
bornes (6) ;
relier chacun de la pluralité d’enroulements (4) à la borne respective de la pluralité de bornes (6) de sorte que plusieurs enroulements (6) passent sur l’élément de tige longitudinale (10) ; et retirer l’élément de tige longitudinale (10) pour former ainsi des portions lâches (4aA) dans la pluralité d’enroulements (4) qui se situent entre la pluralité de dents (2) et la pluralité de bornes (6).

2. Système d’enroulement statorique comprenant une machine d’enroulement de stator pour enrouler plusieurs enroulements autour d’une pluralité correspondante de dents (2) d’un stator (1) et pour relier une extrémité de chacun de la pluralité d’enroulements (4) à une borne respective de plusieurs bornes (6) fixés à une plaque de bornes (5) réalisée intégralement avec des couvercles d’isolation de stator (3) réalisés avec le stator (1), le système comprenant en outre un élément de tige longitudinale (10) agencé pour être disposé en cours d’utilisation entre la pluralité de dents (2) et la pluralité de bornes (6) de manière à permettre à la machine d’enroulement statorique de relier chacun de la pluralité d’enroulements (4) à une borne respective précitée de la pluralité de bornes (6) de sorte que la pluralité d’enroulements (6) passent sur l’élément de tige longitudinale (10), le système étant actionnable de telle sorte que le retrait de l’élément de tige longitudinale (10) depuis entre la pluralité de dents (2) et la pluralité de bornes (6) forme des portions lâches (4aA) de la pluralité d’enroulements (4) entre la pluralité de dents (2) et la pluralité de bornes (6).
FIG. 1
PRIOR ART