Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a delay circuit method and apparatus and more particularly to a technique for generating accurate delays for electrical signals.

[0002] In asynchronous bus isolating/bridging applications, such as a SCSI isolator or bus extender, signals need to be precisely delayed by a predetermined amount in order to guarantee or even improve setup or hold times on the resultant output bus. Current techniques involve the use of a dynamically varying string of standard cells (such as inverters or buffers), of length determined by comparison to a reference delay or clock, to achieve a fixed delay. The delay elements are duplicated throughout the chip. This approach is large, very difficult to test and not very precise.

[0003] EP-A-0 610 052 discloses a delay circuit arrangement having an oscillator merely serving to provide for a clock signal to the input to a delay line and with an interface serving to control which one of the plurality of delay cells in a delay line provides for the required delay to the clock signal. US-A-5 146 121 discloses a clock delay apparatus employing a phase-locked loop and which uses matched delay cells for providing the required delay of a digital signal within a computer system.

[0005] According to one aspect of the present invention there is provided a delay circuit arrangement comprising:

- a ring oscillator formed by a plurality of inverter delay cells exhibiting delays which are controlled by a one output of a multi-output current mirror configuration characterised in that the frequency of the ring oscillator is controlled within a phase locked loop and the said multi-current output configuration comprises further outputs arranged to deliver control currents to inverter delay cells corresponding to the inverter delay cells of the ring oscillator and which are arranged to control the delay of digital logic signals.

[0006] According to another aspect of the present invention, there is provided a computer system comprising a first bus and second bus, said first bus and second bus coupled together by a bridge circuit, said bridge circuit comprising a first port for receiving a plurality of first signals, a second port for transmitting a plurality of second signals, and a delay circuit coupled between the first and second port, as a delay circuit comprising an arrangement as defined above.

[0007] The invention can also provide for a method of controlling the delay of digital logic signals, comprising controlling the delays in plurality of inverter delay cells of a ring oscillator by means of a multi-output current mirror configuration characterised by the steps of controlling the frequency of the ring oscillator by means of a phase locked loop and controlling inverter delay cells corresponding to the inverter delay cell of the ring oscillator by means of another output of the multi-output mirror configuration so as to control the delay of the digital logic signals.

[0008] Further, the second plurality of delay cells may be coupled to a multiplexor.

[0009] A method of the present invention can also involve controlling an oscillator circuit a control signal that is based upon a clock signal coupling said control signal to another circuit having an input and coupling the signal to the input of the another circuit.

[0010] Additionally it can involve generating a control signal from a clock and using said control signal to phase lock a phase-locked loop circuit and regulate delay of a delay circuit.

[0011] Delay precision can be enhanced in a circuit by mirroring current from an oscillator to the circuit to control delay propagation of the circuit. The method can further comprise the step of controlling the frequency of the oscillator with the current.

[0012] It will be appreciated that the invention can therefore provide for a precise timing delay method and apparatus in which a phase-locked loop (PLL) in combination with a timing reference is used to calibrate a precise delay. The delays are then duplicated throughout the chip and controlled by the same current as in the PLL. This makes the delay process, voltage, and temperature insensitive and the delays can be programmed by selecting the desired delay through a multiplexer. A high precision delay can be provided which is particularly advantageous for use in devices such as computer bus isolators.

[0013] The present invention is directed to a method and apparatus for generating precise delays of electrical signals. The approach is based on a phase-locked loop (PLL), and uses a reference clock, typically a crystal oscillator, as a timing reference. This removes the necessity of using a self calibration feature. The PLL locks to the reference clock, generating some integer multiple of the reference frequency. The PLL has a voltage-controlled oscillator (VCO) that is made up of a string of delay elements. These delay elements are precisely controlled by the closed loop dynamic of the PLL. Hence, the delay is precisely controlled by the timing reference. By using a PLL with a timing reference, the goals of process, voltage, and temperature insensitivity can be achieved. The delays (which make up the VCO) can be duplicated to particular locations on the chip where a controlled delay is needed. In the preferred embodiment, the delay cells are current controlled. In this case, a number of currents are distributed throughout the chip to the delay cells. Finally, programmability can be incorporated by using a number of delay cells and selecting the desired delay through a multiplexer.

[0014] To summarize, a precise delay can be achieved using the present invention.
achieved that is generated by a timing reference via a PLL. The delay is then duplicated across the chip in the form of a delay cell which is current controlled. The delay cells tend to be much smaller than existing solutions. The techniques described hereinbelow reduce gate count from those of prior techniques, which saves chip area, test time and overall chip cost.

[0015] The invention provides for a precise delay circuit that is small and wherein the delay elements are tolerant to process, voltage, and temperature variations.

[0016] The present invention can therefore provide for a method and apparatus for delaying an electrical signal when propagating from one electrical element/device to another.

[0017] The present invention can also advantageously provide a delay technique using a phase-locked loop and also a high precision programmable delay element.

[0018] Another advantage is that the present invention can provide for an improved bus isolator/bridge circuit which, for example, has controllable delay elements.

Brief Description of the Drawing

[0019] The invention is described further hereinafter, by way of example only, with reference to the accompanying drawings in which:

Fig. 1 is a block diagram of a phase-locked loop circuit;
Fig. 2 is a block diagram of a voltage-controlled oscillator circuit;
Fig. 3 is a schematic of a ring oscillator circuit;
Figs. 4A and 4B is a schematic of a delay cell;
Fig. 5 is a schematic of a delay cell having a differential structure;
Fig. 6 is a schematic of two single-ended delay cells cascaded together;
Fig. 7 is a schematic showing current mirroring from a current source;
Fig. 8 is a schematic of a VCO in combination with an isolator circuit;
Fig. 9 is a block diagram for a bus isolator/bridge circuit;
Fig. 10 is a schematic of a programmable delay circuit;
Figs. 11A and 11B show a computer bus, and extension thereof; and
Fig. 12 shows a computer system having devices with dissimilar characteristics coupled to a controller.

Detailed Description of a Preferred Embodiment

[0020] Referring to Fig. 1, a PLL synthesizer circuit 10 comprises a phase detector 12, loop filter 14, voltage controlled oscillator (VCO) 16, and a divider 18. The phase detector 12 compares the phase of the timing reference 20 and the output 24 of divider 18. If there is a phase difference, an error signal 26, which is proportional to the phase difference, is sent to the loop filter 14. The VCO 16 then responds to the DC voltage 28 from the loop filter 14. As the voltage 28 increases, so does the frequency of the VCO, and conversely, as the voltage 28 decreases, so does the frequency of the VCO. The divider 18 allows for providing an output clock having a frequency that is N times the frequency of the timing reference or clock frequency appearing at 20. For example, if the input clock or timing reference 20 had a frequency of 40 MHz, and the divider had an N value of 5, the output frequency would be 200 MHz (i.e. 40 MHz × 5).

[0021] The operation of the VCO 16 will now be described. The present invention preferably employs a current starved architecture. However, the techniques described herein can be generalized to any architecture that uses delay cells. Referring now to Fig. 2, a current controlled oscillator (ICO) 32 is used to provide a VCO 16 by adding a voltage-to-current converter 30 to its front end. One embodiment of the ICO is shown in Fig. 3. Using inverters 34 as delay cells, a ring oscillator is built having an odd number M of cascaded delay cells. The frequency of the oscillator can be computed by the relationship

\[
\text{freq} = \frac{1}{2} MJ_d
\]

where \(M\) is the number of stages and \(J_d\) is the delay of the inverter. Stated another way, the delay of the inverter can be expressed as

\[
J_d = 2 \text{ freq} / M
\]

The frequency \(freq\) of the VCO is precisely controlled by the timing reference signal 20 (Fig. 1). Thus, as can be seen by the equations above, the delay \(J_d\) of each inverter cell is also precisely controlled. The delay is precisely controlled by the closed loop dynamic of the PLL.

[0022] Inverters 34 are current starved inverters in the preferred embodiment. As its name suggests, the current in the inverter is starved by current sources in order to slow down the delay. The current starved inverter architecture used to create delay cells 36 is shown in Fig. 4A, and comprises an inverter 34 (comprising transistor pair MP1 and MN1) with two current sources 40 and 42. The amount of current provided by the current sources 40 and 42 determines the delay through the inverter 34. The current sources 40 and 42 are preferably realized, as shown in Fig. 4B, by transistors MP2 and MN2, respectively.

[0023] A differential structure can also be used. This would allow an even number of delay stages in the VCO where one stage would be cross coupled. The cell shown in Fig. 5 is a differential starved inverter delay
cell 136. It can be used for differential type data, or followed by a differential to single-ended converter. Delay cell 136 comprises a differential inverter 134 and current sources 40 and 42. As with the delay cell shown in Fig. 4B, current sources 40 and 42 determine the delay through differential inverter 134.

To prevent inversion of the data signal, or to increase the delay of the cell, two single-ended delay cells 36 can be cascaded together as shown at 236 of Fig. 6. If more delay is required, more delay cells can be cascaded.

A complete and precise delay can be achieved as described above, and similar delay cells can be duplicated throughout the integrated circuit device, so as to mirror the VCO current to the delay cells. Since this current directly relates to a known delay, this current can be used to generate substantially the same delay in these other similar delay cells.

Referring now to Fig. 7, current from current source 44 is mirrored by current mirror 46 to current sources 45. These current sources 45 are used to provide (1) a reference current Iref to other delay cells in the integrated circuit, and (2) to provide a reference current Iref2 to the ICO delay cells. The delay cells in a given integrated circuit device will exhibit similar propagation characteristics. Thus, mirroring current to both the ICO delay cells of the VCO (which have a given, known delay in the ICO), as well as the other delay cells, will produce a substantially similar delay in both the ICO delay cells and the other delay cells of the integrated circuit device.

Fig. 8 shows how the mirrored current from the VCO 16 is used to control the delay in other delay cells 56 according to an embodiment of the invention. As can be seen, this mirrored current 48 is used to control current sources 50 of delay cells 56. In addition, the V-I output current 31 is used to control current sources 52 of delay cells 56. Delay cells 56, each included current sources 50 and 52 and a current-starved inverter 54, provide a similar function and characteristics as the delay cell 36 of Figs 4A-B. Thus, the delay provided by delay cells 56 is substantially the same as that provided by delay cells 36 in the ICO 32. It is therefore possible to accurately and precisely delay electrical signals propagated from circuits such as 58 and 60 to circuits 62 and 64, respectively.

An application for using the previously described precision delay technique is shown in Fig. 9. A bus isolator/bridge circuit 96 is shown, and comprises the above described PLL 10 along with digital and delay circuitry 76. The isolator bridge circuit 96 can be used to couple together two ports, such as computer buses, as will be later described below.

Programmability can be built in by cascading several delay cells together and selecting the desired delay through a multiplexer. This is shown in Fig. 10. Delay cells 56 are serially cascaded together in the preferred embodiment. The outputs of each successive stage are coupled to the input of multiplexer 66. By proper selection of the multiplexer’s control lines, it is possible to delay the propagation of the IN signal to the OUT signal by 1X, 2X ... or 2X. Traditional techniques are used to manipulate the multiplexer control lines, such as hardwiring such lines to switches to allow user selectable delays, coupling the control lines to a microprocessor/controller for programmable control by such microprocessor/controller, etc.

A system using the above described delay techniques will now be described. A bus isolator/bridge may be desired to isolate two computer busses from one another, or bridge one bus to the other. Certain computer busses, such as the small computer system interface (SCSI) bus, have well defined signal characteristics, such as allowable voltages/currents, timing, noise, etc. These signal characteristic requirements dictate certain constraints on cabling used to interconnect devices on the SCSI bus. Using an isolator on such a bus allows one to effectively extend the bus, as will now be shown by the following examples.

Referring to Fig. 11A, there is shown as SCSI bus cable interconnecting a plurality of devices on a SCSI bus. In the embodiment shown, SCSI controller 72 is coupled to a plurality of storage devices 74 via SCSI bus 70. Due to the above described signal characteristic constraints, there is a limited number of devices that are allowed to be coupled to SCSI bus 70. There is also a constraint as to the physical length of the SCSI cable providing the bus interconnect to the devices. By adding a bus isolator/bridge, the bus can be effectively extended. This is shown in Fig. 11B, where bus isolator/bridge 96 allows for connecting an additional SCSI cable 78, to allow for coupling of additional SCSI devices 80 to controller 72.

Fig. 12 shows another application of an isolator/bridge. Here, a computer 82 has an electronics board 84 contained therein. A bus controller 86 on board 84 is used to communicate with one or more devices 88 inside the computer chassis, via bus 90. Use of bus isolator 96 allows for coupling external devices 92 to controller 86 via bus 94. This bus may have different performance characteristics than internal bus 90, and hence the bus isolator provides downwards compatibility. When advances in bus technology occur, certain older devices are still capable of being used in combination with new, higher performance devices.

In asynchronous bus isolating/bridging applications, such as a SCSI isolator or bus extender, signals need to be precisely delayed by a predetermined amount in order to guarantee or even improve setup or hold times on the resultant output bus. Thus, the above described delay techniques are particularly useful for such isolation/bridge applications. However, it should be noted that the above uses of an isolator/bridge are by way of example only. The key aspect of the invention described herein is how to provide precise delays, and a bus isolator is but one example of why precise delays might be desired. There are likely numerous other ap-
A delay circuit arrangement comprising:

1. A delay circuit arrangement comprising:
 a ring oscillator (32) formed by a plurality of inverter delay cells (34, 40, 42) exhibiting delays which are controlled by a one output of a multi-output current mirror configuration (45, 46), characterised in that the frequency of the ring oscillator (32) is controlled within a phase locked loop and the said multi-output current mirror configuration (45, 46) comprises further outputs arranged to deliver control currents to inverter delay cells (50, 52, 54) corresponding to the inverter delay cells (34, 40, 42) of the ring oscillator and which are arranged to control the delay of digital logic signals.

2. A circuit as claimed in Claim 1, wherein the inverter delay cells comprise an inverter (34; 54) and a current source (40, 42; 50, 52).

3. A circuit as claimed in Claim 2, wherein the said one output of the said multi-output current mirror configuration (45, 46) is coupled to a current source (40, 42) of the inverter delay cells (34, 40, 42) of the ring oscillator (32).

4. A circuit as claimed in any one of the preceding claims, further comprising a multiplexer (66) having a plurality of inputs, wherein a plurality of the said first and second delay cells are coupled to the plurality of inputs.

5. A computer system comprising a first (70) bus and a second (78) bus coupled together by a bridge circuit, the bridge circuit (96) comprising a first port for receiving a plurality of first signals, a second port for transmitting a plurality of second signals, and a delay circuit coupled between the first and second port, said delay circuit comprising a circuit as claimed in any one of the preceding claims.

6. A method of controlling the delay of digital logic signals, comprising controlling the delays in plurality of inverter delay cells (34, 40, 42) of a ring oscillator (32) by means of a multi-output current mirror configuration (45, 46), characterised by the steps of controlling the frequency of the ring oscillator (32) by means of a phase locked loop and controlling inverter delay cells (50, 52, 54) corresponding to the inverter delay cell (34, 40, 42) of the ring oscillator (32) by means of another output of the multi-output mirror configuration (45, 46) so as to control the delay of the digital logic signals.

Patentansprüche

1. Verzögerungsschaltungsanordnung, umfassend:
 einen Ringoszillator (32), der von einer Mehrzahl von Wechselrichterverzögerungszellen (34, 40, 42) gebildet wird, die Verzögerungen aufweisen, die von einem Ausgang einer Stromspiegel schaltungskonfiguration (45, 46) mit mehreren Ausgängen geregelt werden, dadurch gekennzeichnet, dass die Frequenz des Ringoszillators (32) innerhalb eines Phasenregelkreises geregelt wird und die genannte Mehrausgangssstromschaltungs konfiguration (45, 46) ferner Ausgänge umfasst, die die Aufgabe haben, Steuerströme zu Wechselrich terverzögerungszellen (50, 52, 54) zu speisen, die den Wechselrichterverzögerungszellen (34, 40, 42) des Ringoszillators entsprechen und die Aufgabe haben, die Verzögerung digitaler Logiksignale zu regeln.

2. Schaltung nach Anspruch 1, bei der die Wechselrichterverzögerungszellen einen Wechselrichter (34; 54) und eine Stromquelle (40, 42; 50, 52) umfassen.

5. Computersystem, umfassend einen ersten Bus (70) und einen zweiten Bus (78), die durch eine Brückenschaltung miteinander gekoppelt sind, wobei die Brückenschaltung (96) einen ersten Port zum Empfangen einer Mehrzahl von ersten Signalen, einen zweiten Port zum Senden einer Mehrzahl von zweiten Signalen und eine zwischen dem ersten und dem zweiten Port gekoppelte Verzögerungsschal tung aufweist, wobei die genannte Verzögerungsschaltung eine Schaltung nach einem der vorherigen Ansprüche umfasst.

6. Verfahren zum Regeln der Verzögerung von digitalen Logiksignalen, umfassend das Regeln der Ver zögerungen in einer Mehrzahl von Wechselrichterverzögerungszellen (34, 40, 42) eines Ringoszillators (32) mit Hilfe einer Stromspiegel schaltungs konfiguration (45, 46) mit mehreren Ausgängen, gekennzeichnet durch die Schritte des Regels der Frequenz des Ringoszillators (32) mit Hilfe ei-
nes Phasenregelkreises und des Steuerns der Wechselrichterverzögerungszellen (50, 52, 54), die den Wechselrichterverzögerungszellen (34, 40, 42) des Ringoszillators (32) entsprechen, mit Hilfe eines anderen Ausangs der Stromspiegelschaltungskonfiguration (45, 46) mit mehreren Ausgängen, um die Verzögerung der digitalen Logiksignale zu regeln.

Revidcations

1. Arrangement de circuit à retard comprenant:
 un oscillateur annulaire (32) formé par une pluralité de cellules de retard d'inverseur (34, 40, 42) présentant des retards qui sont contrôlés par une sortie d'une configuration à miroir de courant à sorties multiples (45, 46), caractérisé en ce que la fréquence de l'oscillateur annulaire (32) est contrôlée dans une boucle à verrouillage de phase et la dite configuration de sorties à courants multiples (45, 46) comprend d'autres sorties arrangées pour fournir des courants de contrôle aux cellules de retard d'inverseur (50, 52, 54) correspondant aux cellules de retard d'inverseur (34, 40, 42) de l'oscillateur annulaire et qui sont arrangées pour contrôler le retard de signaux numériques logiques.

2. Circuit tel que revendiqué dans la revendication 1, dans lequel les cellules de retard d'inverseur comprennent un inverseur (34; 54) et une source de courant (40, 42; 50, 52).

3. Circuit tel que revendiqué dans la revendication 2, dans lequel ladite une sortie de ladite configuration à miroir de courant à sorties multiples (45, 46) est couplée à une source de courant (40, 42) des cellules de retard d'inverseur (34, 40, 42) de l'oscillateur annulaire (32).

4. Circuit tel que revendiqué dans l'une quelconque des revendications précédentes, comprenant en outre un multiplexeur (66) ayant une pluralité d'entrées, dans lequel une pluralité desdites première et deuxième cellules de retard est couplée à la pluralité d'entrées.

5. Système ordinateur comprenant un premier bus (70) et un deuxième bus (78) couplés ensemble par un circuit en pont, le circuit en pont (96) comprenant un premier point d'accès pour recevoir une pluralité de premiers signaux, un deuxième point d'accès pour transmettre une pluralité de deuxième signaux, et un circuit à retard coupé entre le premier et le deuxième point d'accès, dudit circuit à retard comprenant un circuit tel que revendiqué dans l'une quelconque des revendications précédentes.

6. Méthode pour contrôler le retard de signaux numériques logiques, comprenant contrôler les retards dans une pluralité de cellules de retard d'inverseur (34, 40, 42) d'un oscillateur annulaire (32) au moyen d'une configuration à miroir de courant à sorties multiples (45, 46), caractérisée par les étapes consistant à contrôler la fréquence de l'oscillateur annulaire (32) au moyen d'une boucle à verrouillage de phase et à contrôler les cellules de retard d'inverseur (50, 52, 54) correspondant aux cellules de retard d'inverseur (34, 40, 42) de l'oscillateur annulaire (32) au moyen d'une autre sortie de la configuration à miroir à sorties multiples (45, 46) de manière à contrôler le retard des signaux numériques logiques.
FIG. 6

FIG. 7
FIG. 12