Starting control valve assembly for multiple throttle
Startventilanordnung für Mehrfachdrosselmechanismus
Ensemble de valves de démarrage pour dispositif à papillons multiples

Designated Contracting States:
DE FR IT

Date of publication of application: 31.03.1999 Bulletin 1999/13

Proprietor: HONDA GIKEN KOGYO KABUSHIKI KAISHA
Minato-ku Tokyo (JP)

Inventors:
• Akagi, Takashi
 4-1,Chuo 1-chome, Wako-shi, Saitama (JP)
• Kubota, Toshiyuki
 4-1,Chuo 1-chome, Wako-shi, Saitama (JP)

Representative: Liska, Horst, Dr.-Ing. et al
Weickmann & Weickmann
Patentanwälte
Postfach 86 08 20
81635 München (DE)

References cited:
FR-A- 2 305 598

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to a starting control valve assembly for a multiple throttle provided in a multiple throttle body of a multiple cylinder engine of a vehicle such as a motorcycle.

In a multiple throttle valve body of a multiple cylinder engine of a motorcycle, etc., as shown in Fig. 7, a starting control valve 2 is provided in each throttle body.

This starting control valve 2 has starter valves 3, and is connected through these starter valves 3 to the inside of an air cleaner 4 and an intake port 5 of a throttle body 1.

The starter valve 3 is formed in the throttle body 1, and has a tuning screw 3a provided midway along a flow path 6 connected to the intake port 5. A valve member 3b provided on the tip of the tuning screw 3a is moved by rotating the tuning screw 3b, and adjusting of the degree of idle opening between each cylinder is carried out by adjusting the degree of opening of the flow path 6, and adjusting the amount of intake from the air cleaner 4.

When the engine is started up, the starter valve 3 of each throttle body 1 is moved backwards against a spring 3c, and an intake amount from the flow path 6 to the intake port 5 is increased.

In the drawing, reference numeral 6a is a pipe connecting the flow path 6 and the air cleaner 4, reference numeral 7 is an injector for injecting fuel into the intake port 5 of the throttle body 1, and reference numeral 8 is an iris valve rotated by a throttle shaft 9 for adjusting an opening and closing amount of the intake port 5.

The above described starter valves 3 are individually and directly provided on the respective throttle bodies 1, which means that for each throttle body 1, the direction in which the tuning screw 3a faces, namely the adjusting direction, is restricted for each throttle body 1, and after mounting the throttle valves are covered by the air cleaner 4 and fuel tank, etc., making it difficult to carry out tuning between cylinders smoothly.

As well as this problem, if the above described structure is adopted, the manufactured length of the flow path 6 forming the throttle body 1 itself is long, and the flow path 6 has a convoluted shape, which means that the manufacturing cost of the throttle body 1 is increased, which brings about an increase in the overall cost.

FR 2 305 598A and JP 05 079 403A disclose a starting control valve assembly for a multiple throttle in multiple throttle bodies having intake ports for introducing a mixture to each combustion chamber of a multiple cylinder engine, for supplying air from an air cleaner to said intake paths via a bypass channel, comprising an idle valve or starter valves having a common adjusting section being capable of adjusting a flow amount of air supplied to the intake port of each throttle body individually provided in a valve body independently of said throttle body, each throttle body and said valve body being connected through a bypass tube, and air being distributed to each intake port through said bypass tube.

This invention has been conceived in view of the above described situation, and an object of this invention is to provide a starting control valve assembly for a multiple throttle capable of bringing about simplification in the structure of a throttle body, and in which it is easy to adjust the extent of idle opening between cylinders of each throttle body.

In order to achieve the above described object, a starting control valve assembly for a multiple throttle according to claim 1 is for a multiple throttle with multiple throttle bodies, having intake ports for introducing a mixture to each combustion chamber of a multiple cylinder engine, for supplying air from an air cleaner to said intake paths via a bypass channel, and comprises starter valves, each having an independently adjustable section being capable of adjusting a flow amount of air supplied to the intake port of each throttle body integrally provided in a valve body independently of the throttle body, each throttle body and valve body being connected through a bypass tube, and air being distributed to each intake port through the bypass tube.

According to the starting control valve assembly for a multiple throttle as disclosed in claim 1, starter valves necessary for each cylinder are collectively provided in a single valve body, and this valve body and each throttle body are connected through a by-pass tube. This means that compared to the structure of the related art in which respective starter valves are provided in each throttle body, the direction in which the starter valves face can be freely chosen without being restricted by the arrangement of the throttle body, and excellent layout design freedom can be provided. Space can thus be utilized effectively.

Therefore, the positions of the respective starter valves are adjusted together after each idle air being tuned.

It is also possible to reduce the manufactured length of the flow path of the throttle body and the complexity of its shape, and in this way the manufacturing cost of the throttle body can be reduced.

In this way, the direction in which the starter valves face is not restricted by the distributive positioning of the throttle bodies, and can be freely chosen, and it is possible to obtain excellent layout design freedom.

Also, it is possible to alleviate the manufactured length of a bypass flow path in the throttle body and the convoluted shape, so that it becomes possible to reduce the manufacturing cost of the throttle body.

A starting control valve assembly for a multiple throttle according to claim 2 is basically the starting control valve assembly for a multiple throttle as disclosed in claim 1, wherein the starter valves are provided in the valve body arranged in a line facing in the same direction as the adjusting section.
[0018] That is, the adjusting sections of the starter valves all face in one direction and are arranged in a line, which means that it can be made easy to adjust the starter valves using the adjusting sections, and maintenance work can be made very efficient.

[0019] A vehicle having a starting control valve assembly for a multiple throttle according to claim 3 is basically the starting control valve assembly for a multiple throttle as disclosed in claim 2, wherein the adjusting sections are distributed facing towards the rear of the vehicle, above the throttle bodies and below the air cleaner.

[0020] In this way, it is possible to carry out adjustments using the adjustment sections from the rear of the vehicle.

[0021] A vehicle having a starting control valve assembly for a multiple throttle according to claim 4 is basically the starting control valve assembly for a multiple throttle as disclosed in claim 2, wherein the engine is a V-type engine having cylinders respectively slanting towards the front and rear of a vehicle, and the valve bodies are provided between the cylinders on one side of the vehicle and between the engine and a frame provided in the lateral direction of the vehicle.

[0022] According to the starting control valve assembly for a multiple throttle as disclosed in claim 4, adjustment can be carried out at the side of a vehicle using the adjustment sections by inserting a spanner between a frame and an engine.

[0023] In this way, it is possible to carry out adjustments using the adjustment section by inserting a tool between the frame and the engine.

[0024] A vehicle having a starting control valve assembly for a multiple throttle according to claim 5 is basically the starting control valve assembly for a multiple throttle as disclosed in claim 2, wherein the engine is an L-type engine having cylinders provided at the front side of the vehicle body and a crankcase provided from a lower end of the cylinders to the rear side of the vehicle body, and the valve bodies are provided between a rear side of a vehicle body where the cylinders are arranged with the throttle valves provided thereon, and a frame provided in a lateral direction of the vehicle body.

[0025] In this way, it is possible to carry out adjustment using the adjusting sections in between lateral frames at the rear of the engine.

[0026] A vehicle having a starting control valve assembly for a multiple throttle according to claim 6 is basically the starting control valve assembly for a multiple throttle as disclosed in any one of claim 1 to claim 5, wherein the valve bodies are distributed at a side higher than a point of connection between the throttle bodies and the bypass tube.

In this way, it is possible to favorably supply air within a flow path inside the valve body.

[0027] Embodiments of a starting control valve assembly for a multiple throttle of the present invention will now be described below with reference to the drawings.

Fig. 1 is a side view of a multiple throttle body for describing the structure and composition of a multiple throttle provided with a starting control valve assembly of an embodiment of the present invention;

Fig. 2 is a plan view of a multiple throttle body for describing the structure and composition of a multiple throttle provided with a starting control valve assembly of an embodiment of the present invention;

Fig. 3 is a rear view of a multiple throttle body for describing the structure and composition of a multiple throttle provided with a starting control valve assembly of an embodiment of the present invention;

Fig. 4 is a cross sectional view for describing the structure and composition of a starting control valve assembly of an embodiment of the present invention;

Fig. 5 is a partial side view of a vehicle showing an example in which the starting control valve assembly of an embodiment of the present invention has been applied to a vehicle housing an L-type engine; and

Fig. 7 is a cross sectional view of a throttle body for describing the structure and composition of a throttle body of the related art provided with a starter valve.

[0028] In Fig. 1 to Fig. 3, reference numeral 11 is a multiple throttle body positioned between V-type multiple cylinder motor cycle engine 12 and an air cleaner 25. The multiple throttle body 11 comprises two pairs of throttle bodies 13 arranged so as to face each other. Injectors 14 are respectively provided on these throttle bodies 13, and fuel supply pipes 15 are connected across fellow injectors 14 of the pairs of throttle bodies 13. Fuel is supplied from these fuel supply pipes 15 to each injector 14, injected from each injector 14 to each intake port 13a inside each throttle body 13, and supplied to the combustion chambers of the engine 12.

[0029] In each throttle body 13 constituting the multiple throttle 11 having the above described structure, a bypass tube 17 is connected to the bypass tube connection section 16 formed, and bypass tubes 17 are connected to the bypass tube connection sections 16.

[0030] These bypass tubes 17 have ends connected to the starting control valve assembly 21.

[0031] This starting control valve assembly 21 is provided on the side part of the multiple throttle body 11, and is arranged in such a way that a head 31a of a tuning screw of a starter valve 28 (which will be described later) can face to the side.

[0032] Reference numeral 38 in the drawings is a throttle valve for adjusting an amount of opening and
positions of the respective starter valves 28 are adjusted.

[0033] Next, the structure of this starting control valve assembly 21 will be described.

[0034] As also shown in Fig. 4, a connecting passage 23 is formed in the valve bodies 22 forming this starting control valve assembly 21, along the width direction. Air introduction inlets 24 are provided above the valve bodies 22, pipes (not shown) connected to the air cleaner 25 are connected to these air introduction inlets 24, and air is supplied to the connecting passage 23 through these air introduction inlets.

[0035] Joint pipes 26 for connecting the respective bypass tubes 17 are also provided in the valve bodies 22, the inside of these joint pipes 26 and the connecting passages 23 are mutually connected through the flow paths 27. That is, these joint pipes 26 constitute a supply path for supplying air to each throttle body 13.

[0036] Starter valves 28 are provided between the connecting passages 23 and the flow paths 27. The starter valves 28 have valve members 30 provided so as to be slideable within slide holes 29 formed in the valve bodies 22, and tuning screws (adjustment sections) 31 screwed into the tips of the valve members 30, and if a tuning screw 31 is rotated, the valve member 30 slides into the slide hole 29 by a distance corresponding to the extent to which the adjustment screw 31 is screwed in to the valve member 30.

[0037] The opening amount of the flow path 27 connecting the connecting passage 23 and the inside of the joint pipes 26 is then adjusted by the sliding movement of the valve members 30.

[0038] That is, the flow amount of air supplied from the air cleaner 25 to the intake port 13a of each throttle body 13 through the valve body 22 and the bypass tube 17 is adjusted by rotating the tuning screw 31 of the starter valve 28.

[0039] These starter valves 28 are provided in the valve bodies 22 arranged in a line facing in the same direction as the head portion 31a of the tuning screws 31.

[0040] A shaft 32 is provided in the valve body 22, along the direction in which the starter valves 28 are arranged, and a lever plate 33 is provided on this shaft 32, capable of turning about the axis of the shaft 32. A lever section 34 for engaging with the head portions 31a of the tuning screws 31 of the starter valves 28 is provided for each cylinder is formed in the lever plate 33. This lever plate 33 is biased by a spring (not shown in the drawings), and an adjustment screw 31 that has been engaged with the lever section 34 is forced in the direction of the tip section by this spring.

[0041] Tuning of this lever plate 33 in the direction of the spring force is regulated by an idler screw 35. The position to which the lever plate 33 is turned in the direction of the spring force is adjusted by adjusting the amount that this idler screw 35 is screwed in, and the positions of the respective starter valves 28 are adjusted together.

[0042] Further, a wire attachment section 36 is formed in this lever plate 33, at an opposite side to the lever section 34, and an end of a wire not shown in the drawings that has been guided from a choke lever (not shown) is connected to this wire attachment section 36.

[0043] If this wire is pulled, the lever plate 33 is turned in the reverse direction, against the force of the spring, and all the starter valves 28 are pulled back to the rear side, and in this way the opening amount of the flow path 27 between the connecting passage 23 and the inside of the joint pipes 26 is increased and the intake amount to the intake port 13a of each throttle body 13 is increased.

[0044] Namely, this starting control valve assembly 21 can simultaneously increase the amount of intake to each of intake ports 13a to carry out favorable starting of the engine, by pulling the wire connected to the lever plate 33. Also, after the position of a reference starter valve 28 has been adjusted by rotating the idler screw 35, the idle opening amount of all of the starter valves 28 between the cylinders can be simply adjusted by rotating the tuning screws 31 of the other starter valves 28.

[0045] In this way, the above described embodiment of a starting control valve assembly 21 has the starter valves 28 necessary for each cylinder provided together in a single valve body 22, and since this valve body 22 and each throttle body 13 are connected through the bypass tube 17 the direction of the tuning screws 31 of the starter valves 28 can be freely chosen without being limited by the distribution position of the throttle body 13, compared to the structure of the related art in which respective starter valves 28 are provided in each throttle body 13, it is possible to achieve good layout design freedom and thus space can be utilized effectively.

[0046] It is also possible to reduce the manufactured length of the flow path of the throttle body 13 and the complexity of its shape, and in this way the manufacturing cost of the throttle body 13 can be reduced.

[0047] In a motor cycle provided with the above described starting control valve assembly 21, the idle opening amount for each throttle is adjusted, and in the case where tuning is carried out between cylinders, a fuel tank 42 housed on the vehicle frame 41 is first of all lifted slightly, and tuning is preferably carried out by inserting a spanner between the starting control valve assembly 21 and the vehicle frame 41 and turning a convex portion of the tuning screw 31 using the spanner.

[0048] In this way, by using the starting control valve assembly 21 that has starter valves 28 provided together with the valve bodies 22, adjustment of tuning opening amount after being mounted in a motorcycle etc. can be carried out extremely easily from one side, and it is possible to reduce the time and effort required for vehicle maintenance.

[0049] In the above described embodiment, the starting control valve assembly 21 has been provided in the throttle body 11 of a V-type engine, but the engine type
is not limited to V-type and of course it is also applicable to an L-type engine.

[0050] Fig. 5 and Fig. 6 show, as an engine 112, an example housing an L-type engine having a cylinder mounted at the front of a vehicle frame, and provided with a crankcase from a lower end of the cylinder to the rear side of the vehicle frame. In this case, the starting control valve assembly 21 is arranged between the rear side of the cylinder of the engine and the throttle body 11 provided on the cylinder, and the upper side of the crankcase, so that the heads 31a of the tuning screws 31 are facing towards the rear.

[0051] In this case also, it is extremely easy to carry out adjustment using the tuning screws 31 of the starting control valve assembly 21.

[0052] In a starting control valve assembly, starter valves 28 having tuning screws 31 capable of respectively adjusting the flow amount of air supplied to the intake port of each throttle body are arranged in a line in a valve body 22. Due to the provision of the valve body 22, a joint pipe 26, for supplying air having a flow amount adjusted using the starter valves 28, and throttle bodies are connected through a bypass tube, and the valve body 22 is separated from the throttle bodies.

[0053] This is to simplify idle opening amount between each cylinder and simplify the structure of a throttle body.

Claims

1. A starting control valve assembly for a multiple throttle in multiple throttle bodies (13) having intake ports (13a) for introducing a mixture to each combustion chamber of a multiple cylinder engine (12), for supplying air from an air cleaner (25) to said intake ports via a bypass channel, comprising

 - starter valves (28) each having an independently adjustable section (31) being capable of adjusting a flow amount of air supplied to the intake port (13a) of each throttle body (13) integrally provided in a valve body (22) independently of said throttle body (13),
 - each throttle body (13) and said valve body (22) being connected through a bypass tube (17), and air being distributed to each intake port (13a) through said bypass tube (17).

2. The starting control valve assembly for a multiple throttle as disclosed in claim 1, wherein said starter valves (28) are provided in said valve body (22) arranged in a line facing in the same direction as said adjusting section (31).

3. A vehicle having a starting control valve assembly for a multiple throttle as disclosed in claim 2, wherein said adjusting sections (31) are distributed facing towards the rear of the vehicle, above said throttle bodies (13) and below said air cleaner (25).

4. A vehicle having a starting control valve assembly for a multiple throttle as disclosed in claim 2, wherein said engine is a V-type engine (12) having cylinders respectively slanting towards the front and rear of a vehicle, and said valve bodies (13) are provided between said cylinders on one side of the vehicle and between said engine (12) and a frame provided in the lateral direction of the vehicle.

5. A vehicle having a starting control valve assembly for a multiple throttle as disclosed in claim 2, wherein said engine is an L-type engine (112) having cylinders provided at the front side of the vehicle body and a crankcase provided from a lower end of the cylinders to the rear side of the vehicle body, and said valve bodies are provided between a rear side of a vehicle body where said cylinders are arranged with said throttle valves provided thereon, and a frame (41) provided in a lateral direction of the vehicle body.

6. A vehicle having a starting control valve assembly for a multiple throttle as disclosed in claim 1 or 2, wherein said valve bodies (22) are distributed at a side higher than a point of connection between said throttle bodies (13) and said bypass tube (17).

Patentansprüche

1. Startsteuerventilanordnung für eine Mehrfachdrossel in Mehrfachdrosselkörpern (13), die Einlassöffnungen (13a) zum Einführen eines Gemisches in jede Brennkammer eines Mehrzylindermotors (12) aufweisen, um Luft von einem Luftfilter (25) zu den Einlassöffnungen über einen Bypasskanal zuzuführen, umfassend:

 - Starterventile (28), die jeweils einen unabhängig einstellbaren Abschnitt (31) aufweisen, mit dem sich eine Luftströmungsmenge einstellen lässt, die der Einlassöffnung (13a) jedes Drosselkörpers (13) zugeführt wird, und die integral in einem Ventilkörper (22) unabhängig von dem Drosselkörper (13) vorgesehen sind,
 - wobei jeder Drosselkörper (13) mit dem Ventilkörper (22) durch ein Bypassrohr (17) verbunden ist und Luft auf jede Einlassöffnung (13a) durch das Bypassrohr (17) verteilt wird.

2. Startsteuerventilanordnung für eine Mehrfachdrossel wie in Anspruch 1 offenbar, worin die Starterventile (28) in dem Ventilkörper (22) in einer Linie angeordnet vorgesehen sind, die in dieselbe Richtung wie der Einstellabschnitt (31) weist.
3. Fahrzeug mit einer Startsteuerventilanordnung für eine Mehrfachdrossel wie in Anspruch 2 offenbart, worin die Einstellabschnitte (31), zur Rückseite des Fahrzeugs hin weisend, über den Drosselköpfen (13) und unter dem Luftfilter (25) verteilt sind.

5. Fahrzeug mit einer Startsteuerventilanordnung für eine Mehrfachdrossel wie in Anspruch 2 offenbart, worin der Motor ein Motor in L-Bauart (112) ist, mit Zylindern, die an der Vorderseite des Fahrzeugs vorgesehen sind, und einem Kurbelgehäuse, das von einem unteren Ende des Zylinders zur Rückseite des Fahrzeugs vorgesehen ist, und wobei die Ventilkörper zwischen einer Rückseite eines Fahrzeugs, wo die Zylinder mit den daran vorgesehenen Drosselventilen angeordnet sind, und einem sich in der Seitenrichtung des Fahrzeugs vorgesehenen Rahmen (41) vorgesehen sind.

6. Fahrzeug mit einer Startsteuerventilanordnung für eine Mehrfachdrossel wie in den Ansprüchen 1 oder 2 offenbart, worin die Ventilkörper (22) an einer Seite verteilt sind, die höher ist als ein Verbindungs- punkt zwischen den Drosselköpfen (13) und dem Bypassrohr (17).

Revendications

1. Ensemble formant soupape de commande de démarrage pour un étranglement multiple tel que décrit dans la revendication 2, dans lequel lesdites soupapes de démarrage (28) sont prévues dans le lit desdits corps de soupapes (22) disposé en ligne en étant exposé dans le même sens que la ladite section d’ajustement (31).

2. Ensemble formant soupape de commande de démarrage pour un étranglement multiple tel que décrit dans la revendication 1, dans lequel lesdites soupapes de démarrage (28) sont prévues dans le lit desdits corps de soupapes (22) disposé en ligne en étant exposé dans le même sens que la ladite section d’ajustement (31).

3. Véhicule ayant un ensemble formant soupape de commande de démarrage pour un étranglement multiple tel que décrit dans la revendication 2, dans lequel lesdites sections d’ajustement (31) sont réparties en étant exposées vers l’arrière du véhicule, au-dessus desdits corps d’étranglement (13) et au-dessous dudit filtre à air (25).

4. Véhicule ayant un ensemble formant soupape de commande de démarrage pour un étranglement multiple tel que décrit dans la revendication 2, dans lequel le ledit moteur est un moteur de type en V (12) ayant des cylindres inclinés respectivement vers l’avant et vers l’arrière d’un véhicule, et lesdits corps de soupapes (13) sont prévus entre lesdits cylindres sur un côté du véhicule et entre ledit moteur (12) et un cadre prévu dans la direction latérale du véhicule.

5. Véhicule ayant un ensemble formant soupape de commande de démarrage pour un étranglement multiple tel que décrit dans la revendication 2, dans lequel le ledit moteur est un moteur de type en L (112) ayant des cylindres prévus sur le côté avant du corps de véhicule et un carter-moteur prévu à partir d’une extrémité inférieure des cylindres jusqu’au côté arrière du corps de véhicule, et lesdits corps de soupapes sont prévus entre un côté arrière d’un corps de véhicule, où lesdits cylindres sont disposés en ayant lesdites soupapes d’étranglement prévues sur eux, et un cadre (41) prévu dans une direction latérale du corps de véhicule.

6. Véhicule ayant un ensemble formant soupape de commande de démarrage pour un étranglement multiple tel que décrit dans la revendication 1 ou 2, dans lequel lesdits corps de soupapes (22) sont répartis sur un côté plus élevé qu’un point de raccordement entre lesdits corps de soupapes (13) et ledit tube de dérivaton (17).