## EUROPEAN PATENT SPECIFICATION

**Date of publication and mention of the grant of the patent:**
05.02.2003 Bulletin 2003/06

**Application number:** 98203075.1

**Date of filing:** 14.09.1998

**Fender aus Schaummaterial und damit ausgerüstetes Boot**

Défense en matériel de mousse et bateau pourvu d’une telle défense

**Designated Contracting States:**
BE DE DK ES FR GB GR IE IT NL PT SE

**Priority:** 30.09.1997 US 941361

**Date of publication of application:**
31.03.1999 Bulletin 1999/13

**Proprietor:** Zodiac Hurricane Technologies, Inc.
Delta, British Columbia V6X 1Z2 (CA)

**Inventors:**
- Hemphill, Douglas
  Delta, British Colombia, V6X 1Z2 (CA)
- Dale, Gary
  Delta, British Columbia, V6X 1Z2 (CA)

**Representative:** Gorrée, Jean-Michel
Cabinet Plasseraud,
84, rue d’Amsterdam
75440 Paris Cédex 09 (FR)

**References cited:**
- DE-A- 3 109 376
- US-A- 3 179 397
- US-A- 4 504 534

**Int Cl.7:** B63B 59/02, B63B 43/14, B29C 44/56

---

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a foam collar system for boats which is affixed to the external surface of the boat hull.

[0002] The present invention is directed to solving the problem of providing an external fender system for protecting the hull of a boat. The fender system must not interfere with the normal operation of the boat while providing sufficient protection for the hull of the boat when mooring the boat or bringing the boat along side another boat for boarding. The fender system must also be aesthetically pleasing.

[0003] Several constructions for fenders and/or auxiliary flotation for boats are known from the prior art. For example, U.S. Patent No. 5,205,253 (Hodges) relates to a system of elongate rails installed on the exterior hull surfaces of boats and projecting externally from the exterior hull surfaces. These elongate rails include a skin made from a woven fabric material and an interior made of polyethylene foam. These rails are for the purpose of deflecting spray, reducing the tendency of the bow to go under in choppy or turbulent seas, reducing heel and side-slipping while turning, contributing lift, acting as fenders to protect the hull, providing accessible handholds and footsteps, reducing the rocking motion of the boat and adding flotation to the boat.

[0004] U.S. Patent No. 4,060,865 (Woolworth) relates to a small boat comprising a flotation chamber located at the gunwale. The flotation chamber is defined by a first member integral with the sides of the hull extending upwardly and defining an upper end portion and a second member or cover secured at its bottom portion to the hull. A connecting device resiliently engages the upper end portion with the second member to secure a flotation material in the form of a block of expanded polystyrene or the like within the flotation chamber. A rub rail is defined at the upper end of the flotation chamber and can be formed either by a separate connecting member or by a portion of one of the other members. The flotation means of this patent serves both to provide flotation and to act as a rub rail to protect the boat from damage.

[0005] U.S. Patent No. 4,807,556 relates to a rigid inflatable boat including a hull with an inflatable buoyancy collar. The collar comprises a number of separate inflatable members each of which has an axially extending bore so that it may be securely attached to mountings on the hull straps passing through it. Since the inflatable members are separate, rupture of one does not seriously affect either the pressure in the other members or the load capability of the craft.

[0006] U.S. Patent No. 4,520,746 relates to an inflated flotation collar formed by positioning a longitudinal inflatable member along at least part of the length of both the port and starboard sides of the hull. The terminal portions of the member are secured so that the linear length of the gunwale over which the member extends is substantially fixed and so that the member is held substantially at gunwale level on the hull by securing devices passing around and over but not under the hull. This device is provided mainly for flotation and is designed to minimize localized stresses on the hull.

[0007] U.S. Patent No. 4,625,674 (Covington) discloses an aluminum boat including laterally outwardly bowed gunnels. Each of the gunnels is provided with an outer tubular aluminum flotation member extending the real along which is bowed to conform to and is welded to the outer surface of the gunnel. The aluminum tubes are filled with flotation material and have for their primary purpose to provide additional flotation to the boat should it become swamped.

[0008] U.S. Patent No. 4,287,624 (Lowther) discloses auxiliary flotation gear for fishing boats. The flotation gear comprises two float wings of substantially triangular contoured construction which conform to the hull of the boat and are securely affixed to the exterior stern of a fishing boat above the waterline. The float wings may be constructed of a closed cell, rigid foam. The foam is preferably covered with a fabric such as nylon reinforced vinyl or another suitable durable fabric. The float wings are provided to aid flotation and stability should the boat become swamped.

[0009] U.S. Patent No. 5,282,436 (Hansen) relates to a foam stabilized watercraft. The high performance boat of this patent is stabilized through the use of foam stabilizing members mounted on the sides of the hull above the chine and extending from the transom along the length of the boat. The sides of the boat also include an upper and lower flange extending outwardly from the sides of the boat adjacent to the upper and lower edges of the stabilizing members at the location where the stabilizing members attach to the sides of the hull. The lower flange helps to ensure that water is not forced between the sides of the boat and the stabilizing members. The stabilizing members are attached to the sides of the hull without use of holes extending from the exterior to the interior of the hull thereby preventing water from seeping into the hull of the boat.

[0010] US patent n° 3 179 397 discloses a dock bumber which comprises a polymeric foam body moulded to a predetermined shape and having an inner surface, at least part of which is adapted to rest against a support face and an outer surface adapted to face outwardly away from support face, said outer surface having a top edge and a bottom edge, a reinforcement intermediate layer secured on at least part of the outer surface of the moulded polymeric foam body, and a surface coating adhesively secured on at least part on the reinforcement intermediate layer.

[0011] US patent n° 5 313 907 discloses a boat with a hull having an outer surface to which short sections of elongated rails are attached; said elongated rails comprise a polymeric foam material having a predetermined shape and having an inner surface, at least part of which is adapted to rest against the hull of the boat and an outer surface adapted to face outwardly away from the
hull, said outer surface having a top edge and a bottom edge; and a surface coating adhesively secured on the foam material.

[0012] Although the foregoing patents provide numerous alternatives for ensuring additional flotation for boats as well as some fender means, none of the prior art references teaches a fender means which is inexpensive to manufacture, aesthetically pleasing, and durable. Accordingly, the present invention is directed to overcoming these disadvantages of the prior art fender means.

[0013] The present invention relates, in a first aspect, to a method for the manufacture of a foam collar for use on a boat. The method includes the steps of molding a polymeric foam material by application of heat and pressure to form the foam material into a predetermined shape, removing the foam material from the mold, applying a surface coating to at least a portion of the inner surface of the mold, curing the surface coating in the mold to form a cured surface coating, applying a reinforcement coating to the inner surface of the mold, curing the reinforcement coating to form a cured reinforcement coating, applying adhesives to the cured reinforcement coating, placing the molded foam material into the mold with its outer surface against the adhesive, applying a vacuum over the molded foam material in the mold until the adhesive cures and removing the resultant foam collar from the mold.

[0014] In a second aspect, the present invention relates to a foam collar made by the above-described process and which is arranged as recited in appended claim 5.

[0015] In the third aspect, the present invention relates to a boat comprising a hull having an outer surface and the above-described foam collar attached to the outer surface of the hull of the boat, said boat being arranged as recited in appended claim 9.

[0016] The present invention provides a durable, highly attractive foam fender system which can be used on high speed boats with planing hulls. It is considered that this foam collar represents an improvement over prior boats since it does not require inflation, it can be fabricated in an aesthetically pleasing manner, it is durable and it is inexpensive to make and maintain.

[0017] The present invention will be described in greater detail in the detailed description which follows.

[0018] Fig. 1 is a top view of a boat including the foam collar.

[0019] Fig. 2 is a side view of a boat including the foam collar.

[0020] Fig. 3 is a cross-sectional view of the foam collar and the section of the hull of a boat along line III-III of Fig. 2.

[0021] Fig. 4 is a detail of the circled section of Fig. 3.

[0022] Referring to the drawings where like numerals indicate like elements throughout several views, Figure 1 shows a boat 10 including a hull 11 and a foam collar 12. The boat shown in Fig. 1 also includes a bow box 13, a console 14, a bolster 15 and an engine 16.

[0023] From Figure 1 it can be seen that the preferred embodiment of the boat of the present invention includes four foam collar sections 12 which together form the foam collar of the present invention. The foam collar sections 12 extend around the periphery of the hull 11.

[0024] Referring to Fig. 2, there is shown a side view of the boat 10 of the present invention. From Fig. 2 it can be seen that the foam collar sections 12 are located on the hull 11 of the boat 10 at a point where the foam collar sections 12 are above the static waterline of the boat. Preferably, the bottom of the foam collar section 12 is 5-50 centimeters above the static waterline so that during normal operation of the boat, the foam collar remains above the surface of the water. Also shown in Fig. 2 is the surface coating 20 of the foam collar sections 12 upon which may be printed, for example, stripes 21, a logo 22 and/or any other design which may be desirable.

[0025] Referring now to Fig. 3, there is shown a cross-sectional view of the foam collar section 12 along the line III-III of Fig. 2. In the preferred embodiment, the foam collar section 12 is made up of a laminate 24 of first, second and third layers 31, 32, 33, respectively, of foam material. The laminate 24 of foam material layers 31-33 is molded preferably to the shape shown in Fig. 3.

[0026] On the outer surface of the laminate 24 is a layer of a surface coating 20 and a reinforcement coating 23 which, together are adhered to the laminate 24 by an adhesive layer 25. Laminate 24 is molded so as to have mating surfaces 35, 36 which mate with portions of the hull 11 of boat 10. However, the entire inner surface of the molded laminate 24 need not mate with the hull 11 in the preferred embodiment and thus a gap 34 is formed between the foam collar section 12 and the hull 11 as shown in Fig. 3.

[0027] The foam collar sections 12 are attached to the hull of the boat by one or more attachment means 30, one of which is shown in the detail of Fig. 4. More specifically, the preferred attachment means 30 includes an attachment flange 40 which is formed integrally with and extends from the foam collar section 12. Attachment flange 40 includes a lip 42 at the distal end thereof. A flat bar, 41, preferably made from aluminum, is used to attach attachment flange 40 to hull 11 by virtue of a first fastening means such as a pin 44. The fastening means may be any other suitable conventional fastener such as a screw 45, bolt, nail or bracket. Nylon scrim 43 can be used to reinforce attachment flange 40 to thereby provide additional strength to bear the load of foam collar sections 12.

[0028] The molded laminate 24 of the foam collar section 12 of the present invention is preferably made from a copolymer closed cell foam. In particular, three sheets of copolymer are heat fused together to form the foam laminate 24 and the formed foam laminate 24 is molded under heating pressure in a mold to produce the desired shape. A preferred material for the copolymer foam is cross-linked polyethylene-ethylene vinyl acetate copol-
ymer. However, other conventional closed cell polymeric foams can be employed to fabricate the foam collar sections 12 of the present invention.

[0029] The closed-cell polymer foams useful for making foam collar sections 12 are chosen based on their density, water absorption characteristics and compressive strength. Preferred foams have a density of from about 24 kg/m³ (1.5 lb/ft³) to about 80 kg/m³ (5 lb/ft³) and, more preferably, from about 32 kg/m³ (2 lb/ft³) to about 80 kg/m³ (5 lb/ft³). Water absorption of the foam is preferably less than 0.02 kg/m² (0.1 lb/ft²) using ASTM-D3575-84L. Preferred foams have a compressive strength from about 24 kg/m³ (1.5 lb/ft³) to about 80 kg/m³ (5 lb/ft³).

[0030] The reinforcement coating 23 of the present invention has for its purpose to impart strength to the foam laminate 24 and the attachment flanges 40. Accordingly, the materials used for the reinforcement coating 23 may be conventional materials known to provide strength. One preferred material for use as the reinforcement coating is polyurethane. The reinforcement coating is applied to a thickness of from about 40 to about 70 mils of dry film thickness. More preferably, the reinforcement coating is 50-60 mils thick in dry film thickness. Nylon scrim 43 may be placed along the attachment flanges 40 and sprayed over with the reinforcement coating 23 as shown in Figs. 3-4 in order to provide additional strength to attachment flanges 40.

[0031] The reinforcement coating 23 is made from materials having good abrasive resistance and elongation. Preferred materials have an abrasive resistance of less than about 1 mg, lost (ASTM (501) and an elongation of at least about 200% (ASTM D412). A preferred material for the reinforcement coating is an abrasive resistant urethane elastomer.

[0032] The surface coating 20 is used primarily to provide a pleasing aesthetic feel and appearance for the foam collar sections 12. A preferred material for the surface coating is a two-component polyurethane system which is pigmented to the desired color of the foam collar sections 12. The surface coating 20 is preferably sufficiently thick to cover the entire outer surface of foam collar sections 12 to thereby provide a pleasing aesthetic effect for the foam collar sections 12 when viewed from outside of the boat 10. The surface coating 20, coating thickness and foam density may also be chosen to be smooth and soft to the touch. This is useful for persons getting into and out of the boat who will touch the foam collar sections 12. In addition, the surface coating 20 may be chosen to impart abrasion resistance to the outer surface of the foam collar sections 12 such that when boarding other craft or when docked at a waterfront the foam collar will not be damaged by abrasion.

[0033] Optionally, detailing can be provided on the outer surface of the surface coating 20 of the foam collar sections 12. An example of such detailing is shown in Fig. 2 where stripes 21 and a logo 22 are included on the outer surface 20 of the foam collar sections 12. This option provides an additional means of rendering the foam collar sections 12 aesthetically pleasing and can be used to strongly influence the overall aesthetic impact of the boat 10.

[0034] Another aspect of the present invention is a method for making the foam collar. In the first step of the method, a polymeric foam material is molded using a mold by application of heat and pressure using conventional molding techniques in order to provide a polymeric foam of a predetermined shape such as the shape shown in Fig. 3 which includes a convex outer surface. The polymeric foam is then removed from the mold and trimmed to remove flash and any other defects and provide a polymeric foam material of the desired shape.

[0035] The next step in the process is to provide the surface coating onto the interior of a mold. The surface coating may be sprayed or brushed onto the interior surface of the mold. Once the surface coating is applied to the interior surface of the mold, it is cured to a dry film thickness of from about 3 mils to about 20 mils thick. The thickness of the surface coating 20 is primarily a function of the desired color and/or surface characteristics for the foam collar sections 12.

[0036] After curing the surface coating, a reinforcement coating 23 is applied to the mold atop the surface coating 20. The reinforcement coating 23 may also be sprayed, brushed or applied by any conventional means onto the interior surface of the mold atop the surface coating 20. The reinforcement coating 23 is then cured to a dry film thickness of from about 20 to about 70 mils to form a cured reinforcement coating 23. Optionally, reinforcement mesh, which may be nylon scrim 43, is placed along the areas where the attachment flanges 40 will fit in the mold and the strength reinforcement coating 23 is sprayed over the reinforcement mesh 43 so as to include the reinforcement mesh 43 inside of the reinforcement coating 23 and thereby provide additional strength to attachment flange 40.

[0037] Once the reinforcement coating 23 has been fully cured to a dry film, an adhesive layer 25 is placed on the cured surface of the reinforcement coating 23 and on the molded surface of the copolymer foam laminate 24. The copolymer foam laminate 24 is then placed in the mold against the adhesive layer 25 and a vacuum is applied over the entire surface of the mold until the adhesive layer 25 cures thereby securing the reinforcement coating 23 directly to the surface of the molded foam laminate 24. Optionally, a flexible polyurethane foam can be applied to fill voids at the mold ends. The application of the flexible polyurethane foam can be by spraying, brushing or any other suitable conventional means. Finally, the completed foam collar section 12 is removed from the mold and trimmed to remove flash or any other defects.

[0038] The foam collar sections 12 are preferably designed to key into the molded glass reinforced plastic surface of the hull 11 as shown in Fig. 3. In other words, the mating surfaces 35, 36 are molded to fit closely with
A method for the manufacture of a foam collar (12) for use on a boat (10), said method being characterized by comprising the steps of:

1. molding a polymeric foam material in a mold by application of sufficient heat and pressure in the mold to form the polymeric foam material into a predetermined shape which has an outer surface,
2. removing the molded polymeric foam material from the mold,
3. applying a surface coating (20) onto at least a portion of an inner surface of the mold,
4. curing the surface coating (20) in the mold to form a cured surface coating,
5. applying a reinforcement coating (23) into the mold to at least partially cover the cured surface coating (20) in the mold,
6. curing the reinforcement coating (23) to form a cured reinforcement coating (23),
7. applying an adhesive (25) to the cured reinforcement coating (23),
8. applying a vacuum over the inner surface of the mold until the adhesive (25) cures to thereby form the foam collar, and
9. removing the foam collar (12) from the mold.

Claims

1. A method for the manufacture of a foam collar (12) for use on a boat (10), said method being characterized by comprising the steps of:

   1. molding a polymeric foam material in a mold by application of sufficient heat and pressure in the mold to form the polymeric foam material into a predetermined shape which has an outer surface,
   2. removing the molded polymeric foam material from the mold,
   3. applying a surface coating (20) onto at least a portion of an inner surface of the mold,
   4. curing the surface coating (20) in the mold to form a cured surface coating,
   5. applying a reinforcement coating (23) into the mold to at least partially cover the cured surface coating (20) in the mold,
   6. curing the reinforcement coating (23) to form a cured reinforcement coating (23),
   7. applying an adhesive (25) to the cured reinforcement coating (23),
   8. applying a vacuum over the inner surface of the mold until the adhesive (25) cures to thereby form the foam collar, and
   9. removing the foam collar (12) from the mold.

2. A method as claimed in claim 1, characterized by further comprising the step of laminating at least two sheets of polymeric foam material together prior to the step of molding the polymeric foam material.

3. A method as claimed in claim 1 or 2, characterized in that the polymeric material is a copolymer of polyethylene and ethylene vinyl acetate, and that the surface coating (20) and the reinforcement coating (23) each comprise polyurethane.

4. A method as claimed in any one of claims 1-3, characterized by further comprising the step of applying a fibrous reinforcement material to the cured surface coating prior to the step of applying a reinforcement coating to the inner surface of the mold.

5. A foam collar (12) which comprises:

   a polymeric foam material molded to a predetermined shape and having an inner surface (30), at least part of which is adapted to rest against a hull (11) of a boat (10), and an outer surface adapted to face outwardly away from the hull of a boat, said outer surface having a top edge and a bottom edge, a reinforcement intermediate layer (23) secured on at least part of the outer surface of the molded polymeric foam material, and a surface coating (20) adhesively secured on at least part of the reinforcement intermediate layer.
6. A foam collar as claimed in claim 5, characterized by further comprising at least two attachment flanges (40) each having a proximal end formed integrally with the molded polymeric foam material, and a distal end away from the molded polymeric foam material, said attachment flanges (40) being located at the top and bottom edges of the outer surface.

7. A foam collar as claimed in claim 6, characterized in that the attachment flanges (40) each have a lip (42) at the distal ends thereof.

8. A foam collar as claimed in any one of claims 5-7, characterized in that the polymeric foam material comprises a copolymer of polyethylene and ethylene vinyl acetate, and that the surface coating comprises polyurethane.

9. A boat (10) comprising a hull (11) having an outer surface to which a foam collar (12) having attachment means (30) is attached at a point high enough on the hull to ensure that the foam collar (12) is completely above a static waterline of the boat, said foam collar (12) comprising a polymeric foam material molded to a predetermined shape and having an inner surface, at least part of which is adapted to rest against the hull of said boat and an outer surface adapted to face outwardly away from the hull of said boat, said outer surface having a top and a bottom edge, and a reinforcement intermediate layer (23) secured on at least part of the outer surface of the molded polymeric foam material, and a surface coating (20) adhesively secured on at least part of the reinforcement intermediate layer (23), characterized in that said foam collar has at least two attachment flanges (40) each have a proximal end formed integrally with the molded polymeric foam material, and a distal end away from the molded polymeric foam material, said attachment flanges (40) being located at the top and bottom edges of the outer surface of the polymeric foam material, and fastening means (44) for attaching the attachment flanges (40) to the hull (11) of the boat, and that said reinforcement intermediate layer is a reinforcement coating (23) adhesively (25) secured on said at least part of the outer surface of the molded polymeric foam material, the layer comprising an abrasion-resistant urethane elastomer.

10. A boat as claimed in claim 9, characterized in that the attachment flanges (40) each have a lip (42) at the distal ends thereof, and that the attachment flanges (40) are attached to the hull (11) of the boat (12) by flat bars (41) which are mechanically attached to the hull (11) of the boat by a first fastening means (44) and are mechanically attached to the lip (42) at the distal end of each attachment flange (40) by a second fastening means.

11. A boat as claimed in any one of claims 9-10, characterized in that the fastening means comprises a plurality of pins (44), screws (45) or bolts inserted into a corresponding number of holes in the flat bars (41) and in the attachment flanges (40), at least some of said pins, screws or bolts also being inserted into holes in the hull (11) of the boat.

**Patentansprüche**

1. Verfahren zur Herstellung eines bei einem Boot (10) zu verwendenden Schaumstoff-Fenders (12), wobei das Verfahren gekennzeichnet ist durch die Schritte:

Formen eines polymerischen Schaumstoffmaterials in einer Form durch Anwendung ausreichender Wärme und ausreichenden Drucks in der Form zum Formieren des polymerischen Schaumstoffmaterials in eine vorbestimmte Gestalt, die eine äußere Fläche aufweist, Entfernen des geformten polymerischen Schaumstoffmaterials aus der Form, Applizieren einer Flächenbeschichtung (20) auf wenigstens einen Abschnitt einer inneren Fläche der Form, Härten der Flächenbeschichtung (20) in der Form zur Bildung einer gehärteten Flächenbeschichtung, Applizieren einer Verstärkungsbeschichtung (23) in die Form zum wenigstens teilweisen Bedecken der gehärteten Flächenbeschichtung (20) in der Form, Härten der Verstärkungsbeschichtung (23) zum Formieren einer gehärteten Verstärkungsbeschichtung (23), Applizieren eines Haftmittels (25) auf die gehärtete Verstärkungsbeschichtung (23), auf jeden freiliegenden Abschnitt der gehärteten Flächenbeschichtung (20) und auf die äußere Fläche des geformten polymerischen Schaumstoffmaterials, Platzieren des geformten polymerischen Schaumstoffmaterials (24) in die Form mit der äußeren Fläche gegen die gehärtete Verstärkungsbeschichtung (23) und das Haftmittel (25).
Applizieren eines Vakuums über der inneren Fläche der Form bis zum Härten des Haftmittels (25), um dadurch den Schaumstoff-Fender zu formieren, und Entfernen des Schaumstoff-Fenders (12) aus der Form.

2. Verfahren nach Anspruch 1, gekennzeichnet durch den Schritt eines mit einander Laminierens wenigstens zweier Blätter aus polymerischem Schaumstoffmaterial vor dem Schritt des Formens des polymerischen Schaumstoffmaterials.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das polymerische Material ein Copolymer aus Polyethylen und Ethylenvinylacetat ist, und dass die Flächenbeschichtung (20) und die Verstärkungsbeschichtung (23) jeweils Polyurethan aufweisen.

4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch den Schritt des Applizierens eines faserigen Verstärkungsmaterials auf die härtete Flächenbeschichtung vor dem Schritt des Applizierens einer Verstärkungsbeschichtung auf die innere Fläche der Form.

5. Schaumstoff-Fender (12), der aufweist:

   ein polymerisches Schaumstoffmaterial, das in eine vorbestimmte Gestalt geformt ist und eine wenigstens teilweise auf einer Hülle (11) eines Bootes (10) ruhende innere Fläche (30) und eine von der Hülle eines Bootes nach außen fortgekehrte äußere Fläche aufweist, wobei die äußere Fläche einen oberen und einen unteren Rand aufweist, in einem Teil der äußeren Fläche des geformten polymerischen Schaumstoffmaterials befestigte Verstärkungszwischenschicht (23) und eine haftmittelmäßig auf wenigstens einem Teil der Verstärkungszwischenschicht (23) befestigte Flächenbeschichtung (20),

   dadurch gekennzeichnet, dass die Verstärkungszwischenschicht eine haftmittelmäßig (25) auf wenigstens dem Teil der äußeren Fläche des geformten polymerischen Schaumstoffmaterials befestigte Verstärkungsbeschichtung ist, wobei die Schicht ein verschleißfestes Urethanolastomer aufweist.

6. Schaumstoff-Fender nach Anspruch 5, gekennzeichnet durch wenigstens zwei Abbringungsflansche (40), deren jeder ein integral an das polymerische Schaumstoffmaterial fortgehendes distales Ende aufweist, wobei die Abbringungsflansche (40) an oberen und unteren Ende der äußeren Fläche angeordnet sind.

7. Schaumstoff-Fender nach Anspruch 6, dadurch gekennzeichnet, dass die Abbringungsflansche (40) an ihren distalen Enden jeweils eine Lippe (42) aufweisen.

8. Schaumstoff-Fender nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass das polymerische Schaumstoffmaterial ein Copolymer aus Polyethylen und Ethylenvinylacetat aufweist, und dass die Flächenbeschichtung Polyurethan aufweist.

9. Boot (10) mit einer Hülle (11), die eine äußere Fläche aufweist, an der eine eine Anbringungseinrichtung (30) aufweisender Schaumstoff-Fender (12) an einem Punkt so ausreichend hoch an der Hülle angebracht ist, dass sich der Schaumstoff-Fender (12) vollständig über einer statischen Wasserlinie des Bootes befindet, wobei der Schaumstoff-Fender (12) ein polymerisches Schaumstoffmaterial, das in eine vorbestimmte Gestalt geformt und eine wenigstens teilweise auf der Hülle des Bootes ruhende innere Fläche und eine von der Hülle des Bootes nach außen fortweisende äußere Fläche aufweist, wobei die äußere Fläche einen oberen Rand und einen unteren Rand aufweist.

10. Boot nach Anspruch 9, dadurch gekennzeichnet, dass die Abbringungsflansche (40) an ihren distalen Enden jeweils eine Lippe (42) aufweisen, und
dass die Anbringungsflansche (40) an der Hülle (11) des Bootes (12) durch flache Stäbe (41) angebracht sind, die durch eine erste Befestigungseinrichtung (44) mechanisch an der Hülle (11) des Bootes angebracht sind und durch eine zweite Befestigungseinrichtung mechanisch an der Lippe (42) am distalen Ende jedes Anbringungsflansches (40) angebracht sind.

11. Boot nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass die Befestigungseinrichtung mehrere Stifte (44), Gewinde (45) oder Bolzen aufweist, die in eine korrespondierende Zahl Löcher in den flachen Stäben (41) und in den Anbringungsflanschen (40) eingesetzt sind, wobei wenigstens einige der Stifte, Gewinde oder Bolzen auch in Löcher der Hülle (11) des Bootes eingesetzt sind.

Revendications

1. Procédé pour fabriquer une défense en matériau mousse (12) destinée à être utilisée sur un bateau (10), ledit procédé étant caractérisé en ce qu'il comprend les étapes consistant à mouler un matériau mousse polymère dans un moule par application d'une chaleur et d'une pression suffisantes dans le moule afin de donner au matériau mousse polymère une forme prédéterminée qui possède une surface extérieure, retirer du moule le matériau mousse polymère moulé, appliquer un revêtement de surface (20) sur au moins une partie d'une surface intérieure du moule, faire durcir le revêtement de surface (20) dans le moule pour former un revêtement de surface durci, appliquer un revêtement de renfort (23) dans le moule pour recouvrir au moins partiellement le revêtement de surface durci (20) dans le moule, faire durcir le revêtement de renfort (23) pour former un revêtement de renfort durci (23), appliquer un adhésif (25) au revêtement de renfort durci (23), à toute partie exposée du revêtement de surface durci (20) et à la surface extérieure du matériau mousse polymère moulé, placer le matériau mousse polymère moulé (24) dans le moule, avec la surface extérieure contre le revêtement de renfort durci (23) et l'adhésif (25), appliquer une dépression à la surface intérieure du moule jusqu'à ce que l'adhésif (25) durcisse pour former ainsi la défense en mousse, et retirer du moule la défense en mousse (12).

2. Procédé selon la revendication 1, caractérisé en ce qu'il comporte en outre l'étape consistant à superposer au moins deux feuilles d'un matériau mousse polymère l'une sur l'autre avant l'étape de moulage du matériau mousse polymère.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le matériau polymère est un copolymère de polyéthylène et d'éthylène-acétate de vinyle et en ce que le revêtement de surface (20) et le revêtement de renfort (23) comprennent chacun du polyuréthane.

4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend en outre l'étape consistant à appliquer un matériau de renfort fibreux au revêtement de surface durci avant l'étape d'application d'un revêtement de renfort à la surface intérieure du moule.

5. Défense en mousse (12) qui comprend:

un matériau mousse polymère moulé avec une forme prédéterminée et possédant une surface intérieure (30), dont au moins une partie est adaptée pour être en appui contre une coque (11) d'un bateau (10), et une surface extérieure destinée à être tournée vers l'extérieur à l'opposé de la coque d'un bateau, ladite surface extérieure possédant un bord supérieur et un bord inférieur, une couche intermédiaire de renfort (23) fixée sur au moins une partie de la surface extérieure du matériau mousse polymère moulé, et un revêtement de surface (20) fixé par adhésion sur au moins une partie de la couche intermédiaire de renfort (23), caractérisée en ce que ladite couche intermédiaire de renfort est un revêtement de renfort (23) fixé par adhésion (25) à ladite au moins une partie de la surface extérieure du matériau mousse polymère moulé, la couche comprenant un élastomère d'uréthane résistant à l'abrasion.

6. Défense en mousse selon la revendication 5, caractérisée en ce qu'elle comporte en outre deux brides de fixation (40) qui possèdent chacune une extrémité proximale formée d'un seul tenant avec le matériau mousse polymère moulé et une extrémité distale opposée au matériau mousse polymère moulé, lesdites brides de fixation (40) étant situées sur les bords supérieur et inférieur de la surface extérieure.

7. Défense en mousse selon la revendication 6, caractérisée en ce que les brides de fixation (40) possèdent chacune une lèvre (42) au niveau de leurs extrémités distales.
8. Défense en mousse selon l'une quelconque des revendications 5 à 7, caractérisée en ce que le matériau mousse polymère comprend un copolymère de polyéthylène et d'éthylène-acétate de vinyle et en ce que le revêtement de surface comprend du polyuréthane.

9. Bateau (10) comprenant une coque (11) possédant une surface extérieure, à laquelle une défense en mousse (12) possédant des moyens de fixation (30) est fixé en une point suffisamment élevée de la carène pour garantir que la défense en mousse (12) est disposée entièrement au-dessus d'une ligne de flottaison statique du bateau, ladite défense en mousse (12) comprenant un matériau mousse polymère moulé avec une forme prédéterminée pos- sédant une surface intérieure, dont au moins une partie est adaptée pour s'appliquer contre la carène dudit bateau, et une surface extérieure adaptée pour être tournée vers l'extérieur à l'opposé de la carène dudit bateau, ladite surface extérieure possédant un bord supérieur et un bord inférieur et une couche de renfort intermédiaire (23) fixée sur au moins une partie de la surface extérieure du matériau mousse polymère moulé et un revêtement de surface (20) fixé par adhérence à au moins une partie de la couche intermédiaire de renfort (23), caractérisé en ce que ladite défense en mousse possède au moins deux brides de fixation (40) ayant chacune une extrémité proximale formée d'un seul tenant avec le matériau mousse polymère moulé et une extrémité distale à l'opposé du matériau mousse polymère moulé, lesdites brides de fixation (40) étant situées sur les bords supérieur et inférieur de la surface extérieure du matériau mousse polymère, et des moyens de fixation (44) pour fixer les brides de fixation (40) à la carène (11) du bateau, et en ce que ladite couche intermédiaire de renfort est un revêtement de renfort (23) fixé par adhérence (25) à ladite au moins une partie de la surface extérieure du matériau mousse polymère moulé, la couche comprenant un élastomère à base d'uréthane résistant à l'abrasion.

10. Bateau selon la revendication 9, caractérisé en ce que les brides de fixation (40) possèdent chacune une lèvre (42) au niveau de leurs extrémités distales et en ce que les brides de fixation (40) sont fixées à la coque (11) du bateau (12) par des barres plates (41) qui sont fixées mécaniquement à la carène (11) du bateau par des premiers moyens de fixation (44) et sont fixées mécaniquement à la lèvre (42), à l'extrémité distale de chaque bride de fixation (40), par des seconds moyens de fixation.

11. Bateau selon l'une quelconque des revendications 9 à 10, caractérisé en ce que les moyens de fixa-