EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 28.02.2001 Bulletin 2001/09

Application number: 98112614.7

Date of filing: 23.10.1990

Secretion of human protein linked to gamma interferon signal peptide

Sekretion vom mit Gamma-Interferon Signalpeptid gebundenen humänen Protein

Sécretion de protéine humaine associée au peptide-signal de l’ interferon gamma

Designated Contracting States: AT BE CH DE DK ES FR GB IT LI LU NL SE

Priority: 24.10.1989 US 426986
02.02.1990 US 474169
02.03.1990 US 488706

Date of publication of application: 24.02.1999 Bulletin 1999/08

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
91901031.4 / 0 497 922

Proprietor: CHIRON CORPORATION
Emeryville California 94608-2916 (US)

Inventors:
- Kriegler, Michael
 San Francisco, California 94118 (US)
- Perez, Carl, F.
 San Diego, California 92122 (US)

Representative: Irvine, Jonquil Claire
J.A. KEMP & CO.
14 South Square
Gray’s Inn
London WC1R 5LX (GB)

References cited:
EP-A- 0 243 204
EP-A- 0 317 649
WO-A-86/02381
WO-A-91/06635

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to the use of DNA recombinant technology to effect protein delivery to cells. In particular, it concerns the use of high and low titer recombinant retroviral vectors to deliver a protein linked to the \(\gamma \)-interferon signal peptide to cells, or a host organism that would benefit from the presence of the protein. A wide variety of proteins can be delivered in this manner including especially tumor necrosis factor and Interleukins, in particular interleukin II. The \(\gamma \)-interferon signal peptide is one of many signal sequences listed in Nucleic Acid Research (1984) 12, 5145 - 5164.

[0002] So many approaches have been used to effect delivery of proteins, particularly proteins that have medically beneficial applications, to desired target cells that a survey of this field would be both inappropriate and unhelpful. It should be noted, however, that virtually all delivery systems presently employed address the problem of penetrating barriers to the circulatory system of the subject organism and do not address the problem of uptake by particular cells targeted for treatment with the protein. Thus, in the simplest form of ensuring penetration of these barriers, intravenous injection of a solution of an active ingredient, delivery of the protein merely results in the active ingredient circulating in the blood, but without provision for any special mechanism to ensure that the protein will find its way into the cytoplasm or nucleus of a cell that it is expected either to treat or to kill. While a specific cell may be targeted, e.g., through the use of antibody, penetration through cellular membranes is effected by whatever mechanism(s) is normally used by cells, or the appropriate site of treatment is necessarily extracellular.

[0003] It is, of course, established that viral particles are capable of introducing foreign nucleic acids and proteins into cells in the normal course of infection. Use of viral particles to transport generic material into target mammalian cells for purposes of gene therapy appears to be the major approach now being followed to develop this technique. See, e.g., McCormick, D., Bio/Technology (1985) 3:689-693. In addition, Lang, R.A., et al., Cell (1985) 43:531-542 were able to use a similar system with GM-CSF to induce autocrine growth in a murine blood-cell line. In the Lang work, a cDNA-encoding GM-CSF was inserted into a Moloney murine leukemia-based vector under control of the promoter/enhancer of the viral long-terminal repeat, and infectious, helper-free virus was produced by transfecting into the \(\psi \) psi-2-packaging cell line. The GMV virus produced was able to effect GM-CSF production in a hematopoietic cell line. This ability has not heretofore been used to transport designated protein drugs in an intact organism, however.

[0004] Retroviruses in particular have been used as vectors for foreign gene insertion. and the biology of retroviruses is, to a significant degree, understood. Retroviruses consist of a single stranded RNA genome encapsulated in a protein envelope. The genome itself, reading from the \(5' \) to \(3' \) end, contains a cap, a \(5' \) untranslated region, a segment of RNA designated "\(\psi \)" which is necessary for the RNA to be packaged into protein -i.e., a packaging site, and then the coding sequences for several proteins -the retroviral core protein (gag); reverse transcriptase, to facilitate an intermediate stage consisting of a DNA transcript (pol) and the viral envelope or capsid protein (env), all followed by some \(3' \) untranslated sequences. The three viral proteins are needed for the infectivity of the viral genome; the packaging site is needed to produce additional infectious virus.

[0005] Retroviruses experience a "proviral" stage which contains a double-stranded cDNA copy of the protein-encoding region of the RNA. However, in this stage, the untranslated \(3' \) and \(5' \) regions are modified to obtain, at either end of this protein-encoding cDNA, a long terminal repeat (LTR) which provides the appropriate promoter and enhancer sequences to effect DNA transcription as well as transcription-terminating sequences at operable positions with respect to the coding portions.

[0006] In ordinary infection, the proviral double-stranded cDNA can be integrated into the host cell genome and from there effect the production of additional virus particles containing the RNA genome packaged in its protein capsule. For this procedure to take place, it is critical that the \(\psi \) packaging site be present in the provirus.

[0007] It has occurred to others that the protein encoding sequences of the retroviruses could be replaced with those for a desired protein so as to employ the expression systems of the virus when the modified virus infects host cells. See, e.g., U.S. Patent 4,405,712 and Lang (supra). However, in order to achieve this, the modified viral genome requires a helper virus capable of synthesizing the capsid proteins and packaging the RNA transcripts of the foreign DNA.

[0008] Thus, for "gene therapy" the proviral DNA form is inserted into a suitable vector, replicated and packaged into viral envelopes with the aid of a helper virus. For a general review, see Anderson, W.F., Science (1984) 226:401-409; Coffin, J., "Genome Structure", in RNA Tumor Viruses, Vol 2, Weiss et al., eds, 2d ed, (1985), Cold Spring Harbor, NY.

[0009] The most commonly used retroviruses for study of gene therapy have been either the murine sarcoma virus (MSV) or the Moloney murine leukemia virus (MoMLV), (Mann, R., et al., Cell (1983) 33:153-159.) The proviral form of these retroviruses is isolated and inserted into more or less standard bacterial cloning vectors for amplification. The proviral insert, which contains the gag-, pol and env-encoding mRNA flanked by long terminal repeats containing the control sequences, along with a packaging site is then manipulated to replace the region containing the protein-encoding RNA with the desired foreign gene. If this DNA is transfected into host cells which have been infected with complete virus or with defective virus lacking only the packaging site, the RNA which is synthesized from the modified provirus is then packaged into virions for reinfection of another cell. This provides a mechanism for introduction of the DNA encoding the desired active ingredient or drug into the cell by infection.
EP 0 897 987 B1

There are two ways to go about this. In one approach, the modified proviral DNA is transfected into cells which bear an infection from the unmodified virus, co-residing in the cell. The normal viral vectors will synthesize the packaging materials and some of the mRNA produced by the modified provirus will be packaged in a manner analogous to the normal viral RNA and then can be used to infect target cell for the production of protein. Along with these commandeered viral envelopes, however, will be a certain number of repackaged normal viral RNAs which, if not separated from the "delivery truck" viruses simply cause additional virus infection in host cells infected with the products of this virion production round.

In a more useful approach, the provirus cloning vector containing the desired gene is used to transfect a cell which has been genetically modified to produce defective viral envelopes which contain no viral genomic RNA - in effect, empty delivery trucks. These cells are obtained by integration of the proviral form of a mutant retrovirus lacking the packaging site, and several such cell lines are available in the art to all that request them. Two of these lines, designated ψ-1 or ψ-2 are extensively described in Mann, R., et al., Proc Natl Acad Sci (USA) (1984) 33:153-159 (supra) and are made by transfecting host NIH 3T3 fibroblast cells with a plasmid containing MoMLV proviral inserts from which the ψ packaging site had been deleted. The ψ-2 cells apparently produce several empty viral envelopes per cell corresponding to the viral envelope of the native virus in the course of a generation. When these cells are transfected with proviral DNA containing both a foreign gene and the packaging site, ψ, they package the mRNA transcript from the proviral DNA containing the foreign gene into these empty envelopes to generate modified viruses which can infect any cells (murine in this case) which are normally hosts for MoMLV. It should be noted, however, that this recombinant, modified virus is defective in that it cannot cause the production of additional modified (or other) virions in the cell it "infects". It is able to cause the producuon of the protein the gene encodes in the "infected" cell, but the infection cannot spread to additional cells because no additional virions are produced.

More useful than ψ-2 for the preparation of medicaments in the present invention are the ψ-AM lines, which are available from Cone, R.D., et al., Proc Natl Acad Sci (USA) (1984) 81:6349-6353. These lines are also obtained by transfecting NIH 3T3 cells, but with a vector designated pMAV-ψ. This vector also contains an insert of a defective provirus which lacks the ψ packaging site. However, pMAV-ψ is a hybrid encoding the gag-pol sequences of MoMLV and envelope sequences derived from the amphotropic virus 4070A. The empty capsids produced by these cell lines package RNA transcripts of cotransfected modified proviral DNA to produce pseudo viruses which recognize and infect human, rat, and mouse cells.

It has recently been observed that retroviral vectors carrying gag sequences exhibit higher titers than viruses that lack these sequences, Bender, et al., 1987, J. of Virology, 61(5):1639-1646. Such high titer viruses facilitate efficient infection of various cells/tissues that are targets for gene therapy. It is thought that the high titers of these viruses is related to the presence of gag region sequences that hitherto were not thought to be involved in packaging of viral RNA into virions, and thus may allow for more efficient packaging. Regardless, such high titer retroviral vectors will have applications in gene therapy.

Thus, the art provides a system for moving genes into susceptible cells which has been, in the past, employed only for gene therapy or for generation of autocrine growth factors. These methods inevitably utilize an ex-vivo exposure of targeted cells to the retroviral vector; for example, in gene therapy, bone marrow cells are removed and treated, and then reimplanted. In the present invention, an analogous system is utilized to deliver pharmaceuticals to target cells using conventional methods of administration to produce a highly dead-end, localized "infection".

The invention is directed to highly unusual pharmaceutical compositions and to methods for delivering active drugs to cells of organisms susceptible to viral infection. The target organisms are ordinarily vertebrates. In one embodiment, the pharmaceutical composition is composed of delivery viruses which contain envelope proteins capable of causing transient and nonreplicative infection of the cells in the subject organism to be treated with the drug. These pharmaceutical compositions are administered by injection into the blood stream or by localized injection into masses of undesirable cells such as tumor cells. Alternatively, cells susceptible to viral infection may be removed from the host organism infected with the appropriate virus and then returned to the host organism where they secrete the desired protein drug.

In one aspect, the present invention provides a DNA construct comprising a first DNA encoding the y-interferon signal peptide of Figure 1 linked to the 5' end of a second DNA encoding a human protein not naturally linked to said signal peptide, wherein said signal peptide has the property of augmenting the secretion of said human protein from a mammalian cell. Such a DNA construct may be a retroviral vector.

Thus, in one embodiment, the invention additionally provides a drug delivery system which comprises a delivery retrovirus. The retrovirus has a "genome" comprising an RNA which encodes the desired active protein ingredient operably linked to control sequences which were derived from a retrovirus and to a ψ packaging site, and an envelope protein which is capable of effecting the infection of a target host cell with the viron, so that the target host cell alone is "infected", but unable to pass this infection to additional cells.

A high titer retroviral drug delivery system is described herein wherein the high titer characteristics of the system are derived from the presence of gag sequences present in the vector. This vector is particularly useful for...
transforming cells or tissues that require high titers of virus, preferably tumor infiltrating lymphocytes or bone marrow cells.

[0019] A particularly preferred embodiment of the invention is a retroviral drug delivery system wherein a retrovirus carries DNA that encodes a highly cell secretable form of tumor necrosis factor.

[0020] Further described below are also methods of administering one or more active protein(s) to a subject vertebrate host which comprise administering a drug delivery system of the invention either locally or systemically. Or, as alluded to above, the drug delivery system may be administered to a cell that is susceptible to viral infected, wherein the infection occurs in vitro, and the infection cell is then returned to the host organism where it produces the desired protein.

[0021] A general method of the invention can also be carried out by implanting ψ-cells transfected with a proviral DNA of the invention or cells infected with the pseudo virions they produce, to effect in situ production of the desired protein. Accordingly, the cotransfected ψ-cells and cells infected with the modified viruses they produce provide pharmaceutical compositions which are also aspects of the invention.

[0022] Also an aspect of the invention is a process to prepare the compositions thereof which comprises isolating the delivery virions produced by the foregoing ψ-packaging cells.

[0023] Figure 1 shows the DNA sequence that encodes the gamma interferon signal peptide, and a portion of the DNA sequence that encodes mature TNF.

[0024] Figure 2 shows immunoprecipitation analysis of 35S-methionine labelled TNF encoded by pFVX TNF. Lane A, untransfected cells and lane B, cells transfected with pFVX TNF. Methionine labels only the 26 kD precursor, not the 17 kD "mature" form (as predicted from the amino acid sequence).

[0025] Figure 3 shows immunoprecipitation analysis of 35S-cysteine labelled TNF encoded by pFVX TNF. Lane A, untransfected cells and lane B, cells transfected with pFVX TNF. Cysteine labels both the 26 kD precursor and the 17 kD mature form (as predicted from the amino acid sequence).

[0026] Figure 4 shows immunoprecipitation analysis of TNF retrovirus infected 35S-cysteine labelled 3T3 cells. Lane A, supernatant derived from NIH 3T3 cells; lane B, cytoplasmic lysates of NIH 3T3 cells; lane C supernatant derived from cells infected with the FVX TNF retrovirus (TNF-V); and lane D, cytoplasmic lysates derived from cells infected with same. Note that the 26 kD form of TNF is found in the cytoplasmic extracts and is not secreted, whereas the 17 kD "mature" or secreted form is found in both the cytoplasmic extracts and the supernatants.

[0027] Figure 5 shows the structure and bioactivity of the TNF retroviral genome. Lane A, restriction map of FVX TNF retroviral genome, and lane B, plaque assay of pFVXM transfected psi-am cells. The assay was performed as described below.

[0028] Culture dishes with G418-resistant colonies were overlaid with L929 cells at a density of 7.3 x 10⁴ cells/cm². When the cells attached, after 30 minutes, the medium was aspirated, and the cells were overlaid with DMEM supplemented with 10% FCS and 0.9% Noble agar. After incubation for 18-24 hours, clones surrounded by a lysed zone of L929 cells were isolated by cloning cylinders and expanded to mass culture.

[0029] Figure 6 shows the strategy for producing the two gene infective drug delivery retrovirus that encodes the dominate selectable marker for neomycin resistance and TNF.

[0030] Figure 7 panel A. shows the restriction map of the cDNA sequence that encodes 26 kD TNF. Panel B shows a hydrophobicity plot of 26 kD TNF, and panel C shows the DNA and amino acid sequences of the molecule.

[0031] Figure 8 shows a restriction map of the cDNA sequence that encodes 26 kD TNF and the regions of the molecule that were deleted to produce the various muteins referred to in Table 1.

[0032] Table I shows the cytotoxic activity of various TNF constructs.

1. Modes of Carrying Out the Invention

a. Definitions

[0033] As used herein, "drug delivery virion" refers to a modified retrovirus wherein the genome is an RNA which contains control sequences derived from retroviral nucleic acids operably linked to one or more coding sequences for an "active ingredient" protein(s). The genome is packaged in a protein envelope which is compatible with and capable of causing "infection" with the contained genome in a subject intended to be treated with the protein. The infection in this case extends to the entry of the desired RNA into the cell and production of the protein; no additional infective virions are produced.

[0034] High titer "drug delivery virions", or "high titer retrovirus" is intended to refer to those vectors known in the art that allow production of retrovirus at titers at least 10⁵-10⁶ cfu/ml. Examples of this type of virus are shown in Bender, et al., above.

[0035] Thus, "dead-end" infection describes a modified form of infection wherein the viral envelope facilitates the entry of the modified virus into the cytoplasm, and the contained genome is expressed, but no new virions are produced.
Control sequences refers to those nucleic acid sequences containing, for example, promoters and, often, enhancers which are necessary and sufficient for the production of the desired active protein ingredient by expression of the coding sequence operably linked to it.

In the case of the drug delivery retrovirions of the invention, the RNA genome and its proviral counterpart also includes the ψ packaging site.

"Tumor Necrosis Factor" or "TNF" as used herein refers to both native and recombinant forms of this known, mammalian cytokine. TNF has been referred to by other names in the literature, including "Cachectin" and "TNF-α". Recombinant TNF or rTNF refers to proteins, including muteins, produced by expression of recombinant DNA that have the same or substantially the same amino acid sequence as native TNF (or portions thereof), and retain both the in vitro and in vivo biological activity of TNF. The isolation and production of both native and recombinant mammalian TNF, including human TNF, is known in the art. See, e.g., Carswell et al., 1975, Proc. Natl Acad. Sci. USA, 72: 3666-3670; Williamson et al., 1983, Proc. Natl Acad. Sci. USA, 80: 5397-5401; Wang et al., 1985, Science, 228: 149-154; Beutler et al., 1985, J. Exp. Med., 161:984; Beutler et al., 1985, Science, 229: 869; Beutler et al., 1985, Nature, 316: 552; Pennicia et al., 1984, Nature, 312: 724; Aggarwal et al., 1985, J. Biol. Chem., 260: 2345.

With regard to TNF, the terms "prohormone", and "mature" hormone have the following meanings. Prohormone refers to the 26 kD molecule, whereas mature hormone refers to the 17 kD molecule that results from the removal of a 76 amino acid leader sequence. The prohormone is known to be membrane bound and is not freely circulating, whereas the mature hormone is not membrane bound and is free to circulate. Thus, encompassed within the definitions of TNF is the prohormone and mature hormones forms, and additionally, other forms of TNF wherein the 76 amino acid leader sequence is removed and replaced with another leader sequence that facilitates the secretion of the mature hormone. A number of leader sequences will perform this function, but preferred is the interferon leader sequence, as described by Gray, P., et al., 1982, Nature, 295:503.

"Nucleic acid sequences" will sometimes be employed herein as a generic term covering both DNA and RNA fragments. As the materials of the invention include retroviral genomes and their proviral counterparts, particular functional sequences referred to will occur both in RNA and DNA form. The corresponding loci will be referred to interchangeably for their occurrences in both DNA and RNA, as it will be understood that in the ordinary course of infection, such functionalities are, indeed, interchangeable. For example, the ψ packaging site apparently is operable in the RNA genome to be packaged; however, the corresponding sequences occur in the proviral DNA. Similarly, promoter, enhancer, and terminator sequences occur, though in slightly different forms, in both the genomic RNA and proviral DNA forms. The interchangeability of these functionalities in the various phases of the viral life cycle is understood by those in the art, and accordingly, rather loose terminology in regard to DNA or RNA status is often used in referring to them. Specifically, sequences specified by a progression of bases should be understood to include these specific sequences and their complements, both in DNA and RNA forms.

The pharmaceutical compositions of the invention include the drug delivery virions produced by transfected intermediate cells which have been transformed with ψ-helper provirus and thus produce empty envelopes. For simplicity in referring to these cells used in the preparation of this composition, these cells will be referred to as "packaging" cells.

The resulting delivery virions can also be used to infect wild type cells in vitro, for example, as models for their ability to cause production of the desired protein in the target host. These infected cells are referred to herein as "tester" cells.

B. General Description

The crucial intermediate in the preparation of the retroviral compositions of the invention is a proviral DNA vector containing the coding sequence for the protein drug(s) to be administered. The preferred embodiment protein drugs are those that are cytotoxic or cytostatic for tumor cells, preferably tumor necrosis factor (TNF) and interleukin-2 (IL-2). The DNA encoding such active protein ingredient may be obtained from any convenient source and, depending on the protein chosen, can be synthesized chemically, recovered from a cDNA library, isolated from genomic DNA, or otherwise obtained by means known in the art.

The proteins to be administered according to the method of the invention include any protein(s) which has a desired effect on an infected cell in the subject to be treated. Advantages of the drug delivery system of the invention are experienced especially when the protein operates within the cytoplasm of a target cell. For example, tumor necrosis factor (TNF) is capable of selectively killing tumor cells, but needs to transit the cell membrane to exert its effect. Other proteins, such as ribotoxins and the various colony-stimulating factors, also operate intracellularly.

It will be appreciated that retroviral vectors constructed to express two genes may include two proteins that have prophylactic or therapeutic value, or one gene could express a dominate selectable marker which would facilitate identifying cells transfected with the two gene construct. An example of a selectable marker would be resistance to G418 that is conferred on cells by the presence of the neomycin gene sequences.
The system of the invention is applicable also to materials whose function is carried out outside the target cells or which function by binding to receptors on the cell surface. In this case, however, the drug delivery virions are administered indirectly as an implant of transfected packaging cells or of tester cells which have been infected with the drug delivery virions. For example, tissue plasminogen activator or urokinase, which act in the bloodstream itself, directly on soluble enzymes in the blood, could be produced in situ by these implanted cells.

DNAs encoding the foregoing proteins are available in the art, and can be obtained bracketed with linker sequences for convenient manipulation, if desired. The nature of the delivery system is such that both genomic and cDNA sequences can be used, since introns can be processed in the environment transfected by the provirus. The protein drug can be encoded in the delivery virion to specify any form of the protein desired, for example, an active form, a mature form, a fused protein, a preprotein, or a preproprotein. In the examples shown below, cDNA clones encoding TNF are used as the source of the coding sequence; however, clearly this is illustrative only, and any other desired coding sequence could also be employed. Further, it will be appreciated that two gene viruses can be constructed wherein one of the above molecules is expressed along with a dominant selectable marker such as resistance to G418.

The proviral transfer vector is obtained by isolation of an appropriate proviral form of a retrovirus such as the commonly used murine sarcoma virus (MSV), Moloney murine leukemia virus (MoMLV), Harvey sarcoma virus (HaSV), or a variety of other retroviruses. It is known that for certain target cells/tissues that they require a high titer of retrovirus to become infected. In these instances, the preferred retrovirus is one that includes the gag sequences, the so called gag+ vectors. Exemplary of such vectors are those described by Bender, et al., above, and Miller et al., in Current Communications in Molecular Biology--Viral Vectors, page 122, Cold Spring Harbor (eds. Gluzman, and Hughes, 1988).

Since the proteins associated with the virion per se are deleted in the construction, even components derived from infectious retroviruses which cause disease in humans, such as hepatitis, HTLVl, and LAVI, could also be used, although it is not necessary to utilize such materials which, of course, have the potential for psychological resistance among the subjects to be treated. Further, infectivity host range could be altered by introducing a foreign viral envelope glycoprotein gene (i.e., rabies, VSV, etc.) into either the recombinant provirus or the packaging ψ type cell line.

The proviral form of the selected retrovirus is obtained by propagating the virus in tissue culture, isolating proviral DNA, cloning this proviral DNA into a lambda phage cloning vector, and propagating the recombinant vector in a susceptible bacterial host where the phage vector is integrated. The proviral DNA is excised and reisolated. The proviral DNA is then provided with suitable linkers and inserted into a bacterial cloning vector for amplification. Suitable bacterial cloning vectors include pBR322, pMl, or vectors of the pUC series. These may need to be modified to eliminate or alter restriction sites and so forth, as is understood by those skilled in the art. The cloning vectors are restricted and then provided with inserts of the linkerframed proviral DNAs.

The native proviral DNA inserts contain the viral protein encoding sequences flanked by long terminal repeat (LTR) sequences and contain the packaging site adjacent one of theLTRs. These protein-encoding sequences between the packaging site and the other LTR are then eliminated by appropriate restriction and/or exonuclease digestion and replaced by linker or polylinker sequences. The appropriate sites may be already available in the intervening region, or if not, these can be obtained using site-directed mutagenesis, as is understood in the art.

After amplification, the vectors containing the modified provirions are cleaved with suitable restriction enzymes to open the vectors for insertion of the desired coding sequence. Since the control sequences, except for the packaging site, are in the long terminal repeats, insertion of a desired protein-encoding drug sequence into the linker places it in operable linkage with the controls. The resulting modified virion then becomes an expression system for the desired protein instead of for the viral proteins, and still retains a packaging site to permit this modified viral genome to be infective.

These drug delivery provirion DNAs are amplified and isolated using known techniques to provide a source of transfecting DNA for the ψ- packaging cells.

If desired, the inserted coding sequence in the modified virion, high or low titer virion, can also include a marker sequence. If a two gene retroviral vector is being used, one gene may encode neomycin resistance and thus confer resistance to G418. If a significant decrease in expression of the inserted sequence is observed then transfection of the ψ- packaging cells can be coincident with transformation with vectors containing a suitable marker, most appropriately the G418 resistance marker. Any suitable marker can, of course, be used, and such markers include, for example, Eco gpt conferring resistance to mycophenolic acid and DHFR sequences conferring methotrexate resistance.

The modified provirion, along with a marker plasmid, if necessary, is transfected into recipient packaging cells using standard transfection techniques such as calcium phosphate precipitation. The transformants are grown in culture appropriate to their particular cell type; the ψ-3T3 cells illustrated below are cultured under conditions generally used for wild type 3T3 cells. Of course, an appropriate amount of a selective component of the medium, such as G418, is also included to select successful transformants.

The transformed packaging cells can be shown successfully to produce the proteins encoded by the inserted
coding sequences in the modified virion by assessing the concentration of protein in the medium or cell lysate, as appropriate.

To obtain the packaged recombinant virions, the supernatant from the packaging cells is separated from the cells, for example, by using a 0.45 micron filter. The virus is obtained from the filtrate by, for example, high-speed centrifugation to harvest the viral particles or the filtrate is used per se. The concentrated viral particles or the filtrate are then formulated as pharmaceutical compositions.

In addition, the virion preparation can be assessed for competence to effect drug delivery to target cells by using a tester cell line, for example, the wild-type counterpart of the packaging cell line, which produces no empty viral capsids, or any cell line susceptible to infection by the virus and, preferably, also, to the protein produced by the recombinant virion. The amount of desired protein produced by this tester cell can be assessed, and, in the case of the appropriate cells, this assessment can be by the direct effect of the protein on the cells.

Both the packaging and tester cells can also be used as implants to provide a source of the protein drug in situ.

It is important to note that the LTRs contain most of the transcriptional control elements of retroviruses, including promoters and enhancers. Thus, while the inserted protein drug DNA sequences may be transcribed under the control of viral control elements, it is intended that also encompassed within the invention are viral vectors that have the viral control elements replaced with promoters/enhancers that normally regulate the transcription of a particular protein drug.

There are at least two basic approaches to obtain the expression of various protein drugs wherein the DNA sequences that encode the drugs are under the control of their normal control elements.

The first approach entails the substitution of the promoter, or the enhancer and promoter, or just the enhancer in the 3' retroviral LTR of the provirus with a promoter, or an enhancer and promoter, or an enhancer from a heterologous virus or cellular gene. Upon transfection, such a provirus would express itself from the wild type retroviral LTR. After virus rescue due to the nature of the retroviral life cycle, mutations of the U3 region of the 3' LTR are immortalized in the 5' LTR. Thus, the substitution of a heterologous expression element in the 3' LTR becomes immortalized in the 5' LTR of the newly integrated provirus. Thus, the expression of the exogenous gene inserted into the recombinant retrovirus is driven from the heterologous expression element originally resident in the 3' LTR of the recombinant provirus.

The second approach entails the deletion of the enhancer and promoter or merely the promoter resident in the 3' LTR by either restriction endonuclease digestion or through the application of site directed mutagenesis. When such a vector is rescued as an infectious retrovirus the resultant infectious provirus lacks expression elements in both the 5' and 3' LTRs. In this case, the expression defect is complemented by the insertion of an exogenous promoter or promoter/enhancer combination or a promoter enhancer combination plus an additional cis acting element (such as the U5 element of HTLV-1) between the LTRs of the recombinant provirus, just 5' to the gene to be expressed. Under these circumstances, after infection and gene transfer, the transferred gene is now subject to the regulatory controls imposed by the proximal promoter. Deletion of the expression elements in the LTRs insures that there is no interference from the LTR promoters.

Using the above approaches, retroviruses can be produced that have a variety of promoters, including the IL-2 promoter or the IL-2 receptor promoter driving the transcription of their corresponding proteins.

C. Utility and Administration

The drug delivery system of the invention is effective in the net result of transmitting protein drugs into cells where they may exert their effects. The transfer occurs by virtue of viral infection so it is merely necessary to juxtapose the drug delivery virions with the target cells. If the target cells are localized in, for example, a solid tumor the composition of the invention may be injected directly into the solid tumor. If the cells are, however, widely distributed such as in a leukemia or where, for example, red blood cells or bone marrow cells are needed to be targeted, systemic intravenous injection is required.

Alternatively, the drug may be delivered by infecting the cells in vitro and returning the infected cells to the host organism where they express the protein drug. The latter procedure will be particularly useful for gene therapy involving particular types of cells, including bone marrow and skin fibroblast cells.

Notable applications of the drug delivery systems described herein will involve the infection of tumor infiltrating lymphocytes, or other functionally similar cell types that act as vehicles for carrying the protein drugs to tumor cells, with retroviruses that encode a variety of protein drugs that are effective as anti-cancer agents. Preferably the protein drugs are IL-2 or TNF.

The virosins are prepared for injection in typical ways suitable for administration of drugs by suspension in isotonic saline or other suitable pharmaceutical excipient as is known in the art.

Implantation of packaging or tester cells is conducted by formulating them into suitable compatible formulations, such as physiological saline, and directly injecting them into the desired location. The cells can also be formulated using encapsulation techniques, (See, e.g., U.S. Patent No. 4,391,909.)
D. Standard Methods

[0069] Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described by Cohen, S.N., Proc. Natl. Acad. Sci. (USA) (1972) 69:2110, or the RbCl2 method described in Maniatis et al., Molecular Cloning: A Laboratory Manual (1982) Cold Spring Harbor Press, p. 254 was used for procaryotes or other cells which contain substantial cell wall barriers. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and Van der Eb, Virology, 1978, 52:546 is preferred.

[0070] Construction of suitable vectors containing the desired coding and control sequences employs standard ligation and restriction techniques which are well understood in the art. Isolated plasmids, DNA sequences, or synthesized oligonucleotides are cleaved, tailored, and religated in the form desired.

[0071] Site specific DNA cleavage is performed by treating with the suitable restriction enzyme (or enzymes) under conditions which are generally understood in the art, and the particulars of which are specified by the manufacturer of these commercially available restriction enzymes. See, e.g., New England Biolabs, Product Catalog. In general, about 1 µg of plasmid or DNA sequence is cleaved by one unit of enzyme in about 20 λ of buffer solution; in the examples herein, typically, an excess of restriction enzyme is used to insure complete digestion of the DNA substrate. Incubation times of about one hour to two hours at about 37° C are workable, although variations can be tolerated. After each incubation, protein is removed by extraction with phenol/chloroform, and may be followed by ether extraction, and the nucleic acid recovered from aqueous fractions by precipitation with ethanol and resuspension in 10 mM Tris, 1 mM EDTA, pH 7.5. If desired, size separation of the cleaved fragments may be performed by polyacrylamide gel or agarose gel electrophoresis using standard techniques. A general description of size separations is found in Methods in Enzymology, 1980, 65:499-560.

[0072] Restriction cleaved fragments may be blunt ended by treating with the large fragment of E. coli DNA polymerase I (Klenow) in the presence of the four deoxynucleotide triphosphates (dNTPs) using incubation times of about 15 to 25 minutes at 20 to 25°C in 50 mM Tris pH 7.6, 50 mM NaCl, 6 mM MgCl2, 6 mM DTT and 5-10 µM dNTPs. The Klenow fragment fills in at 5′ sticky ends but chews back protruding 3′ single strands, even though the four dNTPs are present. If desired, selective repair can be performed by supplying only one of the, or selected, dNTPs within the limitations dictated by the nature of the sticky ends. After treatment with Klenow, the mixture is extracted with phenol/ chloroform and ethanol precipitated following by running over a Sephadex G-50 spin column. Treatment under appropriate conditions with S1 nuclease results in hydrolysis of any single-stranded portion.

[0073] Synthetic oligonucleotides are prepared by the triester method of Matteucci et al., 1981, J. Am. Chem. Soc., 103:3185, or using commercially available automated oligonucleotide synthesizers. Kinasing of single strands prior to annealing or for labelling is achieved using an excess, e.g., approximately 10 units of polynucleotide kinase to 0.1 n mole substrate in the presence of 50 mM Tris, pH 7.6, 10 mM MgCl2, 5 mM dithiothreitol, 1-2 mM ATP, 1.7 pmoles χ32P-ATP (2.9 mCl/m mole), 0.1 mM spermidine, 0.1 mM EDTA.

[0074] Ligations are performed in 15-30 λ volumes under the following standard conditions and temperatures: 20 mM Tris-Cl pH 7.5, 10 mM MgCl2, 10 mM DTT, 33 µg/ml BSA, 10 mM-50 mM NaCl, and either 40 µM ATP, 0.01-0.02 (Weiss) units T4 DNA ligase at 4°C (for "sticky end" ligation) or 1 mM ATP, 0.3-0.6 (Weiss) units T4 DNA ligase at 14°C (for "blunt end" ligation). Intermolecular "sticky end" ligations are usually performed at 33-100 µg/ml total DNA concentrations (5-100 mM total end concentration). Intermolecular blunt end ligations (usually employing a 10-30 fold molar excess of linkers) are performed at 1 µM total ends concentration.

[0075] In vector construction employing "vector fragments", the vector fragment is commonly treated with bacterial alkaline phosphatase (BAP) in order to remove the 5′ phosphate and prevent religation of the vector. BAP digestions are conducted at pH 8 in approximately 150 mM Tris, in the presence of Na+ and Mg+2 using about 1 unit of BAP per µg of vector at 60°C for about 1 hour. In order to recover the nucleic acid fragments, the preparation is extracted with phenol/chloroform and ethanol precipitated and desalted by application to a Sephadex G-50 spin column. Alternatively, religation can be prevented in vectors which have been double digested by additional restriction enzyme digestion of the unwanted fragments.

[0076] For portions of vectors derived from cDNA or genomic DNA which require sequence modifications, site specific primer directed mutagenesis is used. This is conducted using a synthetic primer oligonucleotide complementary to a single stranded phage DNA to be mutated except for limited mismatching, representing the desired mutation. Briefly, the synthetic oligonucleotide is used as a primer to direct synthesis of a strand complementary to the phage, and the resulting double-stranded DNA is transformed into a phage-supporting host bacterium. Cultures of the transformed bacteria are plated in top agar, permitting plaque formation from single cells which harbor the phage.

[0077] Theoretically, 50% of the new plaques will contain the phage having, as a single strand, the mutated form; 50% will have the original sequence. The resulting plaques are hybridized with kinased synthetic primer at a temperature which permits hybridization of an exact match, but at which the mismatches with the original strand are sufficient to prevent hybridization. Plaques which hybridize with the probe are then picked, cultured, and the DNA recovered.
Details of site specific mutation procedures are described below in specific examples.

More specifically, mutagenesis can be carried out using any number of procedures known in the art. These techniques are described by Smith, 1985, Annual Review of Genetics, 19:423, and modifications of some of the techniques are described in Methods in Enzymology, 154, part E, (eds.) Wu and Grossman (1987), chapters 17, 18, 19, and 20. The preferred procedure is a modification of the Gapped Duplex site-directed mutagenesis method. The general procedure is described by Kramer, et al., in chapter 17 of the Methods in Enzymology, above.

Conventional M13 mutagenesis methods involve annealing a short synthetic oligonucleotide to single stranded M13 DNA having a cloned target coding sequence that is sought to be mutagenized. The oligonucleotide is almost, but not entirely complementary to the target sequence and has at least one mispaired nucleotide. After the annealing reaction, the remaining portion of the single stranded DNA must be filled in to give heteroduplex DNA that can be transferred into a suitable host cell which allows for the expression of the mutation. In the gapped duplex method, a partial DNA duplex is constructed that has only the target region exposed, unlike the conventional methods which have the target region and the rest of the single stranded M13 DNA exposed. Like the conventional methods, a short oligonucleotide is annealed to the target region, and extended and ligated to produce a heteroduplex. However, because only a small portion of single-stranded DNA is available for hybridization in the gapped duplex method, the oligonucleotide does not anneal to undesired sites within the M13 genome. Further, this method has the additional advantage of introducing fewer errors during the formation of the heteroduplex since only a very small region of DNA on either side of the target region has to be filled in.

More specifically, the gapped duplex method involves cloning the target DNA sequence into an appropriate M13 phage that carries selectable markers, such as for example the stop codon amber mutation. The latter allows for negative selection in a host cell that cannot suppress the effects of the mutation. Preferably the phage is M13mp9 which contains two amber codons in critical phage genes. Thus, the sequence that encodes 26 kD TNF is cloned into M13mp9 amber+, and single stranded DNA is prepared therefrom using standard techniques. Next, double stranded replicative form DNA from M13 GAP, a genetically engineered M13 derivative that lacks the amber codons is cleaved with Hinc II restriction enzyme. The base sequence of M13 GAP is similar to M13mp18, which lacks both the amber codons and the sequence between base pairs 6172 and 6323. This deletion flanks the multiple cloning sites of the M13mp series and generates a unique Hinc II site. Gapped duplex DNA is formed, using standard DNA/DNA hybridization techniques, consisting of single stranded DNA having the amber codons, and a second strand of DNA from Hinc II digested M13 GAP lacking both the amber codons and the TNF coding sequences. Thus, the only portion of the gapped duplex that is exposed is the 26 kD TNF target sequence. The desired oligonucleotide is annealed to the gapped duplex DNA, and any remaining gaps filled in with DNA polymerase and the nicks sealed with DNA ligase to produce a heteroduplex. The latter is transfected, preferably into a mismatch repair deficient host, and mixed phage produced. From the mixed phage population, phage carrying unmutated 26 kD TNF DNA, which also have the amber mutations, can be selected against by infecting the mixed phage population into a host cell that cannot suppress the amber mutation. Clones can then be screened for phage that carry the desired TNF mutation.

Host strains used in cloning and expression herein are as follows:

For cloning and sequencing, HB101 was used as the host.

For M13 phage recombinants, E. coli strains susceptible to phage infection, such as E. coli K12 strain DG98 are employed. The DG98 strain has been deposited with ATCC 13 July 1984 and has accession number 1985.

E. coli strain HB101 was used as the host.

Preparation of Modified Proviron Containing TNF

The coding sequence for human TNF was obtained from the clone pB11, a cDNA clone extensively described...
...in U.S. Patent No. 4,677,063, issued June 30, 1987, and incorporated herein by reference. It may also be derived from clone pB11 also shown in U.S. Patent No. 4,677,063. This clone is also on deposit at ATCC, ATCC# 39894, deposited October 15, 1984.

[0087] The plasmid pAW711, also there described, and deposited 8 November 1984, ATCC# 39918 can also be used as a source of TNF sequences.

[0088] The vector containing the retroviral control system in proviral form along with the packaging site is a derivative of pEVX; pEVX contains the LTRs and y site from MoMLV inserted into the EcoRI site of pML (Kriegler, M., et al., 1984, Cell, 38:483-491). pEVX was modified to eliminate a splice donor site by replacing a Smal/BalI segment with a 978 bp 5amI/Smal fragment from the Harvey sarcoma virus (HaSV), which contains the 3' portion of the 5' LTR and the 5' portion of the HaSV genome. The resulting construct was digested completely with SstII and partially with BglII to obtain a 669 bp fragment lacking nonessential HaSV regions. This fragment was gel purified and religated to Smal/BalI digested pEVX. The resulting vector pFVXM contains a polylinker between the LTR fragments derived from MoMLV and includes the packaging site from this virus, but lacks the splice donor site in the upstream LTR. pFVXM, on deposit with the American Type Culture Collection, Accession No. 67,103.

[0089] The pFVXM vector is amplified in E. coli strain HB101, and the plasmid DNA isolated. pB11 is likewise amplified in E. coli HB101 and reisolated as plasmid DNA. Both preparations of plasmid DNA are treated with Pst I (to excise the TNF-encoding region from pB11 and to open pFVXM in the polylinker region). Ligation of the fragments is carried out using standard conditions and the ligation mixture transformed into E. coli HB101 to Amp R. Plasmid DNA was again isolated, and the correct orientation of the insert was established by restriction analysis. Recombinant plasmids with the correct orientation of the TNF-encoding sequences are designated pFVXMTNF, and used to transfect appropriate packaging cells as described below. One such vector, pFVXMTNF6, is referred to more in detail below.

[0090] In a similar manner, for example, pFVXM may be digested with Pst I and ligated to DNA sequences encoding ricin A toxin, CSF-1, and urokinase, each provided with suitable Pst I linkers when needed. Further desirable, are vectors that encode leukocyte interferons. preferably hybrid interferon molecules as described by Weck et al., in Nucleic Acids Res., 1981, 9(22):6153, and in U.S. Patent No. 4,678,751, to Goeedel D.V.N. Particularly preferred is the hybrid interferon designated LeIF-AD (Bgt). The resulting vectors are designated pFVXMRA, pFVXMCASF, pFVXMUK and pFVXMIF, respectively. The DNA sequence that encodes ricin A toxin is described in European Patent Application No. 237,676, while the cDNA sequences that encode mCSF, and urokinase are described in U.S. Patent Nos. 4,847,201, 4,868,119, and EPO 92,182 and in Jacobs et al., 1986, DNA, 4(2):139-146, respectively.

[0091] It will also be understood that the TNF sequence present in pFVXMTNF may have the 76 amino acid leader sequence associated with the prohormone partially deleted, or replaced with another leader sequence that produces abundant amounts of the mature form of TNF. For example, such a construct can be produced by removing the TNF Nst 1 fragment from pFVXMTNF and subcloning it into a suitable M13 vector, followed by mutagenesis with an appropriate oligonucleotide.

[0092] Thus, the DNA fragment encoding 26 kD TNF was excised from pFVXMTNF, and mutagenized after subcloning into M13mp19 amber using the following oligonucleotide (Cerus number CP 383) that encodes the gamma interferon signal peptide:

5'-TTCGAGAGATGATCTGACGCTGAGAAACCACAGATGCAAGGC-
TGAAAAGCCAGAGATATAACTTGTATATATTGATGTCCTTTCCAGGGG-3'

The mutagenized construct containing the y-interferon signal peptide was excised from the M13 vector, and cloned into a derivative of pFVXM termed pUC.FVXM ΔIII to produce pUC.FVXM ΔIII TNF γ sig. The latter construct is on deposit with the American Type Culture Collection with Accession Number 68121, and has been further deposited with Cetus Master Culture Collection, and is denoted 3688. The DNA that encodes the mature form of TNF with the y-interferon signal peptide is shown in Figure 1; only a portion of the DNA that encodes the 17 kD molecule is depicted. Shown below is the γ-interferon signal peptide linked to 17 kD TNF.

...
pUC.FVXM ΔIII is similar to pFVXM with the exception that it lacks 1110 base pairs upstream of the 5'-LTR. Immunoprecipitation followed by SDS-PAGE of cell extracts, both lysates and supernatants obtained from NIH-3T3 cells transfected with pUC.FVXM ΔIII TNF γ-sig revealed no detectable 26 kD TNF, but considerable amounts of the 17 kD molecule.

In addition to 17 kD or 26 kD TNF, retrovirions can be constructed that encode muteins of these molecules. The preferred muteins are those that maintain TNF in a membrane bound, cytotoxic form. More preferred are muteins that have deleted the first 12 amino acids, TNF Δ (1 → 12), or the first and twelfth amino acids, TNF Δ (1 + 12), of the mature form of TNF (i.e. 17 kD TNF). In contrast to these two muteins, it was determined that TNF Δ (1 + 13) is membrane bound but not cytotoxic. It was thus employed as a control in some of the examples presented below. The numbering of the amino acids corresponds to the amino acid sequence of the prohormone form of TNF shown in Figure 11. The muteins can be generated using standard mutagenesis techniques and the following oligonucleotides to perform the mutagenesis.

CP 467 : Δ (1 → 12)
5'- TAC AAC ATG GGC TAC TGC CTG GGC CAG AGG -3'

CP 472: screens Δ (1 → 12)
5'- TGG GCT ACT GCC TGG G -3'

CP 495 : ΔVAL 1
5'- TCG AGA AGA TGA TCT TGC CTG GGC CAG AGG -3'

CP 496 : screens ΔVAL 1
5'- TGA TCT TGC CTG -3'

CP 497 : ΔPRO 12
5'- TAC AAC ATG GGC TAC CTT GTC ACT CGG GGT -3'

CP 498: screens ΔPRO 12
5'- GGC TAC CTT GTC -3'
Briefly, the oligonucleotides are kinased using the following reaction solution and conditions: 3 µl 10 x KB buffer, 3 λ 10 mM rATP (1:10 dilution of 0.1 M rATP stock), 2 λ mutagenic oligonucleotide (100 pmole/λ), 21 λH2O, and 1 λ polynucleotide kinase (10 units/λ). The reaction is run at 37°C for 45 minutes, and then at 65-68°C for 5 minutes. Next, 24 λ of the kinased oligonucleotide is diluted with 56 λ of H2O to give 2 pmole/λ.

The gapped duplex is formed as described below, followed by annealing the oligonucleotides. The following reagents are combined in a total volume of 40 λ: 8 5 x GDB buffer, 0.50 pmole ssDNA, and 0.10 pmole Hinc II linearized M13 GAP RF DNA. 10 λ is removed for future use, and the remaining 30 λ is treated sequentially as follows: 100°C for 3 minutes, 65°C for 5 minutes, followed by cooling to room temperature for 30 minutes, and then placing the reaction mixture on ice. Next, 10 5 of gapped duplex and 10 5 of control ungapped material is subject to electrophoresis on a agarose gel to check gapped duplex formation. Assuming the gel shows the presence of a third band, the gapped duplex has formed and the kinased oligonucleotides can be annealed to the duplex by combining 16 λ of gapped duplex reaction mixture, and 4 λ of diluted kinased oligonucleotide, and heating the mixture to 65°C for 3 minutes, followed by cooling to room temperature for 20 minutes.

To produce TNF Δ (1 + 12) and TNF Δ (1 + 13), two kinased oligonucleotides were annealed to the same gapped duplex. CP 495, CP 497, and CP 499 were kinased as before, but diluted to a concentration of 4 pmole/λ. To produce TNF Δ (1 + 12), 2 λ of CP 495 and 2 λ of CP 497 was added to 16 λ of gapped duplex and annealed. To produce TNF Δ (1 + 13), 2 λ of CP 495 and 2 λ of CP 499 was added to 16 λ of gapped duplex and annealed.

The heteroduplex is completed by the appropriate extension and ligation reactions consisting of combining the following reagents in a total volume of 40 λ: 10 λ gapped duplex and primer, 4 λ 10 x PEL buffer, 4 λ dNTPs (0.25 mM solution made from 10 mM stocks, 3 λ ATP (10 λ of 0.1 M ATP stock + 1490 λ H2O = 0.662 mM), 17 λ H2O, 1 λ Klenow (5 u/λ), and 1 λ T4 DNA ligase (0.6 Weiss u/λ, diluted stock with 1 x PEL). The reaction is conducted at 16°C for 2 hours, followed by transformation of 10 λ of the extension/ligation mixture into 200 λ of thawed competent HB2154 cells. The cells are kept at 0°C for 30 minutes, and then 42°C for 1.5 minutes, followed by plating various volumes of the transformation mix (e.g., 50 λ, 10 λ, etc.) with 100 λ of fresh overnight culture of HB2151 cells + 3.0 λ of soft agar.

The resulting plaques are screened using the plaque hybridization procedure. While a variety of such procedures are known, a description of the preferred procedure follows. Plates are replicated onto duplicate nitrocellulose filter papers (S & S type BA-85) and the DNA fixed to the filter by sequential treatment for 5 minutes with 0.5 N NaOH : 8 5 x SSC, pH 7.0, 5 x Denhardt’s solution (polyvinylpyrrolidone, plus Ficoll and bovine serum albumin; 1 x 0.02% of each), 50 mM sodium phosphate buffer at pH 7.0, 5 mM EDTA, 0.1% SDS, and 100 µg/ml salmon sperm DNA. The prehybridization buffer is removed and the samples hybridized with the appropriate kinased probe, that is to say kinased and baked at 80°C for 2 hours, in vacuo.

The duplicate filters are prehybridized at 55°C for 2 hours with 10 µl per filter of DNA hybridization buffer, 5 x SSC, pH 7.0, 5 x Denhardt’s solution (polyvinylpyrrolidone, plus Ficoll and bovine serum albumin; 1 x 0.02% of each), 50 mM sodium phosphate buffer at pH 7.0, 5 mM EDTA, 0.1% SDS, and 100 µg/ml salmon sperm DNA. The prehybridization buffer is removed and the samples hybridized with the appropriate kinased probe, that is to say kinased oligonucleotides as shown above, under conditions which depend on the stringency desired. About 2 x 10⁶ cpm/ml total is used. Typical moderately stringent conditions employ a temperature of 42°C plus 50% formamide for 24-36 hours with 1-5 µl/filter of DNA hybridization buffer containing probe. For higher stringencies high temperatures and shorter times are employed. The preferred hybridization conditions consists of hybridizing the probes to the filters in 5 x SSC. Denhardt’s solution, 50 mM NaPO4, pH 7.0-5.5 EDTA, 0.1% SDS, and 100 µg/ml salmon sperm DNA at 100 below the TM of the oligonucleotide used to do the screening. Next, the filters are washed twice, 30 minutes each wash, at room temperature with 2 x SSC, 0.1% SDS ; then washed once with 2 x SSC and 0.1% SDS at 5°C below the TM of the oligonucleotide used to screen, and air dried. Finally, the filters are autoradiographed at -70°C for 36 hours. Autoradiography reveals those plaques containing the virus that carries the muteins of interest.

To screen for double mutants, one set of filters were probed with one screening oligonucleotide and a replicate set of filters (lifted from the same plates) were probed with the other appropriate screening oligonucleotide. The resultant autoradiographs were aligned and plaques that hybridized to both screening oligonucleotides were picked and sequenced, from the M13 vectors, and cloned into one of several possible vectors to produce infectious retrovirions. Exemplary vectors include pFVXM, pUCFVXM ΔHIII, high tier retroviral vectors, e.g. pLN6L (Bender et al, 1987 J. Virol 61: 1639 - 1646) or vectors that yield two gene retrovectors, preferably pPNL6, pLXS and pLNC as described
Example 2

Production of Drug Delivery Retrovirions that encode TNF

[0102] The pFVXM-TNF prepared as described in Example 1 (10 μg) is mixed with 1 μg of pSV2-NEO (Southern et al., 1982, J. Mol. Appl. Gen., 1:327-341), which contains the marker sequences conferring resistance to the antibiotic G418. Transfection was conducted using a modification of the calcium phosphate method of Wigler, et al., 1978, Cell, 14:725. Briefly, 10 μg of carrier DNA, diluted with sterile 1 mM Tris, pH 8.1, 0.1 mM EDTA, was added to 100 mm Petri dishes, along with plasmid DNA, 50-1,000 ng per 100 mm Petri dish, followed by the addition of 2.5 M CaCl₂. This mixture was agitated thoroughly to assure uniform suspension, and an equal volume of 2X HEPES (N-2-hydroxyethyl diperazine N'-2-ethanesulfonic acid) buffered saline, pH 7.1, was added. This mixture was also agitated to assure uniform suspension, after which a precipitate was allowed to form. Thirty minutes later, 1 ml of the suspension was added to psi AM cells in 100 mm Petri dishes containing 10 ml of DMEM supplemented with 10% fetal calf serum. The cultures were incubated at 37°C for 16 hours and subsequently the medium replaced with fresh growth medium. Next, the growth medium was replaced again with fresh medium, but supplemented with 400 μg/ml of G418, obtained from Gibco. After an initial growth period, the cells were grown on selection medium containing 400μg/ml G418 and resistant colonies were picked, and transferred to 24-well tissue culture dishes for testing for TNF production.

[0103] The cellular proteins were labelled with either 35S-cysteine or 35S-methionine. The cells were first cultured on DMEM lacking cysteine or methionine, but containing 5% dialyzed fetal calf serum, for 30 minutes at 37°C to effect cysteine or methionine starvation. One hundred μCi of 35S-cysteine or 35S-methionine having a specific activity of approximately 400 Ci/mmol was added and the cells further incubated for 2 hours at 37°C. The supernatant was removed and saved. The cells were lysed with lysis buffer and the lysate supernatant was also recovered by centrifugation. Both the clarified lysate and culture supernatant were tested for the presence of TNF as follows.

[0104] Polyclonal antisera to recombinant TNF prepared in rabbits were added to each test material in a centrifuge tube and incubated at 4°C for 1 hour with shaking. This was followed by the addition of a 50% suspension (v/v) of protein A attached to Sepharose CL4B and followed by incubation at 4°C for 30 minutes.

[0105] The beads were pelleted in a microfuge and washed. The precipitated material was removed from the beads by boiling in SDS. The solubilized TNF-containing solutions were loaded onto 12.5% polyacrylamide gel for electrophoresis and the proteins were fixed and stained as well as read by autoradiography. The results are shown in Figures 2 and 3.

[0106] Figure 2 shows the results of labelling with 35S-methionine. Label appears only in the leader sequence of the 26 kD unprocessed protein in the lysate; no label is present in the mature, 17 kD, secreted form (which does not contain methionine residues).

[0107] Figure 3 shows the results of 35S-cysteine labelling; both the unprocessed and mature forms are labelled, as expected.

[0108] Cell-supernatants were also assayed for TNF using the L-929 assay below. The ability of these supernatants to show TNF activity was completely destroyed by preincubation with the rabbit anti-TNF antisera.

Example 3

Recovery of Drug Delivery Virions

[0109] The supernatants from the cells of Example 2 which secrete TNF into the medium were filtered through 0.45 micron Millipore filters to ensure that no cells were transferred. Similarly, one can centrifuge the supernatants at 3,000 x g to pellet any cells or cellular debris. The supernatant contains the recombinant virion designated TNF-V.

Example 4

Dead-End Infection of Tester Cells

[0110] The TNF-V prepared in Example 2 was used to infect 1 x 10⁵ NIH 3T3 or RAT2 cells by incubation with 4 μg/ml of polybrene at 37°C overnight in a CO₂ incubator. Cell supernatants and lysates were analyzed for TNF production using 35S-cysteine labelling, immunoprecipitation and radioautography exactly as described above in Example 2. The results for infected cells are shown in Figure 4. Both the 17 kD and 26 kD forms of TNF contain label.

[0111] Supernatant from these cells also showed TNF activity using the L-929 cytotoxicity assay, which activity was removed by incubation with rabbit anti-TNF antisera.
Assay for TNF Activity

[0112] Figure 5 shows the structure and bioactivity of the TNF retroviral genome. Lane A, restriction map of FVX TNF retroviral genome, and lane B, plaque assay of pFVXM transfected psi-am cells. To assay biological activity of the TNF, the L-929 assay system was used. The L-929 cells are cultured overnight as monolayers in microtiter plates. The test samples are diluted 2-fold across the plate. UV irradiated, and then added onto the prepared cells in monolayers. The culture media in the wells are then brought to 1 µg/ml actinomycin D. The plates are allowed to incubate 18 hr at 37°C and the plates are scored visually under the microscope. Each well is given a 25, 50, 75 or 100% mark signifying the extent of cell death in the well. One unit of TNF activity is defined as the reciprocal of the dilution at which 50% killing occurs.

[0113] In addition, a more sensitive version of this assay was developed that monitors the release of 35S labelled peptides from prelabelled cells, when treated with the test sample and actinomycin D. This version of the assay can be used to quantitate potency, e.g., to evaluate the relative potency of oocyte translated material. Briefly, actively growing L-929 cultures are labelled with 35S methionine (200 µCi/ml) for 3 hours in methionine-free media supplemented with 2% dialyzed fetal calf serum. The cells are then washed and plated into 96 well plates, incubated overnight, and treated the next day with 2-fold dilutions of test samples and 1 µg/ml actinomycin D. The cultures were then incubated at 37°C for 18 hours. One hundred supernatant aliquots from each well were then transferred onto another 96 well plate, acid (TCA) precipitated, and harvested onto glass fiber filters. The filters were washed with 95% ethanol, dried and counted. An NP40 detergent control is included in every assay to measure maximum release of radioactivity from the cells. The percent 35S release is then calculated by the ratio of the difference in count between the treated cells and untreated controls divided by the difference between NP40 treated cells and untreated controls, i.e., by the ratio:

\[
\text{% release} = \frac{\text{sample - cell control}}{\text{NP40 - cell control}} \times 100.
\]

Higher TNF potency results in higher values of this ratio.

Example 5

Two Gene Retroviral DNA Constructs

[0114] Retroviruses capable of expressing both the neomycin gene and TNF were constructed. The construction strategy for producing the two gene retroviral vectors is shown in Figure 6. The vectors pLNSX, pLXSN and pLN CX all carry the neomycin gene sequences. Further, these vectors are described by Miller and Rosman, 1989. Biotechniques, 7(9):980.

[0115] The TNF construct contained the nucleotide sequence that encodes the γ-interferon signal peptide that is present in the vector pUC.FVXM ΔHIII TNF γ sig. The procedure consisted of digesting 150 µg of pGEMTNF14 (obtained by inserting the PstI fragment of plasmid BII carrying the TNF coding sequence into the Pst I site of vector pGEM-3 (Promega)) and 150 µg of pUC.FVXM ΔHIII TNF γ sig with 600 units Pst I (New England Biolabs). The digestion was carried out in 1500 µl of restriction enzyme buffer consisting of 33 mM Tris-acetate, pH 7.9, 66 mM potassium acetate, 10 mM magnesium acetate, 0.5 mM dithiothreitol, at 37°C for 60 minutes. The digests were phenol extracted, ethanol precipitated, and fractionated on a 1% Agarose gel in Tris-acetate electrophoresis buffer (40 mM tris, 1 mM EDTA, 5 mM sodium acetate, pH 7.5). The 1070 bp wild-type TNF fragment and the 902 TNF sig fragments, respectively, were isolated by glass beads.

[0116] Each PstI fragment was made blunt by treatment with T4 DNA polymerase. Four µg of each fragment was treated with 6.3 units of T4 DNA polymerase (New England Biolabs) in a volume of 125 µl consisting 33 mM Tris-acetate, pH 7.9, 66 mM potassium acetate, 10 mM magnesium acetate, 0.5 mM dithiothreitol and 0.10 mM each of dATP, dCTP, dTTP, and dGTP, at 37°C, for 10 minutes, then at 68°C, for 5 minutes. Each blunt-end fragment was purified by glass bead isolation.

[0117] Four µg of each vector was digested with an appropriate enzyme that generated blunt ends, in a volume of 100 µl (33 mM Tris-acetate, pH 7.9, 66 mM potassium acetate, 10 mM magnesium acetate, 0.5 mM dithiothreitol) as follows: pLN CX with 10 units Hpal (NEB), pLNSX with 16 units STU I (NEB), pLXSN with 10 units Hpal (NEB), 37°C, 60 minutes.

[0118] Each digested vector was ligated to each blunt-ended TNF fragments in a 25 µl ligation mixture that contained 16 µg/ml of vector and 16 µg/ml of TNF fragment, 33 mM Tris-acetate, pH 7.9, 66 mM potassium acetate, 10 mM magnesium acetate, 0.5 mM dithiothreitol, 4 mM ATP, 16,000 units/ml, T4 DNA ligase (NEB). Ligations were incubated
at 16°C, for 16 hours. Ligated DNA was transformed into competent DH5α cells (Bethesda Research Labs) following manufacturer's instructions. Resultant colonies were screened by standard methods using TNF oligonucleotide primer CP365 (5'-TCAGCTCCACGCCATTGG-3') as a probe. Orientation was confirmed by restriction endonuclease analyses.

Example 6

Synergistic Effect of TNF and Neomycin

A surprising property of cells infected with virions that encode TNF and neomycin resistance is their increased sensitivity to selection with the antibiotic G418, if G418 is added immediately after infection. This is shown by infecting cells with the virion pLTNFSN-22 and subjecting the cells to immediate selection in G418. A suitable target cell for infection is PA317, and a suitable concentration of G418 is 400 μg/ml.

Using these conditions, about 60 per cent of the cells that carry pLTNFSN-22 are killed in the presence of G418 at the end of 24 hours in the selection media. in contrast, less than 10 per cent of cells infected with the same virus, but lacking the TNF sequences are killed.

Without intending to be held to any particular theory, it is thought that the sensitivity of cells expressing TNF in the presence of G418 selection occurs because the infected cells have insufficient time to express the neomycin resistant phenotype. This, in turn, permits G418 to inhibit the synthesis of a protein that normally renders the cells resistant to TNF killing. Thus, in the presence of G418 the cells are killed by TNF.

Support for this hypothesis is borne out if G418 selection is not applied to cells infected with pLTNFSN-22 until about 48 hours after infection, little cell death occurs during the subsequent 24 hours.

It will be appreciated by those skilled in the art that if cells that harbor TNF virions are to be successfully isolated using G418, or other similar antibiotic selection, that there must be sufficient expression time for the neomycin gene to confer G418 resistance on the infected cells.

Example 7

Cytotoxic Properties of TNF Muteins and TNF δ-sig

The following TNF deletion muteins of TNF, produced using the oligonucleotides described above, were tested for cytotoxic activity: TNF Δ (1 → 12), TNF Δ (1 + 12), and TNF Δ (1 + 13), that is, deletion of the first 12 amino acids, of amino acids 1 and 12, and of amino acids 1 and 13, respectively. NIH 3T3 cells were co-transfected with β-actin-neo and with one the the series of pUC.FVXM IIII TNF plasmids and then selected in 400 μg/ml G418. Cytotoxic activity was measured by seeding onto 100 ml tissue culture dishes serial dilutions of the G418 resistant heterogeneous populations. After about 20-50 colonies of cells were apparent, the media was aspirated off, and the colonies were overlaid with about 4 x 10^6 L929 cells in Dulbecco's Modified Eagles Medium supplemented with 10% fetal calf serum. Thirty minutes after plating the cells, the media was aspirated, and the cells overlaid with a solution consisting of 10 ml Dulbecco's Modified Eagles Medium. 0.9% Noble agar (Difco), and 10% fetal calf serum. This composition was kept molten at 45°C prior to overlay, cooled and overlaid onto the cells. Next, the agar was hardened at room temperature for 30 minutes, and the plates incubated at 37°C for 48 hours, after which the agar was removed, 10 ml phosphate buffered saline added, followed by 1 ml of a solution containing 12% glutaraldehyde, 1% methylene blue. The latter solution fixes and stains the cells which permits cell colonies and killing zones to be readily visualized. Finally, the plates were incubated at room temperature for 60 minutes, and rinsed in water and air dried.

Cytotoxic activity was scored as killing zones surrounding the transfected colonies. Two types of killing zones were observed: diffuse and non-diffuse zones. Non-diffuse killing indicates that the TNF mutein remains membrane bound and does not diffuse away from the transfected colonies to cause L929 death. In contrast, diffuse killing indicates that the TNF mutein is capable of diffusing away from the cell and causing killing over a wide area.

Table I summarizes the results. In addition to the muteins that were tested for cytotoxic activity, a vector control, wild-type TNF, and TNF γ sig were also tested for comparative purposes. It is apparent from the table that only the vector control, and TNF Δ (1 + 13) do not exhibit cytotoxicity by the L929 overlay assay. Further, wild-type TNF and the TNF γ sig have cytotoxic activity, but the activity exhibited a diffuse pattern about the transfected colonies thus showing that wild-type TNF and TNF γ sig are secreted from the transfected colonies. In contrast, TNF Δ (1 → 12), and TNF Δ (1 + 12) exhibit a non-diffuse killing pattern. This shows that these molecules exert their killing by being cell surface bound and coming into direct contact with L929 cells.
The following materials have been deposited at the American Type Culture Collection, Rockville, MD, USA (ATCC) under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and Regulations thereunder (Budapest Treaty) and are thus maintained and made available according to the terms of the Budapest Treaty. Availability of such strains is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

The following materials have been deposited with the ATCC and have been assigned the indicated ATCC deposit numbers. They have also been deposited with the Master Culture Collection (CMCC) of Cetus Corporation, Emeryville, California, USA, the assignee of the present application, and assigned, the indicated CMCC deposit numbers:

<table>
<thead>
<tr>
<th>Plasmids</th>
<th>CTCC Deposit No.</th>
<th>CMCC Deposit No.</th>
<th>ATCC Deposit No.</th>
<th>Date of ATCC Deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>pB11(pE4)</td>
<td>2138</td>
<td></td>
<td>39894</td>
<td>15 October 1984</td>
</tr>
<tr>
<td>pAW711</td>
<td>2162</td>
<td></td>
<td>39918</td>
<td>8 November 1984</td>
</tr>
<tr>
<td>pFVXM</td>
<td>2701</td>
<td>3759</td>
<td>67103</td>
<td>23 April 1986</td>
</tr>
<tr>
<td>Δ HIll TNF γ sig</td>
<td>3688</td>
<td></td>
<td>68121</td>
<td>13 October 1989</td>
</tr>
<tr>
<td>pLTNFSN</td>
<td>3759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pLTK'F γ sig SN</td>
<td>3758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pLNSTNF γ sig</td>
<td>3756</td>
<td></td>
<td>3757</td>
<td></td>
</tr>
<tr>
<td>pLNCTNF</td>
<td>3760</td>
<td></td>
<td>3761</td>
<td></td>
</tr>
</tbody>
</table>

Packaging Cell Line

PA317

CRL9078

Transfected NIH 3T3 Cells Lines*

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF Δ (1 + 12)</td>
<td>10729</td>
<td></td>
<td>10726</td>
<td>CRL10333</td>
</tr>
<tr>
<td>[TNFΔY]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF γ sig</td>
<td>10726</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF6 [wild-type TNF]</td>
<td>10730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TNFΔ12]</td>
<td></td>
<td>10728</td>
<td></td>
<td>CRL10334</td>
</tr>
<tr>
<td>TNF Δ (1 - 12)</td>
<td>10727</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TNFΔW]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Cells were transfected with pUCFVXM ΔIII containing the appropriate TNF construct.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The deposit of materials herein does not constitute an admission that the written description herein contained
is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is this deposit
to be construed as limiting the scope of the claims to the specific illustrations which materials deposited represent.

Claims

1. A DNA construct comprising a first DNA encoding the γ-interferon signal peptide of Figure 1 linked to the 5’ end
 of a second DNA encoding a human protein not naturally linked to said signal peptide, wherein said signal peptide
 has the property of augmenting the secretion of said human protein from a mammalian cell.

2. A DNA construct as claimed in claim 1, wherein said human protein is a cytokine.

3. A DNA construct as claimed in claim 2, wherein said cytokine is TNF.

4. A DNA construct as claimed in claim 2, wherein said cytokine is IL-2.

5. A vector comprising a DNA construct as claimed in claim 1 and capable of directing expression in a mammalian
 cell of said human protein linked to said γ-interferon signal peptide, wherein said signal peptide has the property
 of augmenting the secretion of said human protein from said mammalian cell.

6. A vector as claimed in claim 5, wherein said human protein is a cytokine.

7. A vector as claimed in claim 6, wherein said cytokine is TNF.

8. A vector as claimed in 6, wherein said cytokine is IL-2.

9. A vector as claimed in any one of claims 5 to 8 which is a retroviral vector.

10. A vector as claimed in claim 9, which is replication defective.

11. A virion carrying a vector as claimed in any one of claims 5 to 10 or a corresponding reverse transcript thereof.

12. A virion as claimed in claim 11 which is a retrovirus.

13. An ex vivo host cell carrying a DNA construct or vector according to anyone of claims 1 to 10.

14. A cell as claimed in claim 13 which is a packaging cell for production of a retrovirus according to claim 12 wherein
 the retroviral genome for said retrovirus is incorporated into a retroviral particle.

15. An ex vivo mammalian host cell carrying a DNA construct, vector or viral particle as claimed in any one of claims
 1 to 12 and expressing a human protein linked to a γ-interferon signal peptide as defined in claim 1.

16. A mammalian host cell as claimed in claim 15 which is a human host cell.

17. A mammalian host cell as claimed in claim 16 which is a human lymphocyte.

18. A mammalian host cell as claimed in claim 17 which is a human tumor-infiltrating lymphocyte (TIL).

19. A pharmaceutical composition comprising a vector as claimed in any one of claims 5 to 10, a virion as claimed in
 claim 11 or claim 12 or a cell as claimed in any one of claims 13 to 18 in association with pharmaceutically acceptable
 carrier.

20. A vector, virion, cell or composition as claimed in any one of claims 5 to 12 and 13 to 19 for use in a method of
 therapeutic treatment.
Patentansprüche

1. DNA-Konstrukt, umfassend eine erste DNA, die für das γ-Interferon-Signalpeptid von Figur 1 codiert, das mit dem 5'-Ende einer zweiten DNA verbunden ist, die für ein humanes Protein codiert, das nicht natürlicherweise mit dem Signalpeptid verbunden ist, wobei das Signalpeptid die Eigenschaft hat, die Sekretion des humanen Proteins aus einer Säugetierzelle zu erhöhen.

2. DNA-Konstrukt wie in Anspruch 1 beansprucht, dadurch gekennzeichnet, dass das humane Protein ein Cytokin ist.

3. DNA-Konstrukt wie in Anspruch 2 beansprucht, dadurch gekennzeichnet, dass das Cytokin TNF ist.

4. DNA-Konstrukt wie in Anspruch 2 beansprucht, dadurch gekennzeichnet, dass das Cytokin IL-2 ist.

5. Vektor, umfassend ein DNA-Konstrukt wie in Anspruch 1 beansprucht, der in der Lage ist, die Expression in einer Säugetierzelle des humanen Proteins, das mit dem γ-Interferon-Signalpeptid verbunden ist, zu steuern, dadurch gekennzeichnet, dass das Signalpeptid die Eigenschaft hat, die Sekretion des humanen Proteins aus der Säugetierzelle zu erhöhen.

6. Vektor wie in Anspruch 5 beansprucht, dadurch gekennzeichnet, dass das humane Protein ein Cytokin ist.

7. Vektor wie in Anspruch 6 beansprucht, dadurch gekennzeichnet, dass das Cytokin TNF ist.

8. Vektor wie in Anspruch 6 beansprucht, dadurch gekennzeichnet, dass das Cytokin IL-2 ist.

9. Vektor wie in einem der Ansprüche 5 bis 8 beansprucht, dadurch gekennzeichnet, dass er ein retroviraler Vektor ist.

10. Vektor wie in Anspruch 9 beansprucht, dadurch gekennzeichnet, dass er replikationsdefekt ist.

11. Virion, das einen wie in einem der Ansprüche 5 bis 10 beanspruchten Vektor oder ein entsprechendes reverse Transkript davon trägt.

13. Ex-vivo-Wirtszelle, die ein DNA-Konstrukt oder einen Vektor gemäß einem der Ansprüche 1 bis 10 trägt.

15. Ex-vivo-Säugetier-Wirtszelle, die ein DNA-Konstrukt, einen Vektor oder ein virales Teilchen, wie in einem der Ansprüche 1 bis 12 beansprucht, trägt und ein humanes Protein exprimiert, das mit einem γ-Interferon-Signalpeptid wie in Anspruch 1 definiert verbunden ist.

17. Säugetier-Wirtszelle wie in Anspruch 16 beansprucht, dadurch gekennzeichnet, dass es sich um einen humanen Lymphozyten handelt.

19. Pharmazeutische Zusammensetzung, umfassend einen wie in einem der Ansprüche 5 bis 10 beanspruchten Vektor, ein wie in Anspruch 11 oder 12 beanspruchtes Virion oder eine wie in einem der Ansprüche 13 bis 18 beanspruchte Zelle in Assoziation mit einem pharmazeutisch annehmbaren Träger.

Revendications

1. Construction d’ADN comprenant un premier ADN codant le peptide signal de l’interféron γ de la figure 1, lié à l’extrémité 5’ d’un second ADN codant une protéine humaine qui n’est pas naturellement liée audit peptide signal, ledit peptide signal ayant la propriété d’augmenter la sécrétion de ladite protéine humaine par une cellule de mammifère.

2. Construction d’ADN selon la revendication 1, dans laquelle ladite protéine humaine est une cytokine.

3. Construction d’ADN selon la revendication 2, dans laquelle ladite cytokine est le TNF.

5. Vecteur comprenant une construction d’ADN selon la revendication 1 et capable de diriger l’expression de ladite protéine humaine liée audit peptide signal de l’interféron γ dans une cellule de mammifère, ledit peptide signal ayant la propriété d’augmenter la sécrétion de ladite protéine humaine par ladite cellule de mammifère.

6. Vecteur selon la revendication 5, dans lequel ladite protéine humaine est une cytokine.

7. Vecteur selon la revendication 6, dans lequel ladite cytokine est le TNF.

8. Vecteur selon la revendication 6, dans lequel ladite cytokine est l’IL-2.

9. Vecteur selon l’une quelconque des revendications 5 à 8 qui est un vecteur rétroviral.

10. Vecteur selon la revendication 9, qui est défectif pour la réplication.

11. Virion portant un vecteur selon l’une quelconque des revendications 5 à 10 ou son transcrit inverse correspondant.

12. Virion selon la revendication 11, qui est un rétrovirion.

14. Cellule selon la revendication 13, qui est une cellule d’empaquetage pour la production d’un rétrovirus selon la revendication 12, dans laquelle le génôme rétroviral dudit rétrovirus est incorporé dans une particule rétrovirale.

15. Cellule hôte mammalienne ex vivo portant une construction d’ADN, un vecteur ou une particule virale selon l’une quelconque des revendications 1 à 12 et exprimant une protéine humaine liée à un peptide signal de l’interféron γ tel que défini dans la revendication 1.

16. Cellule hôte mammalienne selon la revendication 15, qui est une cellule hôte humaine.

17. Cellule hôte mammalienne selon la revendication 16, qui est un lymphocyte humain.

18. Cellule hôte mammalienne selon la revendication 17, qui est un lymphocyte infiltrant les tumeurs (TIL).

19. Composition pharmaceutique comprenant un vecteur selon l’une quelconque des revendications 5 à 10, un virion selon la revendication 11 ou la revendication 12 ou une cellule selon l’une quelconque des revendications 13 à 18 associé à un véhicule pharmaceutiquement acceptable.

20. Vecteur, virion, cellule ou composition selon l’une quelconque des revendications 5 à 12 et 13 à 19 destiné à être utilisé dans une méthode de traitement thérapeutique.
CTCCCCTGGAAGACACCATTATAAATACAGTTATATCTTGGCTTTCAGCTCTGATCGTTTTTGTTCTCTGTCAGATCATCATTCTCGAACCCCG
GAGGGACCTTTCTGTTGCTTTTATATGTTCAATAAGAACCAGAAAGGCGAGGTGACGTAAGAAAAACCCAAAGAGAAACCGCAGTCTAGTAGAGAAGGCTGAGGC

MetLysTyrThrSerTyrLeuAlaPheGinLeuCysIleValLeuGlySerLeuGlyValArgSerSerSerArgThrPro

1 2 3 4 5 6 7 8

<-------------------|<---------------------γ-IFN Signal Peptide------------------------> | -------TNF (17KD)------> coding sequence

TNF Untranslated
Sequence

FIG. 1
Human tumor necrosis factor cDNA

FIG. 5A

FIG. 5B
FIG. 7A

PSI I
Hgi Al
Bgl II
Nar I
Ava I
Bgl I
Pvu II
Hgi I
Pvu II
Hind III
Eco RI
PSI I

-76 1 157
Leader 17 kD TNF

100 bp

FIG. 7B

Hydropathicity

-3 -2 -1 0 1 2 3
Leader 17 kD TNF