EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
12.11.2003 Bulletin 2003/46

(21) Application number: 98304715.0

(22) Date of filing: 15.06.1998

(54) Video frame capture and preview
Videorastererfassung und Vorschau
Saisie de trame vidéo et prévisualisation

(84) Designated Contracting States:
DE FR GB

(43) Date of publication of application:
20.01.1999 Bulletin 1999/03

(73) Proprietor: Hewlett-Packard Company,
A Delaware Corporation
Palo Alto, CA 94304 (US)

(72) Inventors:
• Taubman, David S.
 No. 18, Redwood City, CA 94061 (US)
• Patti, Andrew J.
 Sunnyvale, California 94086 (US)

(74) Representative: Jehan, Robert et al
Williams Powell
Morley House
26-30 Holborn Viaduct
London EC1A 2BP (GB)

(56) References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The invention relates generally to capturing and viewing video data. More particularly, the invention relates to capturing and viewing still images of analog video data in a video printing system. Video data is typically provided in one of two formats, composite video or S-video. Composite video is a video signal in which the luminance (brightness), chrominance (color), vertical blanking information, horizontal sync information, and color burst information are presented on a single channel according to a particular coding standard. S-video, or separated video, is a higher quality video delivery system in which the luminance, vertical blanking information, and horizontal sync information are carried on one channel and the chrominance and color burst information are carried on another channel. The different coding standards for composite video and S-video include the National Television Standards Committee (NTSC) standards, the Phase Alternate Line (PAL) system, and the Sequential Couleur A'morrie (SECAM) standard.

Under NTSC standards, one frame of video data contains two fields of video data. One frame of video data has 525 horizontal lines of information with each of the two fields having 262.5 horizontal lines of information. The horizontal lines of information are scanned onto a monitor, such as a television set, at a rate of 30 frames per second.

The prior art of video capture and preview requires video data to go through multiple processing steps during capture and preview. The first step in video capture and preview is the conversion of an analog video signal into raw digitized video samples and then the conversion of raw digitized video samples into digital image data. Raw digitized video samples consist of digitized values of the analog signal. Digital image data consists of data that has been decoded into color pixel values.

After the analog video signal has been converted into digital image data, the digital image data is either immediately transferred for preview or stored in memory until it is called on for previewing. Digital image data that is selected for previewing is reconverted from digital image data to analog video data and then displayed on a monitor. Existing video capture and display devices accomplish the conversion and reconversion of analog video data and digital image data with the aid of general purpose video decoding and encoding chip-sets. The chip-sets perform the necessary timing recovery, luminance/chrominance separation and chrominance demodulation tasks in real-time.

Video capture and preview techniques are often applied to video printing. Video printing is a technique whereby a still image is printed from motion video such as a VHS tape. In video printing, a video is viewed by a user. Once an image of interest is identified, a still video image is create for previewing on a monitor. Creating the still video image involves converting corresponding digital image data into an analog video signal. The user then previews the still video image and directs the image to be printed if the image is desired. Once selected, the digital image data that corresponds to the still video image is transferred to a printer for printing.

Prior art in video printing is disclosed in U.S. Pat. No. 5,045,951 to Kimura et al. and U.S. Pat. No. 4,998,215 to Black et al. In Kimura et al. a video signal processor and a video signal processing method for a video printer are disclosed. Fundamental to this system is an initial analog-to-digital conversion of the original analog video signal. The digital data output from the analog-to-digital converter, according to Kimura et al., is pixel data. As stated above, pixel data is data that is in a format that computers recognize as image data. That is, no additional conversion of the pixel data is necessary before printing. But, in order to preview the data that has been selected for printing, the pixel data must be reconverted into an analog signal that can be displayed on a monitor. The reconversion requires additional hardware and processing.

In Black et al. a method and apparatus for converting video information for printing by a standard printer are disclosed. The first process in the invention is an analog-to-digital conversion. The analog-to-digital convertor converts an analog video signal into display dots, or pixel data. The pixel data is in a standard graphics format that is compatible with a standard printer. But, if a user wants to preview the still image before it is printed, the pixel data must first be reconverted into an analog video signal that is compatible with a video monitor.

EP-A-0,105,642 discloses an image storage system in which video information from scanned separations is stored on the tape of a video tape recorder after processing and formatting via a switch. Video information stored on the tape of the VTR may be input into the memory of a separationspreviewer after decoding and processing via a switch. A controller controls the operation of the switches which route the information and the VTR. A keyboard, control panel and printer interface with the controller.

While the prior art techniques for video capture and preview work well for their intended purpose, there are limitations. For example, the conversions from analog video data to digital image data and back to analog video data for previewing can cause loss of picture quality. Also, 100% of the digital image data must be stored in memory for potential previewing or printing. The storage requirements can quickly overload storage capacity. In addition, the chip-sets required to perform analog-to-digital and digital-to-analog conversions have a relatively high cost.

The present invention seeks to provide improved previewing of video data.

According to an aspect of the present invention there is provided a method of previewing video data as specified in claim 1.
According to another aspect of the present invention there is provided a system for previewing still images of video data as claimed in claim 8.

The preferred embodiment provides a method and system for previewing a still video image without first having to convert an analog video signal into digital image data and then having to reconvert the digital image data back into an analog video signal representative of the desired still video image. In addition, it can store video signals so that memory space is effectively utilized while data integrity is kept intact.

In the preferred embodiment, an analog video signal is generated from an analog video signal source, such as a video cassette player. The analog video signal is continuously received through an input that is connected to a first convertor. The convertor converts the analog video signal into raw digitized video data, instead of converting the analog video signal into completely decoded digital image data. The raw digitized video data is stored in a memory until the image is selected for preview. In order to select an image for preview, the analog video signal is delivered to a display monitor simultaneously with the conversion of the analog video data into raw digitized video data. A user viewing the display monitor selects an image of the video that the user would like to view as a still video image. The raw digitized video data that corresponds to the desired still video image is then reconverted from raw digitized video data into an analog video signal. The still video image may be viewed on a field-by-field basis or a frame-by-frame basis. To create the still video image, the raw digitized video data is processed by a second convertor. The reconversion from raw digitized video data into an analog video signal that represents a still video image requires some special manipulation. Specifically, the phase of the color sub-carrier frequency portion of the analog video signal is adjusted to account for the phase advance that occurs in the original signal. Once the analog video signal is created, the analog video signal is transmitted and displayed, as a still video image, on a display monitor.

Thus, the preferred embodiment provides a video printing system comprising a first convertor connected to receive an incoming analog video signal for converting the incoming analog signal into raw digitized video data, incoming analog signal including phase data that is necessary for video data previewing; a storage selector connected to the first convertor for identifying necessary portions and unnecessary portions of the raw digitized video data, and for discarding the unnecessary portions of the raw digitized video data; the necessary portions of the raw digitized data containing image information and unsynthesizeable timing information, and the unnecessary portions of the raw digitized data containing synthesizeable timing information; a memory connected to the storage selector for storing the identified necessary portions of the raw digitized video data; a signal re-constructor connected to the memory for synthesizing the discarded unnecessary portions of the raw digitized video data and for reconstructing the raw digitized video data from the necessary portions of the raw digitized video data and from the synthesized portions of the unnecessary raw digitized video data; a second convertor connected to the signal re-constructor for converting the reconstructed raw digitized video data into an outgoing analog video signal and for adjusting the phase data to account for phase advance; a monitor connected to the second convertor for displaying the outgoing analog video signal; a software decoder connected to the memory for decoding the identified necessary portions of raw digitized video data into digital image data; and a printer connected to the software decoder for creating a printed image that represents the decoded digital image data.

There are many advantages to the preferred approach over the conventional approach of using general purpose video decoding and encoding chip-sets to immediately convert an incoming analog video signal into digitized image data. One advantage is that the preferred approach does not require the use of general purpose video decoding and encoding chip-sets. The chip-sets add additional cost to an analog video capture and preview system. Another advantage is that the preferred approach allows the user to retain as much knowledge about the original video data as possible by storing the raw digitized video data in memory. Additionally, access to the raw digitized video data allows for advanced decoding and enhancement processing.

Another embodiment of the invention allows the selective storage of raw digitized video data that is generated from an analog video signal. The selective storage approach is different for composite video and S-video. Composite video consists of a relatively high bandwidth baseband signal and a narrow-band signal centered at the color sub-carrier frequency \(F_{sc}\). To convert the analog composite video signal into raw digitized video data, the analog composite video signal is typically sampled at a rate of four times the color sub-carrier frequency. A large amount of sample data that reflects the vertical blanking information, horizontal sync information, horizontal blanking information, and color burst information of the analog video signal is generated. Most of the samples that represent the vertical blanking horizontal blanking, horizontal sync, and color burst information do not need to be stored. The samples can be discarded and synthesized later on an as-needed basis. In a composite video signal, approximately 20% of the raw digitized video samples can be discarded.

With S-video, the selective storage approach is similar, except that the determination of what samples must be stored and what samples can be discarded is more involved. With S-video, there are two channels of raw digitized video samples. One channel is for the Y signal and contains all luminance and horizontal sync and vertical and horizontal blanking information. The other channel is for the C signal and contains the color burst and modulated chrominance information. Both of the signals are sampled at four times the sub-carrier frequency sampling rate \(4F_{sc}\). The Y channel...
samples are selectively stored in the same manner as described above for a composite video signal. The C channel, on the other hand, contains much more redundant information, primarily because the modulated chrominance and color burst information occupy only a narrow portion of the frequency spectrum, centered about the sub-carrier frequency. Thus, no more than one in every four of the initial sequences of chrominance samples must be retained. In addition, the samples are retained in a non-uniform manner. The sample discard strategy for S-video is able to reduce memory storage requirements by up to 47%.

[0020] The preferred embodiment is implemented in a video printing system. A video printing system includes a conversion-and-storage device, a previewing monitor device, a software decoder, and a printing device. The conversion device converts the analog video signal into raw digitized video data. Selected parts of the raw digitized video data are then stored in memory. Raw digitized video data that corresponds to a desired still video image is then reconverted into still video image analog data for previewing on a previewing monitor. Once a satisfactory still video image has been identified for printing, the software decoder uses software algorithms to convert the corresponding raw digitized video data into digital image data that can be recognized by a printing device. The printing device then uses the digital image data to print a still image.

[0021] An embodiment of the present invention is described below, by way of example only, with reference to the accompanying drawings, in which:

- Fig. 1 is a schematic of a preferred embodiment of video capture-and-preview system.
- Fig. 2 is a functional block diagram of the video capture-and-preview system of Figure 1.
- Fig. 3 is a schematic of an embodiment of video capture-and-preview system with selective storage capability.
- Fig. 4 is a schematic of the sampling pattern for the active region of a chrominance (C) channel of an S-video source.
- Fig. 5 is a schematic of an embodiment of composite video and an S-video capture-and-preview system with selective storage capability.
- Fig. 6 is a schematic of a video printing system that incorporates the video capture-and-preview system and selective storage of Figure 5.

[0022] In the preferred embodiment, referring to Figs. 1 and 2, an analog video signal is generated from an analog video signal source 14, such as a video cassette player. The analog video signal is continuously received through an input 16 that is connected to a first convertor 18. The convertor converts 50 the incoming analog video signal into a series of raw digitized video data instead of converting the analog video signal into completely decoded digital image data.

[0023] Raw digitized video data is simply a digital version of an analog video signal. That is, the raw digitized data is made up of discrete samples that are taken at intervals that are short enough, when compared to the frequency of the sampled analog signal, to create an accurate representation of the sampled analog signal. The raw digitized video data is further decoded to create digital image data that contains complete pixel data.

[0024] The raw digitized video data is stored 52 in a memory-22 until the corresponding image is selected for preview. In order to select an image for preview, the analog video signal is delivered to a display monitor 30 simultaneously with the conversion of the analog video data into raw digitized video data. A user viewing the display monitor selects 54 an image of the video that the user would like to view as a still video image. The raw digitized video data that corresponds to the desired still video image is then reconverted 56 from raw digitized video data into an analog video signal. The analog signal is then delivered 58 to the display monitor and the desired still video image is displayed for previewing on the monitor. The still video image may be viewed on a field-by-field basis or a frame-by-frame basis.

[0025] To create a still video image on a field-by-field basis or a frame-by-frame basis, the digitized video data is first processed by a second convertor 26. The reconversion from raw digitized video data into an analog video signal that represents a still image must take into account the fact that NTSC and PAL encoding differ slightly from field-to-field and frame-to-frame. The encoding of NTSC differs with a periodicity of four fields, and the encoding of PAL differs with a periodicity of eight fields.

[0026] In NTSC, both the chrominance sub-carrier and color burst signals advance in phase by 1/4 of the sub-carrier clock period (Tsc), between successive fields, relative to the horizontal sync and baseband signals. In order to synthesize the phase advance, the recorded composite video samples in memory must be delayed by -1/4 Tsc (-1 sample period) to generate field 2 from field 1, by +1/2 Tsc (+2 sample periods) to generate field 3 from field 1 and by +1/4 Tsc (1 sample period) to generate field 4 from field 1. In this way, precise sub-carrier timing is synthesized while introducing a jitter of up to 1/2 Tsc. One-half Tsc is equal to 140 nanoseconds in the field-to-field horizontal sync timing. Although the 1/2 Tsc jitter results in a composite signal which does not satisfy broadcast NTSC specifications, the jitter is considerably smaller than that introduced in typical VCR decks.

[0027] In PAL, the situation is similar, except that the sub-carrier phase change is 3/8 Tsc between successive fields. Therefore, the stored samples must be shifted by integer multiples of 1/2 the 4 Fsc clock period. The simplest way to achieve such shifts is to alternate the clock edge on which samples are transferred to the digital-to-analog convertor.
The above discussion applies to a situation where the sampling clock is tightly phase locked to the color sub-carrier. In some implementations, an asynchronous sampling clock that is not phase locked to the color sub-carrier may be used. In this case, the above strategy for delaying the clock in order to synthesize the appropriate shift to the sub-carrier is insufficient to ensure that the display device receives a stable sub-carrier signal. In particular, the display device will generally observe a sharp phase shift in the color sub-carrier signal at each field boundary. The sharp phase shift may adversely affect the display device's ability to lock to the correct sub-carrier waveform, and hence decrease the quality of the image displayed.

Another embodiment of the invention allows the selective storage of the raw digitized video data that is generated from the analog video signal. The selective storage approach is different for composite video and S-video. The approach will require only a small amount of additional memory. Moreover, the textual overlays may be created during the vertical blanking period while the preview circuitry is not accessing the memory.

The selective storage process begins by writing textual information over the stored raw digitized video data in memory. A backup copy of the stored raw digitized video data is kept in memory for future utilization. If the text overlays are small, a second preview feature is the ability to interactively adjust the color appearance, referred to as saturation or hue, of the preview image interactively. If the raw digitized video data in memory was captured from an S-video source, then saturation adjustment may be accomplished simply by scaling the chrominance samples, which may be accomplished non-destructively by hardware in real time. A hue shift may be accomplished with sufficient accuracy for preview purposes by applying appropriate 2×2 rotation matrices to adjust adjacent pairs of chrominance samples.

Unfortunately, no simple non-destructive approach for color adjustment exists when the samples in memory were captured from a composite video source. However, if software decoding is eventually going to be used, the first task of the software decoding process involves separation of the luminance and chrominance components of a composite video signal. The process essentially produces an S-video signal. By performing the software task immediately after the user has selected the field or frame that the user wishes to print, the saturation adjustment feature discussed above for S-video may be made available after a brief period for processing. Considering that the most numerically complex tasks associated with software decoding are those of time-base recovery and resampling, conversion from composite to S-video representation should not require more than a second or two, depending upon processor performance.

While the decoding is in progress, the memory bandwidth should be dedicated entirely to the processor. The preview monitor can be driven with a synthesized video signal during the decoding.

With reference to Fig. 3, a composite video signal is considered first. Composite video is transmitted on a single channel from an analog video signal source 70. The composite video signal consists of a baseband signal with one frequency and a color sub-carrier signal with a different color sub-carrier frequency. To convert the analog composite video signal into raw digitized video data, the analog composite video signal is typically sampled in the first convertor 74 at a rate of four times the color sub-carrier frequency (F_{sc}). A large amount of sample data, that reflects the vertical blanking information, the horizontal sync information, the horizontal blanking information, and the color burst information of the analog video signal, is generated.

The data samples are then transmitted to the storage selector 78. The selective storage process begins by identifying the most important part of the composite video signal. The most important part of the composite video signal...
is the active region. The active region of the signal is that portion of the signal which is actually displayed on a monitor, such as a television. At the sampling rate of \(4 F_{sc}\), an NTSC signal offers 768 active digitized video samples on each horizontal line, with about 240 horizontal lines per field. Thus, each field contains 184,320 active samples. The total amount of samples in a field is determined by dividing the number of samples per second by the number of fields per second:

\[
\frac{14.31818 \times 10^6 \text{ samples}}{60 \text{ fields/second}} = 238.636 \text{ samples/field}.
\]

[0038] All of the samples from the active region are selected for storage in a memory \(82\). In addition to the samples from the active region of each field, samples that contain relevant timing information are selected for storage. Specifically, samples from around the leading horizontal sync edges and some or all of the color burst samples are preserved. The remaining horizontal sync samples are discarded and the precise position of the leading horizontal sync edges can be determined later as needed from the small number of samples which were retained. If the sampling clock is locked to the color sub-frequency, there is no need to retain the color burst samples. Altogether, the timing-related information may contribute somewhere between 10 and 50 additional samples to each horizontal line. As a result, each field would contain between \(187 \times 10^3\) and \(196 \times 10^3\) samples per field out of a potential of \(239 \times 10^3\) total samples per field.

[0039] In the above discussion of selective storage for composite video sources, it is assumed that the storage selector \(78\) is able to identify the active video samples and the associated horizontal sync and color burst samples on each line. To this end, circuitry must be provided to approximately locate the leading edge of each horizontal sync pulse and to identify the vertical blanking and synchronization regions of the signal. Once the horizontal sync locations are known to within one or two digitized samples, the color burst and active video regions can also be deduced to similar accuracy. Simple techniques for obtaining such crude estimates of the synchronization pulse locations are well known and not discussed further. It is important to note that accurate synchronization information is not available until future software decoding. Consequently, all preview operations must operate without precise synchronization information. This presents no difficulty, since preview is accomplished simply by replaying stored samples, including those samples recorded from the neighborhood of the leading horizontal sync edges.

[0040] With S-video, the selective storage approach is similar, except that the determination of what samples must be stored and what samples can be discarded is more involved. With S-video, there are two channels of raw digitized video samples. One channel is for the \(Y\) signal and contains all luminance and horizontal and vertical timing information. The other channel is for the \(C\) signal and contains the color burst and modulated chrominance information. Both of these signals are sampled at four times the sub-carrier frequency (\(4 F_{sc}\)). The \(Y\) channel samples are selectively stored in the manner as described above for a composite video signal, with the exception that any retained color burst samples are obtained from the \(C\) channel. The \(C\) channel, on the other hand, contains much more redundant information, primarily because the modulated chrominance and color burst information occupy only a narrow portion of the frequency spectrum, centered about the sub-carrier frequency. The sub-carrier frequency for an NTSC signal is 3.5795 MHz. The chrominance signal, \(C(t)\), has the general form:

\[
C(t) = I(t) \cos(2\pi F_{sc} t + \frac{\pi}{6}) + Q(t) \sin(2\pi F_{sc} t + \frac{\pi}{6}).
\]

where \(I(t)\) and \(Q(t)\) represent the baseband chrominance signals. Although not strictly necessary, it is convenient to assume that the sampling clock is locked to the sub-carrier waveform such that the \(n\)th sample occurs at time \(t = n \frac{1}{4F_{sc}}\). In this case, the chrominance samples, \(C[n]\), satisfy
Thus, up to a simple sign change, there are two interleaved $2F_{sc}$ samplings of the baseband chrominance signals $I(t)$ and $Q(t)$, namely $I[n]$ and $Q[n]$. The baseband signals typically have a bandwidth of no more than ± 0.6 MHz, suggesting that $I(t)$ and $Q(t)$ may be sampled at a rate of or even less without violating Nyquist’s sampling criterion. Therefore, no more than one in every four of the initial sequence of chrominance samples, $C[n]$, must be selected for storage in memory. Specifically, only the samples, $I[4n] = C[8n]$, and $Q[4n+2] = C[8n+5]$ need to be stored. The selective storage approach constitutes a necessarily non-uniform decimation of the original sequence, $C[n]$.

Referring to Fig. 4, the dots represent the sampling pattern of the chrominance channel. The filled dots indicate samples that correspond to the baseband Q chrominance signal, while the shaded dots indicate samples which are not necessary for storage. Since chrominance samples are only stored during the active portion of the video signal, the efficiently sampled C channel contributes only 46×10^3 samples per video field.

When the selective storage embodiments of the invention are implemented, preview of the stored video data requires additional operations. Fig. 3 represents a system, including a signal reconstructor 86, and second convertor 90 and a monitor 94, that can be used for composite video. Fig. 5 represents a system that can be used for composite video and/or S-video. The description of the operation will refer to Fig. 5, although the system in Fig. 3 can be used for composite video.

If the stored samples correspond to a composite video signal, then the composite/luminance signal reconstructor 126 must perform the following operations: Step 1 - synthesize appropriate vertical blanking and vertical synchronization signals for the composite video signal. Step 2 - reconstruct each horizontal line of the composite video samples from the samples stored in memory. In this process, the composite/luminance signal reconstructor 126 must synthesize those samples which were discarded during selective storage. The discarded samples correspond to the horizontal blanking intervals and the trailing edge of the horizontal sync pulse, none of which are difficult to synthesize. If no color burst samples were stored, then the color burst samples must also be synthesized, which is a simple matter because sub-carrier locked sampling ensures that the color burst signal is a fixed pattern which repeats every four samples. The reconstructed composite/luminance signal is then converted from digital to analog data in the composite/luminance second convertor 124.

If the stored samples correspond to S-video, then the composite/luminance signal reconstructor 126 and the chrominance signal reconstructor 118 must perform the following operations: Step 1 — synthesize appropriate vertical blanking and vertical synchronization signals for the luminance channel. Step 2 — reconstruct each horizontal line of luminance samples from the samples stored in memory. In this process, the composite/luminance signal reconstructor 126 must synthesize those samples which were discarded during selective storage. The discarded samples correspond to the horizontal blanking intervals and the trailing edge of the horizontal sync pulse, none of which are difficult to synthesize. If no color burst samples were stored, these must also be synthesized, which is a simple matter because
sub-carrier locked sampling ensures that the color burst signal is a fixed pattern which repeats every four samples. The only case in which color burst samples are not stored is when the color sub-carrier is sampled with a phase locked sampling clock. In this situation, color burst samples can be easily synthesized. If the sampling clock is not phase locked, then color burst samples must be stored and the color burst samples can be replayed from memory. However, it is not necessary to store all of the color burst samples. Only a few color burst samples need to be stored, and the remaining samples can be reproduced by repeating the fixed pattern that repeats every four samples. Step 3 — interpolate the discarded chrominance channel samples in the chrominance signal reconstructor 118. The full sequence of chrominance samples $C[n]$ are reconstructed by interpolating the baseband $I[n]$ and $Q[n]$ signals and reversing the polarity where appropriate. The reconstructed chrominance signal is then converted from digital to analog data in the chrominance second convertor 120. The chrominance signals can then be delivered directly to an S-video compatible monitor 122 as depicted in Fig. 5 or added to the luminance samples to obtain a true composite video signal suitable for output to a composite video compatible monitor.

When text overlay is applied where digitized video data has been selectively stored, another consideration must be taken into account for previewing. Prior to software decoding, the exact horizontal timing information from the raw digitized video data is not actually known. Consequently, some uncertainty exists regarding the location of overlay pixels, which may result in jagged text edges. The problem is readily overcome by saving and replacing the captured horizontal sync samples with synthetic sync samples, on all lines which hold overlay text and possibly some of the surrounding lines. In this way, the text overlay algorithm directly controls the horizontal timing of the preview video in the critical regions so that text pixels line up perfectly. One side effect of this approach is that the underlying preview pixels may no longer line up perfectly. Essentially, this solution transfers the jagged edge effect from the overlay text to the underlying preview image wherever the text appears.

Although the invention may be applied to other fields, the preferred embodiment is applied to a video printing system. Fig. 6 is a depiction of a video printing system that incorporates the preferred embodiment. In the preferred embodiment, NTSC composite and S-video standards are for the analog video signal source 150. However, the PAL composite and S-video standards could also be used with minor modifications.

Video printing in the preferred embodiment requires three main functions to be performed. The first main function involves converting the analog video signal to raw digitized video data and selectively storing portions of the raw digitized video data. The second main function involves previewing the incoming analog video data without having to convert the incoming analog video data into digital image data. The third main function involves using software to convert selected portions of raw digitized video data into complete digital image data and then processing the digital image data for printing.

The first main function of converting the analog video signal into raw digitized video data and selectively storing portions of the raw digitized video data is carried out in a first convertor 152 and a data storage selector 154. The conversion and storage operations are carried out as described above. Once the conversion and storage operations are complete, the raw digitized video data is stored in memory 156.

The second main function of previewing the incoming analog video data without having to convert the incoming analog video data into digital image data is carried out by a series of devices. Initially, a user watches a video presentation on the preview monitor 162. At the desired point, the user indicates to the video printing system that the user would like to preview a particular image. The raw digitized video data is then retrieved from memory and processed by the signal reconstructor 158, using the techniques outlined above. The reconstructed raw digitized video data is then sent to a second convertor 160 that converts the raw digitized video data into an analog video signal that is then displayed on the monitor 162. The user can then preview the still video image to determine if the user wants to print the still video image. The user may step through multiple fields or frames before deciding what to print.

The third main function, using software to convert selected portions of raw digitized video data into complete digital image data and then processing the digital image data for printing, is accomplished outside of the capture-and-preview system. Once a still video image has been selected for printing, the raw digitized video data is sent to a software decoder 164 and converted into a digital image using conventional software decoding algorithms. The created digital image data is then sent to a print processor 166 to be processed for printing. The print processor uses conventional print processing techniques. Once processed, the image is sent to a printer 168 where a hard copy image is printed.

Claims

1. A method of previewing video data on a field-by-field basis or a frame-by-frame basis comprising the steps of:

 converting (50) incoming analog video signal representing a plurality of separate video images into a plurality of raw digitized video data segments, each said raw digitized video data segment being digitized values of its associated video image;
storing (52) said raw digitized video segments in a memory (22,82,116,128,56);
displaying said incoming analog video signal on a preview device (30,94,122,162);
retrieving (54) from memory the raw digitized video data segment representing a video image selected by a
user from the displayed incoming analog video signal;
converting (56) said raw digitized video data segment into outgoing analog video signal; and
delivering (58) said outgoing analog video signal to the preview device (30,94,122,162) for display as a still
image.

2. A method as in claim 1, wherein said step (50) of converting said raw digitized video data segment into outgoing
analog video signal includes the step of adjusting timing data, said timing data being a component of said raw
digitized video data that is necessary for previewing.

3. A method as in claim 1 or 2, wherein said step (52) of storing said raw digitized video data segment in a memory
stores only portions of said raw digitized video data representing the active region of the video image and discards
portions of said raw digitized video data representing non-active regions of the video image.

4. A method as in claim 3, wherein said step (56) of converting said corresponding segment of raw digitized video
data into outgoing analog video signal includes the steps of synthesizing said discarded portions of said corre-
sponding raw digitized video data and reconstructing said selected portion of raw digitized video data by combining
said stored portions and said synthesized portions of said corresponding portion of raw digitized video data.

5. A method as in any preceding claim, wherein said step (58) of delivering said outgoing analog video signal to said
preview device (30,94,122,162) for display includes the step of overlaying textual information onto said video signal
that is displayed on said preview device and/or the step of adjusting the color appearance of said outgoing analog
video signal.

6. A method as in any preceding claim, including the step of decoding said raw digitized video data segment into
digital image data using software and, preferably, the step of printing said digital image data.

7. A method as in any preceding claim, wherein said outgoing analog video signal is delivered to said preview device
immediately after said step (54) of selecting one video image for preview.

8. A system for previewing still images of video data comprising:
an input (14,70,110,150) connected to receive an incoming analog video signal representing a plurality of
video images;
first conversion means (16,74,112,132,152) connected to said input for converting an incoming analog signal
into a plurality of raw digitized video data segments, each raw digitized segment being digitized values of its
associated video image;
a memory (22,82,116,128,156) connected to receive and store said raw digitized video data segments;
a display device (30,94,122,162) connected to receive and display said incoming analog signal;
second conversion means (26,90,118,124,160) for converting a digitized video data segment, retrieved from
said memory, representing a video image selected by a user from the displayed incoming analog video signal
into an outgoing analog video signal, the display device (30,94,122,162) being coupled to receive and to display
said outgoing analog video signal as a still image.

9. A system as in claim 8, wherein for an incoming analog signal which includes color sub-carrier phase data nec-
essary for video data previewing, said second conversion means is provided with timing control means for adjusting
said color sub-carrier phase data to account for color sub-carrier phase advance.

10. A system as in claim 8 or 9, including a storage selection means (78,114,130,154) for discarding portions of said
raw digitized video data segment representing non-active regions of the video image and storing portions of said
raw digitized video data segment representing the active regions of the video image.

11. A system as in claim 10, including raw digitized data synthesis and reconstruction means (86,118,126,158) for
synthesizing data to replicate said discarded portions of raw digitized data and for creating reconstructed raw
digitized video data from said stored portions of said raw digitized video data and from said synthesized data.
12. A system as in any one of claims 8 to 11, including a textual overlay means for allowing textual information to be overwritten onto said outgoing analog signal and/or color adjustment means for adjusting the color appearance of said outgoing analog signal.

Patentansprüche

1. Ein Verfahren zum Vorbetrachten von Videodaten auf einer Feld-für-Feld-Basis oder einer Rahmen-für-Rahmen-Basis, das folgende Schritte aufweist:

 Umwandeln (50) eines eingehenden analogen Videosignals, das eine Mehrzahl von separaten Videobildern darstellt, in eine Mehrzahl von rohen digitalisierten Videodatensegmenten, wobei jedes rohe digitalisierte Videodatensegment digitalisierte Werte seines zugeordneten Videobildes darstellt;

 Speichern (52) der rohen digitalisierten Videodatensegmenten in einem Speicher (22, 82, 116, 128, 56);

 Anzeigen des eingehenden analogen Videosignals auf einer Vorbetrachtungsvorrichtung (30, 94, 122, 162);

 Wiedergewinnen (54) des rohen digitalisierten Videodatensegments aus dem Speicher, das ein Videobild darstellt, das durch einen Benutzer aus dem angezeigten eingehenden analogen Videosignal ausgewählt wurde;

 Umwandeln (56) des rohen digitalisierten Videodatensegments in ein ausgehendes analoges Videosignal; und

 Liefern (58) des ausgehenden analogen Videosignals zu der Vorbetrachtungsvorrichtung (30, 94, 122, 162) für eine Anzeige als ein Standbild.

2. Ein Verfahren gemäß Anspruch 1, bei dem der Schritt (50) des Umwandlens des rohen digitalisierten Videodatensegments in ein ausgehendes analoges Videosignal den Schritt des Anpassens von Zeitgebungsdaten umfaßt, wobei die Zeitgebungsdaten eine Komponente der rohen digitalisierten Videodaten sind, die zum Vorbetrachten notwendig sind.

3. Ein Verfahren gemäß Anspruch 1 oder 2, bei dem der Schritt (52) des Speicherns des rohen digitalisierten Videodatensegments in einem Speicher nur Abschnitte der rohen digitalisierten Videodaten speichert, die die aktive Region des Videobildes darstellen, und Abschnitte der rohen digitalisierten Videodaten verwirft, die nicht-aktive Regionen des Videobildes darstellen.

7. Ein Verfahren gemäß einem der vorangehenden Ansprüche, bei dem das ausgehende analoge Videosignal zu der Vorbetrachtungsvorrichtung geliefert wird, unmittelbar nach dem Schritt (54) des Auswählens eines Videobildes zum Vorbetrachten.

8. Ein System zum Vorbetrachten von Standbildern von Videodaten, das folgende Merkmale aufweist:

 einen Eingang (14, 70, 110, 150), der angeschlossen ist, um ein eingehendes analoges Videosignal zu emp-
fangen, das eine Mehrzahl von Videobildern darstellt;

eine erste Umwandlungseinrichtung (16, 74, 112, 132, 152), die mit dem Eingang zum Umwandeln eines eingehenden analogen Signals in eine Mehrzahl von rohen digitalisierten Videodatensegmenten verbunden ist, wobei jedes rohe digitalisierte Segment digitalisierte Werte seines zugeordneten Videobildes darstellt;

einen Speicher (22, 82, 116, 128, 156), der angeschlossen ist, um die rohen digitalisierten Videodatensegmente zu empfangen und zu speichern;

eine Anzeigevorrichtung (30, 94, 122, 162), die angeschlossen ist, um das eingehende analoge Signal zu empfangen und anzuzeigen;

eine zweite Umwandlungseinrichtung (26, 90, 118, 124, 160) zum Umwandeln eines digitalisierten Videodatensegments, das aus dem Speicher wiedergewonnen wird, das ein Videobild darstellt, das durch einen Benutzer aus dem angezeigten eingehenden analogen Videosignal ausgewählt wurde, in ein ausgehendes analoges Videosignal, wobei die Anzeigevorrichtung (30, 94, 192, 162) gekoppelt ist, um das ausgehende analoge Videosignal als ein Standbild zu empfangen und anzuzeigen.

12. Ein System gemäß einem der Ansprüche 8 bis 11, das eine Textüberlagerungseinrichtung, um zu ermöglichen, daß Textinformationen auf das ausgehende analoge Signal überschrieben werden, und/oder eine Farbanpassungseinrichtung zum Anpassen der Farberscheinung des ausgehenden analogen Signals, umfaßt.

Revendications

1. Un procédé de visualisation préalable de données vidéo sur une base champ par champ ou une base trame par trame qui comprend les étapes consistant à:

convertir (50) un signal vidéo analogique entrant qui représente une série d'images vidéo séparées en une série de segments de données vidéo numérisés bruts, chacun desdits segments de données vidéo numérisés bruts consistant en valeurs numérisées de son image vidéo associée;
enregistrer (52) lesdits segments vidéo numérisés bruts dans une mémoire (22, 82, 116, 128, 56); afficher ledit signal vidéo analogique entrant sur un dispositif de visualisation préalable (30, 94, 122, 162);
restituer (54) de la mémoire le segment de données vidéo numérisé brut qui représente une image vidéo sélectionnée par un utilisateur dans le signal vidéo analogique entrant affiché;
convertir (56) ledit segment de données vidéo numérique brut en signal vidéo analogique sortant; et envoyer (58) ledit signal vidéo analogique sortant audit dispositif de visualisation préalable (30, 94, 122, 162) pour affichage sous forme d'image fixe.

2. Un procédé selon la revendication 1, dans lequel ladite étape (50) de conversion dudit segment de données vidéo numérique brut en signal vidéo analogique sortant inclut l'étape consistant à ajuster des données de synchronisation, lesdites données de synchronisation étant une composante desdites données vidéo numérisées brutes qui est nécessaire pour une visualisation préalable.
3. Un procédé vidéo selon la revendication 1 ou 2, dans lequel ladite étape (52) d’enregistrement dudit segment de données vidéo numérisé brut dans une mémoire n’enregistre que des fractions desdites données vidéo numérisées brutes qui représentent la région active de l’image vidéo et supprime des fractions desdites données vidéo numérisées brutes qui représentent des régions inactives de l’image vidéo.

4. Un procédé selon la revendication 3, dans lequel ladite étape (56) de conversion dudit segment correspondant de données vidéo numérisé brut en signal vidéo analogique sortant inclut les étapes consistant à synthétiser lesdites parties supprimées desdites données vidéo numérisées brutes correspondantes et à reconstruire ladite fraction sélectionnée de données vidéo numérisées brutes en combinant lesdites fractions enregistrées et lesdites fractions synthétisées de ladite fraction correspondante de données vidéo numérisées brutes.

5. Un procédé selon l’une quelconque des revendications précédentes, dans lequel ladite étape (58) d’envoi dudit signal vidéo analogique sortant audit dispositif de visualisation préalable (30, 94, 122, 162) pour affichage inclut l’étape consistant à incruster une information textuelle sur ledit signal vidéo qui est affiché sur ledit dispositif de visualisation préalable et/ou l’étape consistant à ajuster l’aspect de couleurs dudit signal vidéo analogique sortant.

6. Un procédé selon l’une quelconque des revendications précédentes, qui inclut l’étape consistant à décoder ledit segment de données vidéo numérisé brut en données d’image numérique en utilisant un logiciel et, de préférence, l’étape consistant à imprimer lesdites données d’image numérique.

7. Un procédé selon l’une quelconque des revendications précédentes, dans lequel ledit signal vidéo analogique sortant est envoyé audit dispositif de visualisation préalable immédiatement après l’étape (54) de sélection d’une image vidéo pour visualisation préalable.

8. Un système de visualisation préalable d’images fixes de données vidéo qui comprend:

 une entrée (14, 70, 110, 150) connectée pour recevoir un signal vidéo analogique entrant représentant une pluralité d’images vidéo;
 un premier moyen de conversion (16, 74, 112, 132, 152) connecté à ladite entrée pour convertir un signal analogique entrant en une pluralité de segments de données vidéo numérisés bruts, chaque segment numérisé brut consistant en valeurs numérisées de son image vidéo associée;
 une mémoire (22, 82, 116, 128, 156) connectée pour recevoir et enregistrer lesdits segments de données vidéo numérisés bruts;
 un dispositif d’affichage (30, 94, 122, 162) connecté pour recevoir et afficher ledit signal vidéo analogique entrant;
 un deuxième moyen de conversion (26, 90, 118, 124, 160) pour convertir en un signal vidéo analogique sortant un segment de données vidéo numérisé restitué de ladite mémoire et représentant une image vidéo sélectionnée par un utilisateur dans les données vidéo analogiques entrantes affichées, le dispositif d’affichage (30, 94, 122, 162) étant couplé pour recevoir ledit signal vidéo analogique sortant et l’afficher sous forme d’une image fixe.

9. Un système selon la revendication 8 dans lequel, pour un signal analogique entrant qui inclut des données de phase de sous-porteuse de couleurs pour une visualisation préalable de données vidéo, ledit deuxième moyen de conversion est équipé d’un moyen de réglage de synchronisation pour ajuster lesdites données de base de sous-porteuse de couleurs pour tenir compte d’une avance de phase de sous-porteuse de couleurs.

10. Un système selon la revendication 8 ou 9, qui inclut un moyen de sélection d’enregistrement (78, 114, 130, 154) pour supprimer des fractions dudit segment de données vidéo numérisé brut qui représentent des régions inactives de l’image vidéo et enregistrer des frac- tions dudit segment de données vidéo numérisé brut qui représentent les régions actives de l’image vidéo.

11. Un système selon la revendication 10, qui inclut un moyen de synthèse et de reconstruction (86, 118, 126, 158) de données numérisées brutes pour synthétiser des données afin de répliquer lesdites fractions supprimées de données numérisées brutes pour créer des données vidéo numérisées brutes reconstruites à partir desdites fractions enregistrées desdites données vidéo numérisées brutes et à partir desdites données synthétisées.

12. Un système selon l’une quelconque des revendications 8 à 11 qui inclut un moyen d’incrustation textuelle pour permettre qu’une information textuelle soit superposée sur ledit signal analogique sortant et/ou un moyen d’ajuste-ment de couleurs pour ajuster l’aspect de couleurs dudit signal analogique sortant.