EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:

Application number: 98111557.9

Date of filing: 23.06.1998

Valve operating system in internal combustion engine
Ventilsteuerungseinrichtung für eine Brennkraftmaschine
Dispositif de commande de soupape pour moteur à combustion interne

Designated Contracting States:
DE FR

Priority:
24.06.1997 JP 16723597
25.06.1997 JP 16830497
27.06.1997 JP 17185297

Date of publication of application:

Proprietor: HONDA GIKEN KOGYO KABUSHIKI KAISHA
Minato-ku Tokyo (JP)

Inventors:
• Sato, Toshiyuki
 4-1, Chuo 1-chome Wako-shi, Saitama-ken (JP)

• Oikawa, Toshihiro
 4-1, Chuo 1-chome Wako-shi, Saitama-ken (JP)

• Otobe, Yutaka
 4-1, Chuo 1-chome Wako-shi, Saitama-ken (JP)

Representative:
Prechtel, Jörg, Dipl.-Phys. Dr. et al
Weickmann & Weickmann
Patentanwälte
Kopernikusstrasse 9
81679 München (DE)

References cited:
EP-A- 0 267 696
DE-A- 4 433 457

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a valve operating system in an internal combustion engine, in which a support shaft is mounted to extend between first and second support walls included in a rocker arm, and the rocker arm is urged by an urging means in a direction to bring a roller into rolling contact with a valve operating cam.

Description of the Related Art

[0002] A valve operating system of the above type is already known from Japanese Patent Publication No. 2-50286 and the like. In such known valve operating system, a receiving portion is provided at a widthwise central portion of the rocker arm in a direction parallel to the axis of a rocker shaft on which the rocker arm is swingably supported. However, due to the fact that the receiving portion is positioned at the central portion of the rocker arm, despite the provision of the roller, the structure of the rocker arm is complicated, and the size of the roller arm is increased, resulting in an increased weight.

[0003] A valve operating system according to the preamble of claim 1 is disclosed in DE 4 433 457 A.

SUMMARY OF THE INVENTION

[0004] Accordingly, it is an object of the present invention to provide a valve operating system in an internal combustion engine, wherein the captioned structure of a rocker arm receiving a spring force from an urging means and the increased in size can be avoided.

[0005] To achieve the above object, according to the present invention, there is provided a valve operating system in an internal combustion engine, comprising a cam shaft provided with a valve operating cam, a rocker arm having first and second support walls opposed to each other at a distance, a support shaft mounted to extend between the support walls, a roller rollably supported on the support shaft through a bearing, and an urging means for urging the roller arm in a direction to bring the roller into rolling contact with the valve operating cam, wherein one of the support walls includes in the rocker arm is integrally provided with a receiving portion which contacts with the urging means, said receiving portion and a support portion of one of said support walls for supporting said support shaft being provided on a common plane extending perpendicular to the axis of the support shaft.

[0006] With the above arrangement, the structure of the roller arm can be simplified such that the receiving portion is positioned to the side of the roller, and an increase in size of the roller arm can be avoided and further, the inertial weight is reduced. Thus, it is possible to conveniently accommodate the high-speed rotation of the internal combustion engine.

[0007] According to a preferred feature of the present invention, the valve operating system includes the cam shaft provided with a plurality of valve operating cams, a plurality of the rocker arms positioned adjacent one another, and an associative operation switching means for switching between a state in which the rocker arms adjacent each other operated together associatively and a state in which the associative operation is released, and the first and second support walls are provided on the free rocker arm of the free of rocker arm, which becomes free relative to an engine valve, when the associative operation switching means is brought into the associative operation releasing state.

[0008] With the above arrangement, the structure of the free rocker arm can be simplified such that the receiving portion is positioned to the side of the roller, and an increase in size of the rocker arm can be avoided and further, the inertial weight is reduced. Thus, it is possible to conveniently accommodate the high-speed rotation of the internal combustion engine.

[0009] According to another preferred feature of the present invention, the first support wall of in the free rocker arm has a first fitting bore provided therein, one end of the support shaft being fitted into the first fitting bore, and the second support wall having the receiving portion includes a second fitting bore therein coaxially with the first fitting bore, the other end of the support shaft being fitted into the second fitting bore, the first support wall having an insert bore leading to an inner surface of the first fitting bore, the support shaft having an engage groove in an outer surface thereof in correspondence to an opening of the insert bore into the inner surface of the first fitting bore, and a pin engaged in the engage groove, the pin being inserted into and fitted in the insert bore. With such arrangement, the axial movement of the support shaft and the rotation of the support shaft about its axis are inhibited by the pin, whereby the support shaft is easily fixed. Further the size and the position of the insert bore are not limited by the receiving portion. In addition, it is difficult for a load from the urging means to act on the pin, and the support strength of the support shaft can be increased.

[0010] According to another preferred feature of the present invention, the rocker arms are positioned adjacent one another, so that the other rocker arm different from the free rocker arm is positioned at one end in the direction of arrangement of the rocker arms, and where-in the associative operation switching means includes hydraulically operated pistons, and switches between the associative operation and the releasing of the associative operation of the rocker arms in response to the operation of the pistons due to a variation in hydraulic pressure in a hydraulic pressure chamber defined in the other rocker arm, the support shaft has a cylindrical...
shape to guide the sliding operation of the pistons, and the free rocker arm is supported on a support member with the first support wall being positioned on the side of the other rocker arm. With such arrangement, the support shaft is fixed to the free rocker arm at a location in which the piston included in the associative operation switching means is inserted and hence, the insertion of the piston into the support shaft is smooth.

[0011] According to another preferred feature of the present invention, one of the first and second support walls of the free rocker arm having the receiving portion includes a lubricating oil passage for supplying lubricating oil from an oil passage in a support member for supporting the free rocker arm for swinging movement, to the bearing of the free rocker arm. With such arrangement, a reduction in rigidity of the support walls can be avoided by the receiving portion, notwithstanding that the hollow lubricating oil passage is defined. In addition, a reduction in weight of the support walls that is caused by the lubricating oil passage being hollow, can be compensated for by the receiving portion, thereby improving the balance of weights of the support walls.

[0012] According to another preferred feature of the present invention, a support member for supporting the rocker arm is provided with an oil passage, and the first and second support walls include fitting bores for fixing opposite ends of the support shaft, respectively. The rocker arm has a lubricating oil passage which opens into an inner surface of at least one of the fitting bores in the rocker arm and which leads to the oil passage in the support member, and at least the one of the fitting bores has a groove in its inner surface with one end leading to the lubricating oil passage and with other end opening toward the bearing.

[0013] With this arrangement, lubricating oil is supplied from the oil passage in the support member through the lubricating oil passage and the groove to the bearing. Thus, it is possible to supply lubricating oil to the bearing in a simple structure in which the lubricating oil passage is in the rocker arm and the groove is in the inner surface of at least one of the fitting bores. The oil passage structure for supplying lubricating oil to the bearing can be easily formed and moreover, it is unnecessary to drill the support shaft for introducing the lubricating oil. Therefore, there is no reduction in rigidity of the support shaft, and further, the number of workings is reduced.

[0014] According to preferred feature of the present invention, a support member for supporting the rocker arm has an oil passage, wherein at least one of the first and second support walls includes a lubricating oil passage which leads to the oil passage in the support member and opens toward the bearing.

[0015] With this feature, the lubricating oil is supplied from the oil passage in the support member through the lubricating oil passage to the bearing. Thus, it is possible to supply lubricating oil to the bearing in a simple structure in which the lubricating oil passage is only in at least one of the support walls included in the rocker arm. The oil passage structure for supplying lubricating oil to the bearing can be easily formed and moreover, it is unnecessary to drill the support shaft for introducing the lubricating oil. Therefore, there is not a possibility of reduction in rigidity of the support shaft, and further, the number of workings is reduced.

[0016] According to still another preferred feature of the present invention, the cam shaft has a plurality of valve operating cams, including at least one high-speed valve operating cam, and a plurality of the rocker arms positioned adjacent one another, the rocker arms including a first particular rocker arm operatively coupled to the high-speed valve operating cam, the high-speed valve operating cam having a cam profile for permitting the maximum lift amount of the engine valve, and an associative operation switching means including pistons movable between a position in which the rocker arms positioned adjacent each other, are operated in association with each other, and a position in which the associative operation is released, wherein the first and second support walls in at least the first particular rocker arm the arm of the plurality of the rocker arms include with fitting bores spaced from and coaxially opposed to each other, and the support shaft is of a cylindrical shape to guide the sliding operation of the pistons and has opposite ends fitted into and fixed in the fitting bores, a support member supporting the first particular rocker arm, the support member having an oil passage, the first particular rocker arm having a lubricating oil passage which opens into an inner surface of at least one of the fitting bores and extends to the oil passage in the support member, the at least one fitting bore having a groove in its inner surface with one end leading to the lubricating oil passage and with the other end opening toward the bearing.

[0017] With this arrangement, the lubricating oil is supplied from the oil passage in the support member through the lubricating oil passage and the groove to the bearing which is positioned between the support shaft of the first particular rocker arm corresponding to the high-speed valve operating cam, i.e., the rocker arm having a relatively large inertial weight and the roller. Thus, by effectively supplying lubricating oil to the bearing on which a relatively large load acts, the load on the bearing can be alleviated. Moreover, it is possible to supply lubricating oil to the bearing in a simple structure in which the lubricating oil passage is in the first particular rocker arm and the groove is in the inner surface of at least one of the fitting bores. The oil passage structure for supplying lubricating oil to the bearing can be easily formed and moreover, it is unnecessary to drill the support shaft for introducing the lubricating oil. Therefore, there is no reduction in rigidity of the support shaft, and further, the number of workings is reduced.

[0018] According to another preferred feature of the present invention, the lubricating oil passage is provided in one of the support walls, the other support wall is pro-
vided with an insert bore which extends to an inner surface of the fitting bore included in the other support wall, the support shaft has an engage groove in its outer surface corresponding to an opening of the insert bore into an inner surface of the fitting bore, and a pin engaged in the engage groove is inserted into and fixed in the insert bore.

[0019] With this arrangement, the axial movement of the support shaft and the rotation of the support shaft about its axis are inhibited, whereby it is easy to fix the support shaft, and also the space for the insert bore can be ensured, while avoiding an increase in size of the rocker arm having the lubricating oil passage. In addition, the insert bore is provided at a location relatively far apart from the lubricating oil passage which is hollow. This is convenient for the rigidity of the rocker arm.

[0020] According to a further preferred feature of the present invention, the rocker arms are positioned adjacent one another such manner that the other rocker arm different from the first particular rocker arm is positioned at one end in the direction of arrangement of the rocker arms, the other rocker arm including a hydraulic pressure chamber, and the associative operation switching means includes pistons for switching between the associative operation and the releasing of the associative operation of the rocker arms in response to the operation of the pistons resulting from a variation in hydraulic pressure in the hydraulic pressure chamber, the other rocker arm including an insert bore in one of the support walls included in the first particular rocker arm, which is positioned adjacent the other rocker arm, the insert bore extending to an inner surface of the fitting bore such support wall, the support shaft having an engage groove on its outer surface corresponding to an opening of the insert bore into the fitting bore, the system including a pin engaged in the engage groove being inserted into and fixed in the insert bore, the lubricating oil passage being provided in one of the support walls, which is positioned at a location spaced apart from the other rocker arm.

[0021] With this arrangement, the axial movement of the support shaft and the rotation of the support shaft about the axis are inhibited and hence, it is easy to fix the support shaft, and the space for provision of the insert bore can be ensured, while avoiding an increase in size of the first particular rocker arm having the lubricating oil passage. In addition, the insert bore is at a location relatively far apart from the lubricating oil passage which is hollow. This is convenient for the rigidity of the first particular rocker arm. Further, the support shaft is fixed to the first particular rocker arm at a location in which the piston included in the associative operation switching means is inserted and hence, the insertion of the piston into the support shaft, i.e., the switching operation of the associative operation switching means, is smooth.

[0022] According to another preferred feature of the present invention, the lubricating oil passage has a cross-sectional shape with a length longer in the direction substantially perpendicular to the axis of the cam shaft than a length in the direction substantially parallel to the axis of the cam shaft. With such arrangement, it is possible to reduce the space occupied by the lubricating oil passage in the direction parallel to the cam shaft to a minimum, and it is possible to reduce the size of the rocker arm having the lubricating oil passage.

[0023] According to still another preferred feature of the present invention, the rocker arm is formed from a metal by injection molding. With such arrangement, the fitting bore and the lubricating oil passage can be formed simultaneously with the formation of the rocker arm, and the number of post-workings can be reduced to a minimum to enhance the productivity.

[0024] According to further feature of the present invention, the valve operating system includes a plurality of the rocker arms positioned adjacent one another, one of the rocker arms having a receiving portion; and the system includes an associative operation switching means having a timing piston defining a hydraulic pressure chamber between the timing piston and a second particular rocker arm of the rocker arms, the associative operation switching means means switching the associative operation and the releasing of the associative operation of the rocker arms in response to the operation of the timing piston as a response of a variation in hydraulic pressure in the hydraulic pressure chamber, the system further including a support member for supporting the second particular rocker arm for swinging movement the support member having an oil passage the second particular rocker arm having a communication passage for operatively coupling the oil passage with the hydraulic pressure chamber, the communication passage having a cross-sectional shape with a length in a direction substantially perpendicular to the direction of arrangement of the rocker arms longer than the length in a direction substantially parallel to the direction of arrangement of the rocker arms, the communication passage extending in a plane substantially perpendicular to the direction of arrangement of the rocker arms.

[0025] With this arrangement, it is possible to reduce the space occupied by the communication passage in the direction substantially parallel to the direction of arrangement of the rocker arms, and it is possible to correspondingly reduce the size of the second particular rocker arm.

[0026] According to still further preferred feature of the present invention, a cylindrical support shaft is fixed to the second particular rocker arm, the second rocker arm including a first support wall having a first closed fitting bore therein, and a second support wall having a second fitting bore therein coaxial with the first fitting bore, opening at the opposite end thereof, the cylindrical support shaft having opposite ends fitted into the first and second fitting bores; and a roller in rolling contact with one of a plurality of the valve operating cams and which is rollably supported on the cylindrical support shaft, the timing piston being swingably fitted on the cy-
lindrical support shaft, and the communication passage being positioned in the first support wall of the second particular rocker arm.

[0027] It is thus possible to avoid an increase in thickness of the first support wall for supporting the roller to the utmost, while ensuring the support strength of the support shaft, thereby contributing to a reduction in size of the second particular rocker arm.

[0028] According to another preferred feature of the present invention, the support shaft has a notch in that portion at one end thereof, which corresponds to the communication passage, and the notch has a shape corresponding to the communication passage. With such arrangement, the communication passage can be positioned in proximity to the roller, while ensuring a sufficient contact area of the support shaft with the first fitting bore in the first support wall to ensure the support strength of the support shaft on the second particular rocker arm, and thus, the size of the second particular rocker arm can be further reduced.

[0029] According to a further preferred feature of the present invention, the second support wall of the second particular rocker arm has an insert bore therein, leading to an inner surface of the second fitting bore; the cylindrical support shaft has an engage groove in the outer surface thereof corresponding to the opening of the insert bore into the inner surface of the second fitting bore; the system including a pin engaged in the engage groove and inserted into and fixed in the insert bore. With such arrangement, the axial movement of the support shaft and the rotation of the support shaft about its axis are inhibited, whereby it is easy to fix the support shaft, but also the space for provision of the insert bore can be ensured, while avoiding an increase in size of the rocker arm. In addition, the insert bore is at a location relatively far apart from the lubricating oil passage which is hollow. This is convenient for the rigidity of the second particular rocker arm.

[0030] According to still another preferred feature of the present invention, the second particular rocker arm includes a bulge portion on the outer surface thereof at one end in the direction of the arrangement of the rocker arms, the bulging portion bulging outwards to define the communication passage therein, and the second particular rocker arm includes a rib on the outer surface, and connecting a side edge of the outer surface, the bulge portion. With such arrangement, the weight of the second rocker arm can be reduced, while ensuring the rigidity of the bulge portion defining the communication passage.

[0031] According to still a further preferred feature of the present invention, the second particular rocker arm is formed from metal by injection molding. With such arrangement, the communication passage which is not truly circular can be formed simultaneously with the formation of the second particular rocker arm, and the number of the post-workings can be reduced to a minimum to enhance the productivity.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] Figs. 1 to 11 show a first embodiment of the present invention, wherein:

- Fig. 1 is a vertical sectional view showing a portion of a valve operating system and taken along a line 1-1 in Fig. 2.
- Fig. 2 is a plan view taken in a direction of an arrow 2 in Fig. 1.
- Fig. 3 is a sectional view taken along a line 3-3 in Fig. 2.
- Fig. 4 is a sectional view taken along a line 4-4 in Fig. 3.
- Fig. 5 is an enlarged sectional view taken along a line 5-5 in Fig. 2.
- Fig. 6 is a sectional view taken along a line 6-6 in Fig. 2.
- Fig. 7 is a sectional view taken along a line 7-7 in Fig. 4.
- Fig. 8 is a sectional view taken along a line 8-8 in Fig. 2.
- Fig. 9 is a sectional view taken along a line 9-9 in Fig. 4.
- Fig. 10 is a sectional view taken along a line 10-10 in Fig. 9.
- Fig. 11 is a sectional view taken along a line 11-11 in Fig. 2.
- Fig. 12 is a sectional view similar to Fig. 4 according to a second embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0033] The present invention will now be described by way of embodiments with reference to the accompanying drawings.

[0034] A first embodiment of the present invention will be described with reference to Figs. 1 to 11. Referring first to Fig. 1, a pair of intake valve bores 12 are provided for each of cylinders in a cylinder head 11 in a multicylinder engine, e.g., a serial 4-cylinder internal combustion engine. The intake valve bores 12 are individually opened and closed by intake valves V as engine valves. The intake valves V have stems 13 which are slidably received in guide tubes 14 provided in the cylinder head 11. Valve springs 16 are mounted between retainers 15 at upper ends of the stems 13 protruding upwards from the guide tubes 14 and the cylinder head 11 to surround the stems 13, so that the intake valves V are biased by spring forces of the valve spring in a direction to close the intake valve bores 12.

[0035] Referring to Figs. 2 to 4, a valve operating device 17 is connected to the intake valves V and includes a cam shaft 18 operatively connected to a crankshaft (which is not shown) at a reduction ratio of 1/2, a first driving rocker arm 19 as a second particular rocker arm,
which is operatively connected to one of the intake valves V, a second driving rocker arm 20 operatively connected to the other intake valve V, a free rocker arm 21 as a first particular rocker arm, which is capable of becoming free relative to the intake valves V. A stationary rocker shaft 22 as a support member, commonly supports the rocker arms 19, 20 and 21 for swinging movement and has an axis parallel to the cam shaft 18. An associative operation switching means 23 switches the associative operation and the release of the associative operation of the rocker arms 19, 20 and 21.

A high-speed valve operating cam 26 and lower-speed valve operating cams 25 are fixedly provided on the cam shaft 18. The lower-speed valve operating cams 25 are positioned on opposite sides of the high-speed valve operating cam 26 in correspondence to the intake valves V, respectively. The high-speed valve operating cam 26 has a cam profile permitting the intake valves V to be opened and closed in a high-speed operational range of the engine, and includes an arcuate base-circular portion 26a about the axis of the cam shaft 18, and a cam lobe 26b protruding radially outwards from the base circular portion 26a. The low-speed valve operating cam 25 has a cam profile permitting the intake valves V to be opened and closed in a lower-speed operational range of the engine, and includes a base circular portion 25a formed into an arcuate shape about the axis of the cam shaft 18, and a cam lobe 25b which protrudes outwards radially of the cam shaft 18 from the base circular portion 25a at an protrusion amount smaller than that of the cam lobe 26b from the base circular portion 26a in the high-speed valve operating cam 26 and over a range of center angle narrower than that of the cam lobe 26b. Thus, the high-speed valve operating cam 26 has a cam profile ensuring a lift amount of the intake valve V larger than that of the low-speed valve operating cam 25.

The first driving rocker arm 19, the second driving rocker arm 20 and the free rocker arm 21 are positioned adjacent one another such that the free rocker arm 21 is interposed between the first and second driving rocker arms 19 and 20, and the arms 19, 20 and 21 are swingably supported commonly by the rocker shaft 22.

The first and second driving rocker arms 19 and 20 are integrally provided with arm portions 19a and 20a extending toward the intake valves V. Tappet screws 27 abutting against the upper ends of the stems 13 of the intake valves V, are threadedly engaged with tip ends of the arm portions 19a and 20a for advancing and retracting movements.

An opening 34 is provided in the first driving rocker arm 19 between the rocker shaft 22 and the tappet screw 27, and opens on upper and lower sides to form, on opposite sides, first and second support walls 31a and 31b opposed to each other in a direction parallel to the axis of the rocker shaft 22. A cylindrical roller 28 in rolling contact with the low-speed valve operating cam 25 is rollably supported on the first driving rocker arm 19 such that it is positioned in the opening 34. An opening 35 is provided in the second driving rocker arm 20 between the rocker shaft 22 and the tappet screw 27, and opens on upper and lower sides to form, on opposite sides, first and second support walls 32a and 32b opposed to each other in a direction parallel to the axis of the rocker shaft 22. A cylindrical roller 29 in rolling contact with the low-speed valve operating cam 25 is rollably supported on the second driving rocker arm 20 such that it is positioned in the opening 35. Further, an opening 36 is provided in the free rocker arm 21 and opens on the opposite side from the rocker shaft 22 and on upper and lower sides to form, on opposite sides, first and second support walls 33a and 33b opposed to each other in a direction parallel to the axis of the rocker shaft 22. A cylindrical roller 30 in rolling contact with the high-speed valve operating cam 26 is rollably supported on the free rocker arm 21 such that it is positioned in the opening 36.

A first fitting bore 37 opening toward the free rocker arm 21, is provided in the first support wall 31a of the first driving rocker arm 19 in parallel to the axis of the rocker shaft 22, and a second fitting bore 37b opening on opposite ends is provided in the second support wall 31b coaxially with the first fitting bore 37a. A first fitting bore 38a opening on opposite ends is provided in the second support wall 32a of the second driving rocker arm 20 on the side of the free rocker arm 21, in parallel to the axis of the rocker shaft 22, and a second fitting bore 38b opening toward the free rocker arm 21, is provided in the second support wall 32b coaxially with the first fitting bore 38a. A first fitting bore 39a opening on opposite ends is provided in the first support wall 33a of the free rocker arm 21 on the side of the first driving rocker arm 19 in parallel to the axis of the rocker shaft 22, and a second fitting bore 39b opening on opposite ends is provided in the second support wall 33b coaxially with the first fitting bore 39a.

One end of a cylindrical support shaft 41 is fitted into the first fitting bore 37a in the first driving rocker arm 19, until it abuts against the closed end of the first fitting bore 37a, and the other end of the support shaft 41 is fitted into the second fitting bore 37b. One end of a cylindrical support shaft 42 is fitted into the first fitting bore 38a in the second driving rocker arm 20, and the other end of the support shaft 42 is fitted into the second fitting bore 38b, until it abuts against the closed end of the second fitting bore 38b. Further, opposite ends of a cylindrical support shaft 43 are fitted into the first and second fitting bores 39a and 39b in the free rocker arm 21, respectively.

Referring also to Fig. 5, an insert bore 44 is provided in the second support wall 31b of the first driving rocker arm 19, and extends in a direction intersecting a straight line connecting axes of the rocker shaft 22 and the second fitting bore 37b to lead to an inner surface of the second fitting bore 37b. An engage groove 50 is pro-
vided in an outer surface of the support shaft 41 in correspondence to an opening of the insert bore 44 into the inner surface of the second fitting bore 37, and extends along a direction tangent to a phantom circle C about the axis of the support shaft 41. A pin 47 is inserted into and fixed in the insert bore 44, for example, by press-fitting such that an intermediate portion thereof engages into the engage groove 50, whereby the support shaft 41 is fixed to the first driving rocker arm 19.

[0044] The support shaft 42 is fixed to the first support wall 32, of the second driving rocker arm 20 in a structure similar to a structure for fixing the support shaft 41 to the first driving rocker arm 19. More specifically, a pin 48 inserted into and fixed in an insert bore 45 provided in the first support wall 32, of the second driving rocker arm 20 is engaged in an engage groove 51 provided in an outer surface of the support shaft 42 fitted in the first fitting bore 38.

[0045] Further, the support shaft 43 is fixed to the first support wall 33, of the free rocker arm 21 in a structure similar to the structure for fixing the support shaft 41 to the first driving rocker arm 19 and a structure for fixing the support shaft 42 to the second driving rocker arm 20. More specifically, a pin 49 inserted into and fixed in an insert bore 46 provided in the first support wall 33, of the free rocker arm 21, is engaged into an engage groove 52 provided in an outer surface of the support shaft 43 fitted in the first fitting bore 39.

[0046] A needle bearing 53 is interposed between the roller 28 and the support shaft 41 between the first and second support walls 31, and 31, of the first driving rocker arm 19. A needle bearing 54 is interposed between the roller 29 and the support shaft 42 between the first and second support walls 32, and 32, of the second driving rocker arm 20. A needle bearing 55 is interposed between the roller 30 and the support shaft 43 between the first and second support walls 33, and 33, of the free rocker arm 21.

[0047] Referring to Fig. 6, a lost motion mechanism 58 is provided in the cylinder head 11 below the free rocker arm 21 and serves as an urgent means for applying an urging force to the free rocker arm 21 in a direction to bring the roller of the free rocker arm 21 into rolling contact with the high-speed valve operating cam 26. The lost motion mechanism 58 comprises a closed end cylindrical roller 60 slidably fitted in a closed end slide bore 59 provided in the cylinder head 11, with its upper portion opened, and a spring 61 mounted between the closed end of the slide bore 59 and the roller 60.

[0048] The free rocker arm 21 includes a receiving portion 62 which is in contact with an upper end of the lifter to receive the spring force from the lost motion mechanism 58. In this case, although the pin 49 is inserted and fixed in the insert bore 46 to fix the support shaft 43 to one of the first and second support walls 33, and 33, included in the free rocker arm 21, the receiving portion 62 is integrally provided in a lower portion of the second support wall 33, to bulge downwards.

[0049] The associative operation switching means 23 includes a timing piston 63 capable of switching the associative operation and the releasing of the associative operation of the first driving rocker arm 19 and the free rocker arm 21 adjoining each other, a cylindrical switching piston 64 capable of the associative operation and the releasing of the associative operation of the free rocker arm 21 and the second driving rocker arm 20 adjoining each other, a closed end cylindrical limiting member 65 which is in contact with the switching piston 64 on the opposite side from the timing piston 63, and a return spring 66 for biasing the limiting member 65 toward the switching piston 64.

[0050] The timing piston 63 is slidably fitted in the support shaft 41 of the first driving rocker arm 19, and a hydraulic pressure chamber 67 is defined between the closed end of the first fitting bore 37, in which one end of the support shaft 41 is fitted, and one end of the timing piston 63. An oil passage 68 is provided, for example, coaxially in the rocker shaft 22, and connected to a hydraulic pressure source through a control valve which is not shown. A communication bore 69 is provided in the rocker shaft 22 to permit a communication passage 70 provided in the first support wall 33, of the first driving rocker arm 19 with its one end leading to the hydraulic chamber 67, to be normally put into communication with the oil passage 68.

[0051] Referring to Fig. 7, the communication passage 70 is provided in the first driving rocker arm 19 on the side of the first support wall 31, to extend in a plane substantially perpendicular to a direction of arrangement of the rocker arms 19, 20 and 21, and has a cross-sectional shape with a length longer in the direction perpendicular to the direction of arrangement of the rocker arms 19, 20 and 21, i.e., in a direction perpendicular to the axes of the cam shaft 18 and the rocker shaft 22, than a length in a direction along the direction of arrangement of the rocker arms 19, 20 and 21, i.e., in a direction along the axes of the cam shaft 18 and the rocker shaft 22. The communication bore 69 is provided in the rocker shaft 22, and extends greater in a circumferential direction of the rocker shaft 22 than it extends in communication with the communication passage 70, in order to normally put the oil passage 68 into the communication passage 70, irrespective of the swinging state of the first driving rocker arm 19. Moreover, the other end of the communication passage 70 opens into a side of the first driving rocker arm 19, and an intermediate portion of the communication passage 70 is cut off by the rocker shaft 22.

[0052] Referring also to Fig. 8, a bulge portion 19b bulging outwards to define the communication passage 70 is provided on an outer surface of the first driving rocker arm 19 at one end in the direction of arrangement of the rocker arms 19, 20 and 21, and a plurality of, e.g., two, ribs 71 are provided between a side edge 19c and the bulge portion 19b of the outer surface of the first
The communication passage 70 is provided in the first driving rocker arm 19 in such a manner that a portion thereof is positioned nearer to the roller 28 than one end of the support shaft 41 in a direction parallel to the axis of the rocker shaft 22. A notch 72 having a shape corresponding to the communication passage is provided at a portion of the one end of the support shaft corresponding to the communication passage 70. Thus, working oil flowing through the communication passage 70 is introduced into the hydraulic pressure chamber 67 without hindrance to the flow thereof by the support shaft 41.

The switching piston 64 is slidably fitted in the support shaft 43 of the free rocker arm 21, with one end of the switching piston 64 being in contact with the other end of the timing piston 63 for sliding movement relative to each other.

The limiting member 65 is formed into a cylindrical shape having one closed end and slidably fitted into the support shaft 42 of the second driving rocker arm 20, with the closed end of the limiting member 65 being in contact with the other end of the switching piston 64 for sliding movement relative to each other. A retaining ring 73 is mounted on an inner surface of the support shaft 42 to abut against the limiting member 65 from dropping from the support shaft 42. The return spring 66 is mounted between the closed end of the second fitting bore 38 2 in the second driving rocker arm 20 and the limiting member 65, and an open bore 74 is formed in the closed end of the second fitting bore 38 2.

In the associative operation switching means 30, in the low-speed operational range of the engine, the hydraulic pressure in the hydraulic pressure chamber 67 is relative low, and contact faces of the timing piston 63 and the switching piston 64 lie at a location between the first driving rocker arm 19 and the free rocker arm 21, while contact faces of the switching piston 64 and the limiting member 65 lie at a location between the free rocker arm 21 and the second driving rocker arm 20.

Therefore, the rocker arms 19, 20 and 21 are brought into an integrally connected state, and the intake valve V is opened and closed with a timing and in a lift amount depending upon the high-speed valve operating cam 26.

Referring also to Figs. 9 and 10, a lubricating oil passage 76, normally leading to the oil passage 68 in the rocker shaft 22 is provided in one of the support walls 33 1 and 33 2 of the free rocker arm 21, i.e., in the second support wall 33 2 such that its one end opens into the inner surface of the second fitting bore 39 2. Groove 77 is provided in the inner surface of the second fitting bore 39 2 with one end leading to one end of the lubricating oil passage 76 1 and with the other end opening toward the bearing 55. The maximum depth of the groove 77 is set smaller than the radius of the needle of the needle bearing 55, so that the needle cannot enter the groove 77. Therefore, the direction of axial movement of the needle is reliably limited by the support walls 33 1 and 33 2, irrespective of the groove 77 being provided on the inner surface of the second fitting bore 39 2.

Moreover, the lubricating oil passage 76 1 is defined so as to have a cross-sectional shape with the length longer in the direction substantially perpendicular to the direction of arrangement of the rocker arms 19, 20 and 21, i.e., in the direction substantially perpendicular to the axes of the cam shaft 18 and the rocker shaft 22 than the length in the direction substantially parallel to the direction of arrangement of the rocker arms 19, 20 and 21, i.e., in the direction substantially parallel to the axes of the cam shaft 18 and the rocker shaft 22.

Referring to Fig. 11, the second support wall 33 2 of the free rocker arm 21 is provided with two ribs 80 for reinforcing the receiving portion 62 and with a rib 81 for reinforcing a section in which the hollow lubricating oil passage 76 1 is defined.

To ensure that the oil passage 68 is normally in communication with the lubricating oil passage 76 1, irrespective of the swinging state of the free rocker arm 21, a communication bore 78 is provided in the rocker shaft 22 which is larger in a circumferential direction of the rocker shaft 22 than the extent to which the lubricating oil passage 76 1 faces the outer surface of the rocker shaft 22. The other end of the lubricating oil passage 76 1 opens into a side of the free rocker arm 21, and an intermediate portion of the lubricating oil passage 76 1 is cut off by the rocker shaft 22.

The rocker arms 19, 20 and 21 are formed from metal by injection molding. In carrying out the metal injection molding, the following steps may be sequentially conducted: a step of kneading a starting powder and a binder such as wax and the like; a step of granulating the compound produced in the kneading step to provide a pellet; a step of subjecting the pellet to the injecting molding for shaping; a step of heating the shaped product to remove the binder; and a step of subjecting the resulting product to a sintering treatment.

The operation of the first embodiment will be described below. The support shafts 41, 42 and 43 for supporting the rollers 28, 29 and 30 for alleviating the valve operating load for rolling movement, are fixed to the rocker arms 19, 20 and 21, but the opposite ends of the support shafts 41, 42 and 43 are fitted into the first fitting bores 37 1, 38 1 and 39 1, and the second fitting...
bores 37₂, 38₂ and 39₂ in the rocker arms 19, 20 and 21, respectively. Moreover, by the fact that the pin 47 inserted and fixed in the insert bore 44 provided in the second support wall 31₂ of the first driving rocker arm 19, is engaged in the engage groove 50 in the support shaft 41; the pin 48 inserted and fixed in the insert bore 45 provided in the first support wall 32, of the second driving rocker arm 20, is engaged in the engage groove 51 in the support shaft 42, and the pin 49 inserted and fixed in the insert bore 46 provided in the first support wall 33, of the free rocker arm 21, is engaged in the engage groove 52 in the support shaft 43, the axial movement of the support shafts 41, 42 and 43 and the rotation of the support shafts 41, 42 and 43 about the axes are inhibited and therefore, the support shafts 41, 42 and 43 can be fixed to the rocker arms 19, 20 and 21 in a simple structure.

The communication passage 70 connecting the oil passage 68 in the rocker shaft 22, with the hydraulic pressure chamber 67 in the associative operation switching means 23 is provided to extend in a plane substantially perpendicular to the direction of arrangement of the rocker arms 19, 20 and 21. The communication passage 70 has a cross-sectional shape with a length longer in the direction perpendicular to the direction of arrangement of the rocker arms 19, 20 and 21 than the length in the direction substantially parallel to the direction of arrangement of the rocker arms 19, 20 and 21. Therefore, the space occupied by the communication passage 70 in the direction parallel to the direction arrangement of the rocker arms 19, 20 and 21 can be reduced to a minimum, and the size of the first driving rocker arm 19 can be correspondingly reduced.

Moreover, in the first driving rocker arm 19, the support shaft 41 is fixed to the first driving rocker arm 19 with its one end fitted in the first fitting bore 37₁ in the first support wall 31₁. However, the communication passage 70 is provided in the first driving rocker arm 19 on the side of the first support wall 31₁, thus the communication passage 70 can be positionned, while avoiding an increase in thickness of the first support wall 31₁ for fixing the support shaft 41 supporting the roller 28. In addition, since the notch 72 having a shape corresponding to the communication passage 70 is provided at the portion of the one end of the support shaft 41 which corresponds to the communication passage 70, the communication passage 70 can be positioned in closer proximity to the roller 28, while ensuring a sufficient contact area of the support shaft with the first fitting bore 37₁ in the first support wall 31₁ included in the first driving rocker arm 19. This ensures the strength for supporting the support shaft 41 on the first driving rocker arm 19. Thus, the size of the first driving rocker arm 19 can be reduced.

The size of the first driving rocker arm 19 can be reduced in the above manner, and thus the size of the cylinder head 11 can be remarkably reduced in the multi-cylinder internal combustion engine as in the present invention.

Since the bulge portion 19b bulging outwards to define the communication passage 70 is provided on the outer surface of the first driving rocker arm 19 at one end thereof in the axial direction of the rocker shaft 22, and the ribs 71 connecting the side edge 19c of the outer surface and the bulge portion 19b are provided on the outer surface, the weight of the first driving rocker arm 19 can be reduced, while ensuring the rigidity of the bulge portion 19b which defines the communication passage 70.

Further, since the communication passage 70 is provided in the first support wall 31₁ of the first driving rocker arm 19, and the insert bore 44 for fixing the support shaft 41 is provided in the second support wall 31₂ with the roller 28 positioned between the second support wall 31₂ and the first support wall 31₁, the space for provision of the insert bore 44 can be ensured, while avoiding an increase in size of the first driving rocker arm 19, and the insert bore 44 is provided at the location relatively far apart from the hollow communication passage 70. This is convenient for the rigidity of the first driving rocker arm 19.

The lubricating oil passage 76₁ is provided in the free rocker arm 21 to lead to the oil passage 68 in the rocker shaft 22 with one end opening into the inner surface of the second fitting bore 39₂, and the groove 77 is provided in the inner surface of the second fitting bore 39₂ with one end thereof leading to the one end of the lubricating oil passage 76₁, and with the other end opening toward the needle bearing 55. Therefore, lubricating oil is supplied from the oil passage 68 through the lubricating oil passage 76₁, and the groove 77 to the needle bearing 55. Thus, it is possible to supply lubricating oil to the needle bearing 55 in a simple structure in which the lubricating oil passage 76₁ is provided in the free rocker arm 21 and the groove 77 is provided in the inner surface of the second fitting bore 39₂, and the oil passage structure for supplying lubricating oil to the needle bearing 55 can be easily formed. Therefore, it is unnecessary to make a bore for introducing lubricating oil to the support shaft 43; and there is no possibility of a reduction in rigidity of the support shaft 43, and the number of workings is reduced.

The free rocker arm 21 is moved following the high-speed valve operating cam 26 having the cam profile for the high-speed operation of the engine, which provides a relatively large inertial weight and a relatively large load on the needle bearing 55. However, lubricating oil can be effectively supplied to the needle bearing in the above-described simple structure, thereby providing a reduction in load applied to the needle bearing 55.

Moreover, since the lubricating oil passage 76₁ is defined to have a cross-sectional shape with the length larger in the direction substantially perpendicular to the axis of the cam shaft 18, i.e., in the direction substantially perpendicular to the direction of arrangement of the rocker arms 19, 20 and 21, than the length in the direction substantially parallel to the axis of the cam
shaft 18, i.e., in the direction substantially parallel to the direction of arrangement of the rocker arms 19, 20 and 21, the space occupied by the lubricating oil passage 76₁ is in the direction parallel to the axis of the cam shaft 18, i.e., in the direction parallel to the direction of arrangement of the rocker arms 19, 20 and 21, can be reduced to a minimum, and the size of the free rocker arm 21 can be reduced. This also enables a reduction in size of the cylinder head 11 in the multi-cylinder internal combustion engine.

[0072] In the free rocker arm 21, the lubricating oil passage 76₁ is provided in the second support wall 33₂, while the insert bore 46 for fixing the support shaft 43, is provided in the first support wall 33₁. Therefore, the space for provision of the insert bore 46 can be ensured, while avoiding an increase in size of the free rocker arm 21. In addition, the insert bore 44 is provided at a location relatively spaced apart from the hollow lubricating oil passage 76₁. This is convenient for the rigidity of the free rocker arm 21.

[0073] The free rocker arm 21 includes the receiving portion 62 which is in contact with the lifter 60 of the lost motion mechanism 58, but the receiving portion 62 is integrally provided at the lower portion of the second support wall 33₂. Therefore, the structure of the free rocker arm 21 can be simplified such that the receiving portion 62 is positioned to the side of the roller 30, and an increase in size of the free rocker arm 21 can be avoided, whereby the inertial weight of the free rocker arm 21 can be reduced to conveniently accommodate the high-speed operation of the internal combustion engine.

[0074] Moreover, since the support shaft 43 is fixed to the first support wall 33₁ by the pin 49, while the receiving portion 62 is provided on the second support wall 33₂, the size and the position of the insert bore 46 for insertion and fixing of the pin 49 is not limited by the receiving portion 62, and it is difficult for the load from the lost motion mechanism 58 to act on the pin 49, whereby the fixing strength of the support shaft 43 can be increased. In addition to this, since the receiving portion 62 is integrally provided on the second support wall 33₂, the reduction in rigidity of the second support wall 33₂ can be avoided, despite the provision of the hollow lubricating oil passage 76₁ being provided in the second support wall 33₂, and the balance of weight of the support walls 33₁ and 33₂ can be improved in such a manner that the receiving portion 62 compensates for the reduction in weight of the second support wall 33₂ caused by the fact the lubricating oil passage 76₁ is hollow.

[0075] Further, the free rocker arm 21 is supported on the rocker shaft 22 in such a manner that the first support wall 33₁ provided with the insert bore 46 for fixing the support shaft 43, is positioned on the first driving rocker arm 19. The second driving rocker arm 20 is supported on rocker shaft 22 in such a manner that the first support wall 32₁ provided with the insert bore 45 for fixing the support shaft 42 is positioned on the first driving rocker arm 19. The support shafts 43 and 42 are fixed to the free rocker arm 21 and the second driving rocker arm 20 at locations in which the timing piston 63 and the switching piston 64 of the associative operation switching means 23 are inserted. Therefore, the insertion of the pistons 63 and 64 into the support shafts 43 and 42 is smooth, and the switching operation of the associative operation switching means is smooth.

[0076] The rocker arms 19, 20 and 21 are formed from metal by the injection molding. The communication passage 70 which is not perfectly circular, the fitting bores 37₁ and 37₂ and the insert bore 44, can be formed simultaneously with the formation of the first driving rocker arm 19, and the fitting bores 38₁ and 38₂, the insert bore 45 and the opened bore 74 can be formed simultaneously with the formation of the second driving rocker arm 20. The lubricating oil passage 76₁ which is not truly circular, the fitting bores 39₁ and 39₂ and the insert bore 46, can be formed simultaneously with the formation of the free rocker arm 21. Therefore, it is possible to decrease the steps of post-working of the rocker arms 19, 20 and 21 to a minimum to enhance the productivity.

[0077] The lubricating oil passage 76₁ is formed in the free rocker arm 21 as a closed end bore without opening into the inner surface of the fitting bore 39₂ upon the formation of the free rocker arm 21 from the metal by injection molding, and after the formation of the free rocker arm 21, the groove 77 is put into communication with the lubricating oil passage 76₁ when the groove 77 is formed by machining in the inner surface of the fitting bore 39₂. Thus, it is possible to avoid contact of a die for forming the fitting bore 39₂ and a die for forming the lubricating oil passage 76₁, with each other, when the free rocker arm 21 is formed from metal by injection molding.

[0078] Fig. 12 shows a second embodiment of the present invention, wherein portions or components corresponding to those in the first embodiment are designated by like reference characters.

[0079] A lubricating oil passage 76₂ is provided in a second support wall 33₂ in a free rocker arm 21 to lead to an oil passage 68 in a rocker shaft 22 and to open toward a needle bearing 55.

[0080] The lubricating oil passage 76₂ comprises a first closed end bore 83 extending in a direction substantially perpendicular to the axis of the rocker shaft 22 with one end closed at a location near the inner surface of the fitting bore 39₂, and a second bore 84 with one end leading to the first bore 83 at a location near the one closed end of the first bore 83 and with the other end opening toward the needle bearing 55. The first bore 83 is formed simultaneously, when the free rocker arm 21 is formed from metal by injection molding. The other end of the first bore 83 opens into an outer surface of the free rocker arm 21, but the first bore 83 is put into communication with an oil passage 68 through a communication bore 78 by the rocker shaft 22 being positioned
to traverse an intermediate portion of the first bore 83.

[0081] The second bore 84 is made by a drill after the formation of the free rocker arm 21 by injection molding, wherein the axis of the second bore 84 is established, so that an extension of the axis of the second bore 84, i.e., the axis of the drill passing through the fitting bore 39, in the support wall 331. Thus, it is possible to diminish, to a minimum, the inclination angle of the drill from a direction perpendicular to a work surface during drilling of the second bore 84, thereby improving the workability.

[0082] According to the second embodiment, lubricating oil is supplied from the oil passage 68 in the rocker shaft 22 through the lubricating oil passage 762 to the needle bearing 55. Thus, the lubricating oil can be supplied to the needle bearing 55 in a simple structure in which the lubricating oil passage 762 is only provided in the second support wall 332 included in the free rocker arm 21, and the oil passage structure for supplying oil to the needle bearing can be easily formed, and moreover, it is unnecessary to drill the support shaft 43 for introducing lubricating oil. Therefore, there is not a possibility of reduction in rigidity of the support shaft 43, and further, the number of workings is reduced.

[0083] Moreover, the lubricating oil passage 762 does not open into the fitting bore 392 and hence, the entire inner surface of the fitting bore 392 can be brought into contact with the outer surface of the support shaft 43, and the supporting area of the support shaft 43 is increased, whereby the supporting rigidity of the support shaft is further enhanced.

[0084] If an increase in size of the second support wall 332 is permitted in a further embodiment of the present invention, a lubricating oil passage extending rectilinearly to lead to the oil passage 68 in the rocker shaft 22 to open toward the needle bearing 55, may be provided in an inclined manner in the second support wall 332.

[0085] The present invention is also applicable to a valve operating system for an exhaust valve of an engine valve.

[0086] The valve operating system in which the associative operation and the release of the associative operation of the plurality of rocker arms 19, 20 and 21 can be switched over from one to the other by the associative operation switching means 23, has been described in the above embodiments, but the present invention is applicable to a valve operating system in an internal combustion engine, which is designed so that a rocker arm is urged toward a valve operating cam by an urging means, irrespective of the presence or absence of the associative operation switching means.

[0087] The rocker arms 19, 20 and 21 are commonly and swingably supported on the rocker shaft 22 in each of the embodiments, but the present invention is applicable to a valve operating system having a structure in which a plurality of rocker arms are swingably supported on ends of separate support columns, respectively.

[0088] Further, if the urging means exhibiting the spring force as in the embodiment is used, the arrangement is not complicated, but an urging means exhibiting an urging force by a hydraulic pressure or the like may be used.

[0089] Although the embodiments of the present invention have been described in detail, it will be understood that the present invention is not limited to the above-described embodiments, and various modifications in design may be made without departing from the scope of the invention defined in the claims.

Claims

1. A valve operating system in an internal combustion engine, comprising a cam shaft (18) provided with a valve operating cam (26) rocker arm (21) having first and second support walls (331, 332) opposed each other at a distance, a support shaft (43) mounted to extend between said support walls, a roller (30) rollably supported on the support shaft through a bearing (55), and an urging means (58) for urging said rocker arm in a direction to bring said roller into rolling contact with said valve operating cam, wherein one (332) of said support walls included in said rocker arm is integrally provided with a receiving portion (62) which contacts with said urging means (58), characterized by said receiving portion (62) and a support portion of one (332) of said support walls for supporting said support shaft being provided on a common plane extending perpendicular to the axis of the support shaft (43).

2. A valve operating system in an internal combustion engine according to Claim 1, wherein the cam shaft (18) is provided with a plurality of valve operating cams (25, 26, 25), a plurality of the rocker arms (20, 21, 19) positioned adjacent one another, and an associative operation switching means (23) for switching between a state in which the rocker arms adjacent each other are operated together associatively and a state in which the associative operation is released, and said first and second support walls (331, 332) are provided on a free rocker arm (21), which becomes free relative to an engine valve (V), when said associative operation switching means is brought into the associative operation releasing state.

3. A valve operating system in an internal combustion engine according to claim 2, wherein said first support wall (331) of said free rocker arm (21) has a first fitting bore (391) provided therein, one end of said support shaft (43) being fitted into said first fitting bore, and said second support wall (332) having said receiving portion (62) includes a second fitting
A valve operating system in an internal combustion engine according to claim 1, including a support member (22) for supporting said rocker arm (21), said support member having an oil passage (68), wherein at least one (332) of said first and second support walls (331, 332) includes a lubricating oil passage (761) which leads to said oil passage (68) in said support member and opens toward said bearing (55).

5. A valve operating system in an internal combustion engine according to claim 3, wherein said rocker arms (20, 21, 19) are positioned adjacent one another, so that one (19) of said rocker arms different from said free rocker arm (21) is positioned at one end in the direction of arrangement of said rocker arms, and wherein said associative operation switching means (23) includes hydraulically operated pistons (63, 64), and switches between the associative operation and the releasing of the associative operation of said rocker arms in response to the operation of said pistons due to a variation in hydraulic pressure in a hydraulic pressure chamber (67) defined in said one rocker arm, said support shaft has a cylindrical shape to guide the sliding operation of said pistons (63, 64), and said free rocker arm (21) is supported on a support member (22) with said first support wall (331) being positioned on the side of said one rocker arm (19).

10. A valve operating system in an internal combustion engine according to claim 7, wherein said cam shaft (18) has a plurality of the valve operating cams 25, 26, 25 including at least one high-speed valve operating cam (26), and a plurality of the rocker arms (20, 21, 19) positioned adjacent one another, said rocker arms including a first particular rocker arm (21) operatively coupled to said high-speed valve operating cam, said high-speed valve operating cam (26) having a cam profile for permitting the maximum lift amount of an engine valve (V), and an associative operation switching means (23) is provided including pistons (63, 64) movable between a position in which said said rocker arms positioned adjacent each other, are operated in association with each other, and a position in which said said associative operation is released, wherein said first and second support walls (331, 332) provided in at least the first particular rocker arm (21) of said plurality of rocker arms include fitting bores (391, 392) spaced from and coaxially opposed to each other, and said support shaft (43) is of a cylindrical shape to guide a sliding operation of said pistons and has opposite ends fitted into and fixed in said fitting bores, and wherein said system includes a support member (22) supporting said first particular rocker arm (21), said support member having an oil passage (68), said first particular rocker arm (21) having a lubricating oil passage (761) which opens into an inner surface of at least one (392) of said fitting bores and extends to said oil passage (68) in said support member, said at least one fitting bore (392) having a groove (77) on its inner surface with one end leading to said lubricating oil passage (761) and with the other end opening toward said bearing (55).

15. A valve operating system in an internal combustion engine according to claim 1, wherein said cam shaft (18) has a plurality of the valve operating cams 25, 26, 25 including at least one high-speed valve operating cam (26), and a plurality of the rocker arms (20, 21, 19) positioned adjacent one another, said rocker arms including a first particular rocker arm (21) operatively coupled to said high-speed valve operating cam, said high-speed valve operating cam (26) having a cam profile for permitting the maximum lift amount of an engine valve (V), and an associative operation switching means (23) is provided including pistons (63, 64) movable between a position in which said said rocker arms positioned adjacent each other, are operated in association with each other, and a position in which said said associative operation is released, wherein said first and second support walls (331, 332) provided in at least the first particular rocker arm (21) of said plurality of rocker arms include fitting bores (391, 392) spaced from and coaxially opposed to each other, and said support shaft (43) is of a cylindrical shape to guide a sliding operation of said pistons and has opposite ends fitted into and fixed in said fitting bores, and wherein said system includes a support member (22) supporting said first particular rocker arm (21), said support member having an oil passage (68), said first particular rocker arm (21) having a lubricating oil passage (761) which opens into an inner surface of at least one (392) of said fitting bores and extends to said oil passage (68) in said support member, said at least one fitting bore (392) having a groove (77) on its inner surface with one end leading to said lubricating oil passage (761) and with the other end opening toward said bearing (55).
10. A valve operating system in an internal combustion engine according to claim 8, wherein in said rocker arms (20, 21, 19) positioned adjacent one another one (19) of said rocker arms other than said first rocker arm (21) is positioned at one end in the direction of arrangement of said rocker arms, said one rocker arm (19) including a hydraulic pressure chamber (67), and said associative operation switching means (23) includes pistons (63, 64) for switching between the associative operation and the releasing of the associative operation of said rocker arms (20, 21, 19) in response to the operation of said pistons resulting from a variation in hydraulic pressure in said hydraulic pressure chamber (67), an insert bore (46) being provided in one (33₁) of said support walls included in said first particular rocker arm (21), which is positioned adjacent said one rocker arm (19), said insert bore extending to an inner surface of the fitting bore (39₁) in said support wall (33), said support shaft (43) having an engage groove (52) on its outer surface corresponding to an opening of said insert bore (46) that opens into said fitting bore, said system including a pin (49) engaged in said engage groove (52) and inserted into and fixed in said insert bore (46), said lubricating oil passage (76₁) being provided in one of said support walls (33₂), which is positioned at a location spaced apart from said one rocker arm (19).

11. A valve operating system in an internal combustion engine according to claim 8, wherein said lubricating oil passage (76₁) has a cross-sectional shape with a length in the direction substantially perpendicular to the axis of said cam shaft (18) longer than a length thereof in the direction substantially parallel to the axis of said cam shaft (18).

12. A valve operating system in an internal combustion engine according to claim 6, wherein said rocker arm (21) is formed from a metal by injection molding.

13. A valve operating system in an internal combustion engine according to claim 1, including a plurality of the rocker arms (20, 21, 19) positioned adjacent one another, one (21) of said rocker arms having said receiving portion (62); and said system includes an associative operation switching means (23) having a timing piston (63) defining a hydraulic pressure chamber (67) between said timing piston and a second particular rocker arm (19) of said rocker arms, said associative operation switching means (23) switching the associative operation and the releasing of the associative operation of said rocker arms in response to the operation of said timing piston (63) as a result of a variation in hydraulic pressure in said hydraulic pressure chamber (67), said system further including a support member (22) for supporting said second particular rocker arm (19) for swinging movement, said support member (22) having an oil passage (68), said second particular rocker arm (19) having a communication passage (70) for operatively coupling said oil passage (68) with said hydraulic pressure chamber (67), said communication passage having a cross-sectional shape with a length thereof in the direction substantially perpendicular to a direction of arrangement of said rocker arms longer than a length in the direction substantially parallel to the direction of arrangement of said rocker arms, said communication passage (70) extending in a plane substantially parallel to the direction of arrangement of said rocker arms.

14. A valve operating system in an internal combustion engine according to claim 13, further including a cylindrical support shaft (41) fixed to said second particular rocker arm (19), said second particular rocker arm including a first support wall (31₁) having a first closed end fitting bore (37₁) therein, and a second support wall (31₂) having a second fitting bore (37₂) therein coaxial with said first fitting bore, opening at opposite ends thereof, said cylindrical support shaft (41) having opposite ends fitted into said first and second fitting bores; and a roller (28) in rolling contact with one (25) of a plurality of valve operating cams and rollably supported on said cylindrical support shaft (41), said timing piston (63) being swingably fitted on said cylindrical support shaft (41), and said communication passage (70) being positioned in said first support wall (31₁) of said second particular rocker arm (19).

15. A valve operating system in an internal combustion engine according to claim 14, wherein said cylindrical support shaft (41) has a notch (72) at one end thereof corresponding to said communication passage (70), said notch having a shape corresponding to said communication passage.

16. A valve operating system in an internal combustion engine according to claim 14, wherein said second support wall (31₂) of said second particular rocker arm (19) has an insert bore (44) therein leading to an inner surface of said second fitting bore (37₂); said cylindrical support shaft (41) has an engage groove (50) in the outer surface thereof corresponding to an opening of said insert bore (44) that opens into the inner surface of said second fitting bore (37₂); said system includes a pin (47) engaged in said engage groove (50) and inserted into and fixed in said insert bore (44).

17. A valve operating system in an internal combustion engine according to claim 13, wherein said second particular rocker arm (19) includes a bulge portion...
A valve operating system in an internal combustion engine according to claim 13, wherein said second particular rocker arm (19) is formed from metal by injection molding.

20. A valve operating system in an internal combustion engine according to claim 1, wherein said one support wall (332) has an oil passage (761) formed therein, said oil passage lying on said common plane.

Patentansprüche

1. Ein Ventilbetätigungssystem in einer Brennkraftmaschine, umfassend eine Nockenwelle (18) versehen mit einer Ventilbetätigungnocke (26), einen Kipphebel (21), der erste und zweite Tragwände (331, 332) besitzt, die sich in einem Abstand gegenüberliegen, eine Tragwelle (43), die so montiert ist, dass sie zwischen den Tragwänden verläuft, eine Rolle (30), die auf der Tragwelle durch ein Lager (55) drehbar gelagert ist, und ein Vorspannmittel (58), um den Kipphebel in eine Richtung vorzuspannen, um die Rolle in Rollkontakt mit dem Ventilbetätigungsnocken zu bringen, wobei eine (332) der in dem Kipphebel beinhalteten Tragwände mit einem integral eingebauten Aufnahmeabschnitt (62) ausgestattet ist, der mit dem Vorspannmittel (58) Kontakt herstellt, dadurch gekennzeichnet, dass der Aufnahmeabschnitt (62) und ein die Tragwelle stützender Tragabschnitt der einen (332) der Tragwände in einer gemeinsamen Ebene vorgesehen sind, die sich senkrecht zur Achse der Tragwelle (43) erstreckt.

2. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 1, wobei die Nockenwelle (18) mit einer Vielzahl von Ventilbetätigungsnocken (25, 26, 25) ausgestattet ist, mit einer Vielzahl von Kipphebeln (20, 21, 19), die nebeneinander angeordnet sind, und mit einem Koppelbetriebsumschaltmittel (23), um zwischen einem Zustand, in dem die benachbarten Kipphebel gekoppelt miteinander betrieben werden und einem Zustand, indem der gekoppelte Betrieb freigegeben ist, umzuschalten und wobei die ersten und zweiten Tragwände (331, 332) an einem freien Hebelarm (21) vorgesehen sind, der in Bezug auf ein Motorventil (V) frei wird, wenn das Koppelbetriebsumschaltmittel in den Koppelbetriebsfreigabezustand gebracht wird.

3. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 2, wobei in der ersten Tragwand (331) des freien Kipphebels (21) eine erste Passbohrung (391) vorgesehen ist, wobei der erste Ort der Tragwelle (43) in die erste Passbohrung einge passt ist, und wobei in der zweiten Tragwand (332), die den Aufnahmeabschnitt (62) aufweist, eine zweite zur ersten Passbohrung koaxiale Passbohrung (392) vorgesehen ist, wobei das andere Ende der Tragwelle in die zweite Passbohrung einge passt ist, wobei die erste Tragwand eine Einsetzbohrung (46) hat, die zu einer inneren Fläche der ersten Passbohrung (391) führt, wobei die Tragwelle in einer äußeren Fläche eine Eingreifnut (52), die einer Öffnung der Einsetzbohrung in die innere Fläche der ersten Passbohrung entspricht, und einen Bolzen aufweist, der in die Eingreifnut eingreift, wobei der Bolzen (49) in die Einsetzbohrung eingeführt und eingepasst ist.

4. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 3, wobei die Kipphebel (20, 21, 19) benachbart so zueinander angeordnet sind, dass einer (19) der Kipphebel anders als der freie Kipphebel (21) an einem Ende in Richtung der Anordnung der Kipphebel positioniert ist, und wobei das Koppelbetriebsumschaltmittel (23) hydraulisch betriebene Kolben (63, 64) umfasst und zwischen dem gekoppelten Betrieb und dem Freigeben des gekoppelten Betriebs der Kipphebel umschaltet als Reaktion auf den Betrieb der Kolben in Folge einer Änderung des hydraulischen Drucks in einer hydraulischen Druckkammer (67), die in dem einen Kipphebel definiert ist, und wobei die Tragwelle eine zylindrische Form hat, um den Kolben (63, 64) gleichend zu führen, und wobei der freie Kipphebel (21) auf einem Stützteil (22) gelagert ist, wobei die erste Tragwand (331) sich auf der Seite des einen Kipphebels (19) befindet.

5. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 2, wobei eine (332) der ersten und zweiten Tragwände (331, 332) des freien Kipphebels (21), der den Aufnahmeabschnitt (62) hat, einen Schmieröldurchlass (761) aufweist, um Schmieröl von einem Öldurchlass (68) in einem Stützteil (22), das den freien Kipphebel (21) bei seiner Kippbewegung stützt, an das Lager (55) des freien Kipphebels zu liefern.

6. Ein Ventilbetätigungssystem in einer Brennkraftmaschine, umfassend eine Nockenwelle (18) versehen mit einer Ventilbetätigungnocke (26), einen Kipphebel (21), der erste und zweite Tragwände (331, 332) besitzt, die sich in einem Abstand gegenüberliegen, eine Tragwelle (43), die so montiert ist, dass sie zwischen den Tragwänden verläuft, eine Rolle (30), die auf der Tragwelle durch ein Lager (55) drehbar gelagert ist, und ein Vorspannmittel (58), um den Kipphebel in eine Richtung vorzuspannen, um die Rolle in Rollkontakt mit dem Ventilbetätigungsnocken zu bringen, wobei eine (332) der in dem Kipphebel beinhalteten Tragwände mit einem integral eingebauten Aufnahmeabschnitt (62) ausgestattet ist, der mit dem Vorspannmittel (58) Kontakt herstellt, dadurch gekennzeichnet, dass der Aufnahmeabschnitt (62) und ein die Tragwelle stützender Tragabschnitt der einen (332) der Tragwände in einer gemeinsamen Ebene vorgesehen sind, die sich senkrecht zur Achse der Tragwelle (43) erstreckt.

5. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 2, wobei eine (332) der ersten und zweiten Tragwände (331, 332) des freien Kipphebels (21), der den Aufnahmeabschnitt (62) hat, einen Schmieröldurchlass (761) aufweist, um Schmieröl von einem Öldurchlass (68) in einem Stützteil (22), das den freien Kipphebel (21) bei seiner Kippbewegung stützt, an das Lager (55) des freien Kipphebels zu liefern.
Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 1, das ein STützteil (22) aufweist, um den Kipphebel (21) zu lagern, wobei das STützteil einen Öldurchlass (68) hat; wobei die ersten und zweiten Tragwände (331, 332) Passbohrungen (391, 392) aufweisen, um entgegengesetzte Enden der Tragwelle zu fixieren; wobei der Kipphebel einen Schmieröldurchlass (761) aufweist, der sich in eine innere Oberfläche von wenigstens einer Passbohrung (392) der Passbohrungen in dem Kipphebel öffnet und zum Öldurchlass (68) in dem STützteil führt; wobei die wenigstens eine (392) der Passbohrungen eine Nut (77) in ihrer inneren Fläche hat, wobei ein Ende zum Schmieröldurchlass (761) führt und das andere Ende sich in Richtung des Lagers (55) öffnet.

7. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 1, ein STützteil (22) einschließend um den Kipphebel (21) zu stützen, wobei das STützteil einen Öldurchlass (68) besitzt, wobei zumindest eine (332) der ersten und zweiten Tragwände (331, 332) einen Schmieröldurchlass (761) umfasst, der zum Öldurchlass (68) in dem STützteil führt und sich in Richtung des Lagers (55) öffnet.

8. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 1, wobei die Nockenwelle (18) aus einer Vielzahl von Ventilbetätigungssnocken (25, 26, 25) besteht, die zumindest einen Hochgeschwindigkeitsventilbetätigungssnocken (26) umfassen und eine Vielzahl von Kipphebeln (20, 21, 19), die benachbart zueinander angeordnet sind, wobei der Kipphebel einen ersten speziellen Kipphebel (21) umfassen, der operativ mit dem Hochgeschwindigkeitsventilbetätigungssnocken verbunden ist, wobei der Hochgeschwindigkeitsventilbetätigungssnocken ein Nockenprofil besitzt, das die maximale Hubhöhe eines Motorventils (V) zulässt, und ein Koppelbetriebschaltmittel (23) vorgesehen ist, das Kolben (63, 64) umfasst, die zwischen einer Position, in der die aneinander angrenzenden angeordneten Kipphebel gekoppelt miteinander betrieben werden und einer Position, in der dieser gekoppelte Betrieb freigegeben ist, bewegbar sind, wobei die ersten und zweiten Tragwände (331, 332), die zumindest in dem ersten speziellen Kipphebel (21) der Vielzahl von den Kipphebeln vorgesehen sind, Passbohrungen (391, 392) beinhalten, die voneinander getrennt sind und sich koaxial gegenüberliegen, und die Tragwelle (43) eine zylindrische Form hat, um den Kolben gleitend zu führen und entgegen gesetzte Enden hat, die in die Passbohrungen eingesetzt und darin fixiert sind, und wobei das System ein STützteil (22) umfasst, das den ersten speziellen Kipphebel (21) stützt, wobei das STützteil einen Öldurchlass (68) besitzt und der erste spezielle Kipphebel (21) einen Öldurchlass (761) besitzt, der sich in eine innere Fläche von wenigstens einer (392) der Passbohrungen öffnet und sich zu dem Öldurchlass (68) in dem STützteil erstreckt, wobei wenigstens eine Passbohrung (392) eine Nut (77) auf ihrer inneren Oberfläche hat, wobei ein Ende zum Schmieröldurchlass (761) führt und das andere Ende sich zum Lager (55) hin öffnet.

9. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 7, wobei der Schmieröldurchlass (761) in einer der Tragwände (332) ist, wobei die andere Tragwand (331) eine Einlassbohrung (46) hat, die sich zu einer inneren Fläche der Passbohrung (392), die in der anderen Tragwand (331) enthalten ist, erstreckt, wobei die Tragwelle (43) eine Eingreifnut (52) hat, die auf ihrer äußeren Oberfläche bereitgestellt ist, die einer Öffnung der Einsetzbohrung (46) in die inneren Fläche der Passbohrung (392) entspricht, und einen Bolzen (49) hat, der in diese Eingreifnut eingreift und in die Einsetzbohrung eingesetzt und in dieser fixiert ist.

10. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 8, wobei in den Kipphebeln (20, 21, 19), die nebeneinander angeordnet sind, einer (19) dieser Kipphebel anders als der erste Kipphebel (21) an einem Ende in Richtung der Anordnung der Kipphebel positioniert ist, wobei der eine Kipphebel (19) eine hydraulische Druckkammer (67) enthält, und die Koppelbetriebschaltmittel (23) Kolben (63, 64) umfassen, um zwischen dem gekoppelten Betrieb und dem Freigeben des gekoppelten Betriebs der Kipphebel (20, 21, 19) umzuschalten als Reaktion auf den Betrieb der Kolben in Folge einer Änderung des hydraulischen Drucks in der hydraulischen Druckkammer (67), wobei eine Einsetzbohrung (46), die in einer (332) der in dem ersten speziellen dem einen Kipphebel (19) benachbarten Kipphebel (21), vorgesehenen Tragwände vorgesehen ist, wobei die Einsetzbohrung sich bis zu einer inneren Fläche der Passbohrung (392) in der Tragwand (331) erstreckt, wobei die Tragwelle (43) eine Eingreifnut (52) auf ihrer äußeren Oberfläche hat, die einer Öffnung der sich in die Passbohrung öffnenden Einsetzbohrung (46) entspricht, wobei das System einen Bolzen (49) umfasst, der in die Eingreifnut (52) eingreift und in die Einsetzbohrung (46) eingeführt und in dieser fixiert ist, und wobei der Schmieröldurchlass (761) in einer der Tragwände (332) vorgesehen ist, der in einer Position angeordnet ist, die von dem einen Kipphebel (19) abgesetzt ist.

11. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 8, wobei der Schmieröldurchlass (761) eine Querschnittsform mit einer Länge aufweist, die in der im Wesentlichen zur Achse der Nockenwelle (18) senkrechten Richtung länger ist als ihre Länge in der im Wesentlichen zur
Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 6, wobei der Kipphebel (21) von Ventilbetätigungsnocken und rollbar auf der zylindrischen Tragwelle (41) angepasst ist und wobei der Verbindungsdurchgang (70) in der ersten Tragwelle (312) des zweiten speziellen Kipphebels (19) positioniert ist.

15. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 14, wobei die zylindrische Tragwelle (41) eine Aussparung (72) an einem ihrer Enden hat, die dem Verbindungsdurchgang (70) entspricht, wobei die Aussparung eine dem Verbindungsdurchgang entsprechende Form hat.

16. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 14, wobei die zweite Tragwand (312) des zweiten speziellen Kipphebels (19) eine Einführbohrung (44) hat, die zu einer inneren Fläche der zweiten Passbohrung (372) führt; wobei die zylindrische Tragwelle (41) eine Verbindungsnut (50) in ihrer äußeren Oberfläche hat, die einer sich in eine innere Fläche der zweiten Passbohrung (372) öffnenden Öffnung der Einführbohrung (44) entspricht, wobei das System einen Bolzen (47) umfasst, der in die Verbindungsnut (50) eingelassen ist und in die Einführbohrung (44) eingeführt und darin fixiert ist.

17. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 13, wobei der zweite spezielle Kipphebel (19) einen Ausbuchtungsbereich (19b) auf seiner äußeren Fläche an einem Ende in der Richtung der Anordnung der Kipphebel ein-schließt, wobei der Ausbuchtungsbereich (19b) sich nach außen wölbt, um den Verbindungsdurchgang (70) darin zu definieren und der zweite spezielle Kipphebel (19) eine Rippe (71) auf der äußeren Oberfläche umfasst, die einen Seitenrand (19c) der äußeren Fläche mit dem Ausbuchtungsbereich (19b) verbindet.

20. Ein Ventilbetätigungssystem in einer Brennkraftmaschine nach Anspruch 1, wobei in der einen Tragwand (332) ein Öldurchlass (76) gebildet ist, wobei der Öldurchlass in der gemeinsamen Ebene liegt.

Revendications

1. Dispositif de commande de soupapes pour moteur à combustion interne, comprenant un arbre à came (18) comportant une came de commande de soupe (26), un culbuteur (21) comprenant une première et une seconde paroi de support (331, 332).
Dispositif de commande de soupapes pour moteur

3. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 1, dans lequel la premiere paroi de support (331) dudit culbuteur libre (21) comporte un premier alésage de montage (391) aménagé dans celui-ci, une extrémité dudit arbre de support (43) étant montée à l'intérieur dudit premier alésage de montage, et l'autre extrémité dudit arbre de support étant montée à la premiere paroi de support comportant un alésage d'introduction (46) menant à une surface interne dudit premier alésage de montage (391), ledit arbre de support comportant une gorce d'engage-ment (52) aménagée dans une surface externe de celui-ci en correspondance à une ouverture dudit alésage d'introduction aménagé dans ladite surface interne dudit premier alésage de montage, et un goujon (49) engagé dans ladite gorce d'engage-ment, ledit goujon étant introduit et ajusté à l'intérieur dudit alésage d'introduction.

4. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 3, dans lequel lesdits culbuteurs (20, 21, 19) sont positionnés de manière adjacente les uns par rapport aux autres, de sorte qu'un (19) desdits culbuteurs, différent dudit culbuteur libre (21), est positionné à une extrémité dans la direction de l'aménagement desdits culbuteurs, et dans lequel lesdits moyens de commutation de commande en association (23) comprennent des pistons à commande hydraulique (63, 64), et commutent entre la commande en association et la libération de la commande en association desdits culbuteurs, en réponse au fonctionnement desdits pistons en raison d'une variation de la pression hydraulique dans une chambre de pression hydraulique (67) définie dans ledit culbuteur, ledit arbre de support a une forme cylindrique permettant de guider l'opération de coulisement desdits pistons (63, 64), et ledit culbuteur libre (21) est supporté par un élément de support (22), la premiere paroi de support (331) étant positionnée du côté dudit culbuteur (19).

5. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 2, dans lequel une paroi (332) desdites premiere et seconde parois de support (331, 332) sont aménagées sur un culbuteur libre (21) qui devient libre par rapport à une souape de moteur (V) lorsque lesdits moyens de commutation de commande en association sont amenés dans un état de libération de commande en association.

6. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 1, comprenant un élément de support (22) destiné à supporter ledit culbuteur (21), ledit élément de support comportant un passage d'huile de lubrification (761) destiné à fournir de l'huile de lubrification à partir d'un passage d'huile (68) aménagé dans un élément de support (22) destiné à supporter ledit culbuteur libre (21) dans un mouvement oscillant jusqu'au dit roulement (55) dudit culbuteur libre.
alésages de montage comporte une gorge (77) aménagée dans la surface interne de celui-ci, une extrémité menant au dit passage d'huile de lubrification (76₁) et l'autre extrémité s'ouvrant vers ledit roulement (55).

7. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 1, comportant un élément de support (22) destiné à supporter ledit culbuteur (21), ledit élément de support comportant un passage d'huile (68) ; dans lequel au moins une paroi (33₂) desdites première et seconde parois de support (33₁, 33₂) comprend un passage d'huile de lubrification (76₁) qui mène au dit passage d'huile (68) aménagé dans ledit élément de support et qui s'ouvre vers ledit roulement (55).

8. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 1, dans lequel ledit arbre à cames (18) comporte une pluralité des cames de commande de soupape (25, 26, 25) comprenant au moins une cames de commande de soupape à vitesse rapide (26), et une pluralité des culbuteurs (20, 21, 19) positionnés de manière adjacente les uns par rapport aux autres, lesdits culbuteurs comprenant un premier culbuteur particulier (21) couplé en fonctionnement à ladite cames de commande de soupape à vitesse rapide, ladite cames de commande de soupape à vitesse rapide (26) ayant un profil de cames destiné à permettre une valeur de levée maximale d'une soupape de moteur (V), et il est fourni des moyens de commutation de commande en association (23) comprenant des pistons (63, 64) mobiles entre une position dans laquelle lesdits culbuteurs positionnés de manière adjacente les uns par rapport aux autres sont commandés en association les uns avec les autres, et une position dans laquelle la commande en association est libérée, dans lequel lesdits premières et secondes parois de support (33₁, 33₂) aménagées dans au moins le premier culbuteur particulier (21) de ladite pluralité de culbuteurs comprennent des alésages de montage (39₁, 39₂) spatés l'un de l'autre et en opposition coaxiale, et ledit arbre de support (43) a une forme cylindrique destinée à guider un fonctionnement en coulissemens desdits pistons et comporte des extrémités opposées montées et fixées à l'intérieur desdits alésages de montage, et dans ledit dispositif comprend un élément de support (22) supportant ledit premier culbuteur particulier (21), ledit élément de support comportant un passage d'huile (68), ledit premier culbuteur particulier (21) comportant un passage d'huile de lubrification (76₁) qui s'ouvre à l'intérieur d'une surface interne d'au moins un alésage (39₂) desdits alésages de montage et qui s'étend jusqu'au dit passage d'huile (68) aménagé dans ledit élément de support, ledit au moins un alésage de montage (39₂) comportant une gorge (77) aménagée sur sa surface interne dont une extrémité mène au dit passage d'huile de lubrification (76₁) et l'autre extrémité s'ouvre vers ledit roulement (55).

9. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 7, dans lequel ledit passage d'huile de lubrification (76₁) est situé dans une paroi (33₂) desdites parois de support, l'autre paroi de support (33₁) comprenant un alésage d'introduction (46) qui s'étend jusqu'à une surface interne de l'alésage de montage (39₂) inclus dans ladite autre paroi de support (33₁), ledit arbre de support (43) comportant une gorge d'engagement (52) aménagée sur sa surface externe correspondant à une ouverture dudit alésage d'introduction (46) aménagé dans ladite surface interne dudit alésage de montage (39₂), et un goujon (49) engagé dans ladite gorte d'engagement étant introduit et fixé à l'intérieur dudit alésage d'introduction.

10. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 8, dans lequel, parmi lesdits culbuteurs (20, 21, 19) positionnés de manière adjacente les uns par rapport aux autres, un (19) desdits culbuteurs autre que le dit premier culbuteur (21) est positionné à une extrémité dans le sens de l'aménagement desdits culbuteurs, ledit culbuteur (19) comprenant une chambre de pression hydraulique (67), et lesdits moyens de commutation de commande en association (23) comprennent des pistons (63, 64) destinés à commuter entre la commande en association et la libération de la commande en association desdits culbuteurs (20, 21, 19) en réponse au fonctionnement desdits pistons résultant d'une variation de la pression hydraulique dans ladite chambre de pression hydraulique (67), un alésage d'introduction (46) étant aménagé dans une (33₁) desdites parois de support comprises dans le dit premier culbuteur particulier (21), qui est positionné de manière adjacente au dit premier culbuteur (19), ledit alésage d'introduction s'étendant jusqu'à une surface interne de l'alésage de montage (39₁) aménagée dans ladite autre paroi de support (33₁), ledit arbre de support (43) comportant une gorge d'engagement (52) aménagée sur sa surface externe correspondante à une ouverture dudit alésage d'introduction (46) qui s'ouvre à l'intérieur dudit alésage de montage, ledit dispositif comprenant un goujon (49) engagé dans ladite gorte d'engagement (52) et introduit et fixé à l'intérieur dudit alésage d'introduction (46), ledit passage d'huile de lubrification (76₁) étant aménagé dans l'une desdites parois de support (33₂), qui est positionnée à un emplacement séparé dudit culbuteur (19).
11. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 8, dans lequel ledit passage d’huile de lubrification (76) a une forme en coupe transversale dont la longueur dans une direction essentiellement perpendiculaire à l’axe dudit arbre à cames (18) est plus grande que la longueur de celui-ci dans une direction essentiellement parallèle à l’axe dudit arbre à cames (18).

12. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 6, dans lequel ledit culbuteur (21) est formé à partir d’un métal moulé par injection.

13. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 1, comprenant une pluralité des culbuteurs (20, 21, 19) positionnés de manière adjacente les uns par rapport aux autres, un (21) desdits culbuteurs comportant ladite partie de réception (62) et ledit système comprend des moyens de commutation de commande en association (23) comprenant un piston de calage (63) qui définit une chambre de pression hydraulique (67) entre ledit piston de calage et un second culbuteur particulier (19) desdits culbuteurs, lesdits moyens de commutation de commande en association (23) commutant entre la commande en association et la libération de la commande en association, desdits culbuteurs en réponse au fonctionnement dudit piston de calage (63) en tant que résultat d’une variation de la pression hydraulique dans ladite chambre de pression hydraulique (67), ledit système comprenant en outre un élément de support (22) destiné à supporter ledit second culbuteur particulier (19) dans son mouvement oscillant, ledit élément de support (22) comprenant un passage d’huile (68), ledit second culbuteur particulier (19) comprenant un passage de communication (70) destiné à accoupler en fonctionnement ledit passage d’huile (68) à ladite chambre de pression hydraulique (67), ledit passage de communication ayant une forme en coupe transversale dont la longueur dans une direction essentiellement perpendiculaire à une direction de l’aménagement desdits culbuteurs est plus grande que sa longueur dans une direction essentiellement parallèle à la direction de l’aménagement desdits culbuteurs, ledit passage de communication (70) s’étendant dans un plan essentiellement perpendiculaire à la direction de l’aménagement desdits culbuteurs.

14. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 13, comprenant en outre un arbre de support cylindrique (41) fixé sur ledit second culbuteur particulier (19), ledit second culbuteur particulier (19) comprenant une première paroi de support (31) comportant un premier alésage de montage à extrémité fermée (37), et une seconde paroi de support (31) comportant un second alésage de montage (37) coaxial au dit premier alésage de montage, s’ouvrant aux extrémités opposées, ledit arbre de support cylindrique (41) comprenant des extrémités opposées montées à l’intérieur desdits premier et second aléages de montage ; et un galet (28) en contact par roulement avec une (25) d’une pluralité de cames de commande de soupapes et supporté de manière à pouvoir rouler sur ledit arbre de support cylindrique (41), ledit piston de calage (63) étant monté de manière à oscillier sur ledit arbre de support cylindrique (41), et ledit passage de communication (70) étant positionné dans ladite première paroi de support (31) dudit second culbuteur particulier (19).

15. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 14, dans lequel ledit arbre de support cylindrique (41) comporte une encoche (72) à une extrémité de celui-ci qui correspond audit passage de communication (70), ladite encoche ayant une forme qui correspond au dit passage de communication.

16. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 14, dans lequel ladite seconde paroi de support (31) dudit second culbuteur particulier (19) comprend un alésage d’introduction (44) menant à une surface interne dudit second alésage de montage (37) ; ledit arbre de support cylindrique (41) comporte une gorge d’engagement (50) aménagée dans la surface externe de celui-ci correspondant à une ouverture dudit alésage d’introduction (44) qui s’ouvre à l’intérieur de la surface interne dudit second alésage de montage (37) ; ledit dispositif comprend un goujon (47) engagé dans ladite gorge d’engagement (50) et introduit et fixé à l’intérieur dudit alésage d’introduction (44).

17. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 13, dans lequel ledit second culbuteur particulier (19) comprend une partie de renforcement (19b) sur la surface externe de celui-ci, située à une extrémité dans la direction de l’aménagement desdits culbuteurs, ladite partie de renforcement (19b) se bombant vers l’extérieur afin de former dans celle-ci ledit passage de communication (70), et ledit second culbuteur particulier (19) comprend une nervure (71) sur ladite surface externe qui connecte un bord latéral (19c) de ladite surface externe à ladite partie de renforcement (19b).

18. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 13, dans lequel ledit second culbuteur particulier (19)
est formé à partir d'un métal moulé par injection.

19. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 1, dans lequel ledit culbuteur (21) est formé à partir d'un métal moulé par injection.

20. Dispositif de commande de soupapes pour moteur à combustion interne selon la revendication 1, dans lequel ladite paroi de support (33) comporte un passage d'huile (761) formé dans celle-ci, ledit passage d'huile étant situé dans ledit plan commun.