INSULATING DOUBLE-GLAZING UNIT AND VACUUM DOUBLE-GLAZING UNIT

(54) INSULIERENDE DOPPELVERGLASUNGSEINHEIT UND VAKUUMDOPPELVERGLASUNGSEINHEIT

UNITE DE DOUBLE VITRAGE ISOLANTE ET UNITE DE DOUBLE VITRAGE A VIDE

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(43) Date of publication of application: 26.08.1998 Bulletin 1998/35

(73) Proprietor: Nippon Sheet Glass Co., Ltd.
Osaka-shi, Osaka 541-8559 (JP)

(72) Inventors:
• KATO, Hidemi, Nippon Sheet Glass Co., Ltd.
Osaka 541 (JP)

• MISONOU, Masao, Nippon Sheet Glass Co., Ltd.
Osaka 541 (JP)

(74) Representative: Solf, Alexander, Dr. et al
Patentanwälte
Dr. Solf & Zapf
Candidplatz 15
81543 München (DE)

(56) References cited:
WO-A-94/24398
JP-A- 6 017 579
JP-B- 4 045 720
JP-T- 7 508 967
US-A- 5 005 557

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
[0001] The present invention relates to a heat-insulating multiple glazing and vacuum multiple glazing for use in a building construction.

[0002] For constructions such as a house or a building, there is a need for saving energy consumption through improvement in the heating or cooling efficiency. As the efficiency of heating or cooling depends on the heat-insulating performance or airtightness of the construction, heat-insulating wall materials and heat-insulating window glasses have been developed.

[0003] However, a heat-insulating window glass generally has a higher heat-through ratio than a heat-insulating wall material, hence a lower insulating performance. Accordingly, in order to achieve energy consumption saving, it is necessary to enhance the heat-insulating performance of the heat-insulating window glass. As a heat-insulating window glass having a higher heat-insulating performance, a multiple glazing is known. This multiple glazing is shown in Fig. 4.

[0004] Fig. 4 shows a cross-sectional construction of a conventional heat-insulating multiple glazing. This heat-insulating multiple glazing 100 includes two sheets of sheet glasses 101, 102 overlapped with each other with spacers 103 interposed therebetween sealing the peripheries of the plates and also with dry air being charged in the intermediate gap. This heat-insulating multiple glazing may achieve a heat-insulating performance equivalent to a heat-through ratio of 3,48-4,64 W/m²K (3.0-4.0 kcal/m² hr°C).

[0005] On the other hand, the heat-insulating wall material provides a heat-through ratio of 1/10, i.e. 0,348-0,464 W/m²K (0.3-0.4 kcal/m² hr°C) of that of the heat-insulating multiple glazing 100. Accordingly, enhancement of the heat-insulating performance of the heat-insulating multiple glazing may lead to energy consumption saving. Following measures (a)-(d) are known for enhancing the heat-insulating performance of the heat-insulating multiple glazing 100.

(a) Low-radiating films are formed on inner surfaces of the sheet glasses 101, 102 of the heat-insulating multiple glazing 100, so that the low-radiating films may reflect infrared beam, thereby improving the heat-insulating performance.

(b) The dry air charged between the sheet glasses 101, 102 is replaced by rare gas so as to restrict convection between the sheet glasses 101, 102. As the rare gas, gas such as argon or krypton which hardly causes convection is employed, so that the convection between the sheet glasses 101, 102 may be appropriately restricted.

(c) The heat-insulating performance may be enhanced by increasing the number of the sheet glasses 101, 102 of the heat-insulating multiple glazing 100 or by increasing the gap between the sheet glasses 101, 102.

(d) The heat-insulating performance may be enhanced by depressurizing the gap between the sheet glasses 101, 102 of the heat-insulating multiple glazing 100 thus restricting air convection.

[0006] However, in the case of (a), it is necessary for the low-radiating film to have light-through property so as to allow introduction of light into the indoor space. Then, in order to satisfy both of the low-radiating property and the light-through property, it is necessary to restrict the heat-through ratio of the heat-insulating multiple glazing 100 to about 1,16-1,74 W/m²K (1.0-1.5 kcal/m² hr°C). Hence, this value is still insufficient when compared with the heat-through ratio: 0,348-0,464 W/m²K (0.3-0.4 kcal/m² hr°C) of the heat-insulating wall material.

[0007] In the case of (b), in combination with the low-radiating film, the heat-through ratio of the heat-insulating multiple glazing 100 may be reduced to 1,16 W/m²K (1.0 kcal/m² hr°C). However, this is still insufficient when compared with the heat-through property: 0,348-0,464 W/m²K (0.3-0.4 kcal/m² hr°C) of the heat-insulating wall material.

[0008] In the case of (c), the heat-through ratio of the heat-insulating multiple glazing 100 may be reduced to 0.58 W/m²K (0.5 kcal/m² hr°C). However, the increase in the number of the sheet glasses 101, 102 will result in increase in the thickness of the heat-insulating multiple glazing 100. Then, the cost of the window frame for use with the heat-insulating multiple glazing 100 will increase. Further, the increase in the number of sheet glasses 101, 102 will result also in the cost of the heat-insulating multiple glazing 100.

[0009] In the case of (d), the heat-through ratio of the heat-insulating multiple glazing 100 may be reduced to 1,16 W/m²K (1.0 kcal/m² hr°C) approximately. Accordingly, if the low-radiating films are formed on the heat-insulating multiple glazing 100, it may be possible to reduce sufficiently the heat-through ratio without inviting increase in the thickness of the heat-insulating multiple glazing 100.
However, in order to allow the heat-insulating multiple glazing 100 in a building construction, it is necessary to maintain the gap between the sheet glasses 101, 102 under the evacuated depressurized condition for an extended period of time; and the gap between the sheet glasses needs to be firmly sealed by a high-temperature treatment (above 400°C) like the welding.

Further, if the low-radiating film is formed on the surface of the heat-insulating multiple glazing, there is the risk of the low-radiating film being damaged. So, it is preferred that the low-radiating film be formed on the inside of the heat-insulating multiple glazing. Accordingly, it becomes necessary to form the low-radiating film before the sealing of the peripheries of the two sheet glasses.

Incidentally, most of such low-radiating films are vulnerable to high temperature, so that they cannot effectively resist the high temperature used in the welding treatment for sealing the heat-insulating multiple glazing 100. A low-radiating film capable of effectively resisting the high temperature is known which is formed of tin oxide doped with fluorine formed by the thermal decomposition method. This provides a radiation ratio of 0.15. Therefore, if this low-radiating film is formed on the heat-insulating multiple glazing, the heat-through ratio of the heat-insulating multiple glazing 100 will hardly be reduced further from 1.16 W/m² K (1.0 kcal/m² hr °C). Hence, the heat-through ratio of the heat-insulating multiple glazing 100 is still insufficient, when compared with the heat-through ratio of the heat-insulating wall material ranging between 0.348-0.464 W/m² K (0.3-0.4 kcal/m² hr °C).

The citation WO 94/24398 A discloses a heat-insulating panel constituting a solar collector. This construction includes a depressurized panel and an insulated panel. The insulated panel consists of 3 panels. A heat trap is formed between the pressurized panel and the insulated panel and a low emissivity film is formed on the innermost panel constituting the depressurized panel. This low emissivity film serves to prevent diffusion through the depressurized panel.

The citation US 5,005,557 relates to a building element in which edges of two wall members forming depressurized space therebetween are joint together by means of a flexible seal, whereas the element is designed to maintain the depressurized condition of the building element by absorbing thermal expansion amount difference with using a flexible seal.

Then, in view of the above-described problems of the prior art, an object of the present invention is to provide an artifact capable of enhancing the heat-insulating performance without increasing the thickness of the heat-insulating multiple glazing.

The above-noted object is achieved by the invention set forth in the claims.

First, a heat-insulating multiple glazing, according to the characterizing features of the present invention, comprises: a first vacuum multiple glazing including two sheet glasses having peripheries thereof sealed and a plurality of layers of spacer disposed within a gap therebetween, with the gap being depressurized; and a second vacuum multiple glazing or an ordinary sheet glass overlapped with the first multiple glazing with a gap relative thereto and having the periphery thereof sealed with a sealing material, with the gap being charged with dry air or rare gas.

The heat-insulating multiple glazing employs at least one vacuum multiple glazing. This vacuum multiple glazing includes two sheet glasses disposed with a predetermined gap therebetween, which gap is depressurized. The vacuum multiple glazing having the above construction has substantially same thickness as one ordinary sheet glass for use in a heat-insulating multiple glazing, yet provides a higher heat-insulating performance. And, this vacuum multiple glazing, like one ordinary sheet glass, is assembled in the heat-insulating multiple glazing.

With the above, it has become possible to enhance the heat-insulating performance without increasing the thickness of the heat-insulating multiple glazing.

Incidentally, as the rare gas, helium, neon, argon, krypton, xenon may be employed. However, it is preferred to employ argon, krypton, xenon or the like which hardly cause convection.

Further, according to the present invention, a low-radiating film having a heat-through ratio not exceeding 1.16 W/m² K (1 kcal/m² hr °C) may be formed on either one or both of an opposing inner face of the further vacuum multiple glazing or the ordinary sheet glass opposing the first vacuum multiple glazing and an opposing inner face of the first vacuum multiple glazing opposing the second vacuum multiple glazing or the ordinary sheet glass.

With this heat-insulating multiple glazing, dry air or rare gas is charged between the vacuum multiple glazing and the other sheet glass. For this reason, it is possible to maintain the balance between the outside and the inside of heat-insulating multiple glazing, so that the peripheries of the two sheet glasses may be sealed with elastic sealing material. Therefore, there is no need for welding by a high-temperature (above 400 °C) treatment of the peripheries of the two sheet glasses, as is the case with the vacuum multiple glazing.

With the above, it is possible to form a low-radiating film having no heat resistance (having a radiating ratio of 0.15 or less and a heat-through ratio of 1.16 W/m² K (1.0 kcal/m² hr °C) or less) on the heat-insulating multiple glazing (i.e. at least one of the opposing inner face of the further vacuum multiple glazing or the ordinary sheet glass opposing...
to the vacuum multiple glazing and the inner opposing face of the vacuum multiple glazing opposing to the further vacuum multiple glazing or the ordinary sheet glass), so that the heat-insulating performance of the heat-insulating multiple glazing may be further improved.

[0024] Incidentally, the low-radiating film having heat resistance may be formed in advance on the opposing inner face of the vacuum multiple glazing. In this case, however, the following respects (i), (ii) need to be considered.

(i) The low-radiating film must be limited to those which have a radiating ratio of 0.15 or lower and whose heat-through ratio hardly drop any further from 1.16 W/m²K (1.0 kcal/m²hr°C).

(ii) If a forcible attempt is made to improve the heat-insulating performance of the vacuum multiple glazing by means of a low-radiating film, there develops a temperature difference between the front side and the rear side of the sheet glass. And, if the difference is significant, this may lead to breakage.

[0025] Furthermore, according to the characterizing features of a vacuum multiple glazing, the glazing comprises two sheet glasses with a plurality of spacers disposed in a gap therebetween and having the peripheries thereof sealed, the gap being depressurized by means of evacuating or the like, wherein said each sheet glass has a thickness not exceeding 1.5 mm and the spacers are disposed with a pitch not exceeding 15 mm.

[0026] By reducing the disposing pitch of the spacers while forming thin the sheet glass which constitutes the vacuum multiple glazing, it is possible to form the vacuum multiple glazing thin without breaking the sheet glasses. Accordingly, it has become possible to selectively adapt the vacuum multiple glazing for a particular application.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a section view of a heat-insulating multiple glazing,

Fig. 2 is a section view of the heat-insulating multiple glazing of Fig. 1,

Fig. 3 is a plan view of the heat-insulating multiple glazing of Fig. 2, and

Fig. 4 is a section view of a conventional heat-insulating multiple glazing.

BEST MODES OF EMBODYING THE INVENTION

[0028] Modes of embodying the present invention will be described in details with reference to the accompanying drawings. Incidentally, the drawings should be viewed in the direction of the reference marks.

[0029] Fig. 1 shows a cross sectional construction of a heat-insulating multiple glazing relating to a first embodiment.

[0030] A heat-insulating multiple glazing 1 includes a vacuum multiple glazing 2 having an overall thickness of t_1 and acting as a first vacuum multiple glazing, an ordinary (not a vacuum multiple glazing, but of an ordinary type) sheet glass 10 overlapped with this vacuum multiple glazing 2 with a gap therebetween and having the peripheries thereof sealed, and a sealing material 12 for sealing the peripheries of the vacuum multiple glazing 2 and the ordinary sheet glass 10. Between the sheet glass 2 and the vacuum multiple glazing 5, there is a charged dry air or rare gas.

[0031] The vacuum multiple glazing 2 includes two thin sheet glasses 3, 4 having a thickness denoted by t_2 and disposed with a gap therebetween, a plurality of spacers 5 interposed between these two thin sheet glasses 3, 4 and a solder glass 6 fused and sealingly fixed to the peripheries of the two thin sheet glasses 3, 4 at a high temperature of 400-500 °C. And, the glazing is placed under a depressurized condition by air present between the two thin sheet glasses 3, 4 being evacuated.

[0032] The ordinary sheet glass 10 has a thickness denoted with t_3 and on an opposing inner face thereof facing the vacuum multiple glazing 2, there is formed a low-radiating film 11. This low-radiating film 11 reflects infrared beam thus reducing a heat-through ratio of the sheet glass 10, so that the heat-through ratio of the heat-insulating multiple glazing will not exceed 1.16 W/m²K (1 kcal/m²hr°C).

[0033] The sealing material 12 consists e.g. of a primary sealing material 12a and a secondary sealing material 12b. The primary sealing material 12a may be formed preferably of isobutylene-isoprene rubber, and the secondary sealing material 12b may be formed preferably of sulphide sealant (or silicone sealant). These materials may be used at the normal temperature.

[0034] Incidentally, the gap s_1 between the vacuum multiple glazing 2 and the ordinary sheet glass 10 is preferably 6-20 mm. If the gas s_1 exceeds 20 mm, there tends to occur convection of the dry air or rare gas charged into this gap.
s₁, thereby to reduce the heat-insulating performance. If the gap s₁ is not greater than 6 mm, the layer of the dry air or rare gas charged into this gap s₁ is too thin, thus being unable to enhance the heat-insulating performance.

In the heat-insulating multiple glazing 1 according to the first embodiment, there has been described the case where the low-radiating film 11 is formed only on the opposing inner face of the ordinary sheet glass 10 facing the vacuum multiple glazing 2. Instead, the following three other arrangements are also possible.

1. The low-radiating film 11 is formed on the opposing inner face of the ordinary sheet glass 10 opposing the vacuum multiple glazing 2. In addition, another low-radiating film 11 is formed on the opposing inner face of the thin sheet glass 4 constituting the vacuum multiple glazing 2 opposing the ordinary sheet glass 10.

2. Without forming the low-radiating film 11 on the opposing inner face of the ordinary sheet glass 10 opposing the vacuum multiple glazing 2, the low-radiating film 11 is formed only on the opposing inner face of the thin sheet glass 4 constituting the vacuum multiple glazing 2 opposing the ordinary sheet glass 10.

3. The low-radiating film 11 is formed neither of the opposing inner faces of the ordinary sheet glass 10 and the thin sheet glass 4 of the vacuum multiple glazing 2.

Furthermore, in place of the ordinary transparent sheet glass 10, a wire glass or sheet glass rendered non-transparent may be employed.

Incidentally, the vacuum multiple glazing 2 employed in the said embodiment (see Fig. 1) has the thickness t₂ of about 6 mm. The reason why the thickness t₂ is set at about 6 mm is as follows. In general, with the vacuum multiple glazing 2, it is necessary for the thin sheet glasses 3, 4 to have a thickness of at least 3 mm approximately to ensure strength and also for the two thin sheet glasses 3, 4 to have a gap of at least 0.2 mm to enhance the heat-insulating performance.

On the other hand, there is a demand to employ a vacuum multiple glazing 2 thinner than 6 mm or a vacuum multiple glazing 2 of a lower cost. However, since the gap between these two thin sheet glasses 3, 4 of the vacuum multiple glazing 2 is depressurized, there will be a risk of breakage of the thin sheet glasses 3, 4 if the thin sheet glasses 3, 4 have a thickness less than 3 mm.

Then, through repeated trial productions, the present inventors have striven to find out appropriate conditions allowing manufacture of a thin vacuum multiple glazing. The construction of this thin vacuum multiple glazing will be described next with reference to Figs. 2, 3.

Fig. 2 shows a cross-sectional construction of the vacuum multiple glazing.

Fig. 3 shows the construction in plan view of the vacuum multiple glazing.

In the vacuum multiple glazing 2, between the two thin sheet glasses 1, 2 (only the numeral 1 is shown), there are interposed a plurality of spacers 5. These spacers 5 are stainless steel column members having a diameter d and are arranged on a grating having a disposing pitch p. In Fig. 3, the plurality of spacers 5 are arranged along a diagonal grating pattern relative to the sheet glass. However, the invention is not limited to this arrangement, and the spacers may be arranged along an ordinary grating pattern, i.e. a grating pattern parallel with the peripheries of the sheet glass.

In this construction, by forming the thickness t₅ of the thin plate glasses 1, 2 thin (see Fig. 2) and also reducing the disposing pitch p of the spacers 5, breakage of the thin sheet glasses 1, 2 may be avoided. Specifically, this may be done by providing each sheet glass with a thickness not exceeding 1.5 mm and setting the disposing pitch of the spacers at a value not exceeding 15 mm. With these, it has become possible to manufacture the vacuum multiple glazing 2 having the reduced thickness t₂ (see Fig. 2).

In this embodiment, there has been described the vacuum multiple glazing 2 employing the spacers 5 formed of stainless steel. Instead of this, spacers formed of glass or ceramics may be employed.

Since glass has a low heat transfer coefficient, increase of the heat-through ratio may be restricted even if the number of the spacers is increased. Further, as glass has a superior light transmission property, the increase in the number of the spacers will not deteriorate the appearance.

Next, the first embodiment relating to the present invention will be described with reference to Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sheet glass</td>
<td>thickness (t₃)</td>
<td>6.0 mm</td>
</tr>
<tr>
<td></td>
<td>low-radiating film</td>
<td></td>
</tr>
<tr>
<td>vacuum multiple glazing</td>
<td>thickness (t₂)</td>
<td>6.0 mm</td>
</tr>
<tr>
<td></td>
<td>heat-through ratio</td>
<td>1.16 W/m²K</td>
</tr>
</tbody>
</table>
The vacuum multiple glazing 2 shown in Fig. 1 has the thickness t_2 of 6.0 mm and a heat-through ratio of about 1.16 W/m²K (1.0 kcal/m²hr°C). The ordinary sheet glass 10 has the thickness t_3 of 6.0 mm, and has the low-radiating film 11 formed on the inner face thereof. The gap S_1 between the vacuum multiple glazing 2 and the ordinary sheet glass 10 is 15 mm, and the peripheries between the vacuum multiple glazing 2 and the ordinary sheet glass 10 was double-sealed with isobutylene-isoprene rubber and sulfide sealant. And, between these, dry air was charged. The heat-insulating glass 1 manufactured under the above conditions had a thickness t_1 of 27.0 mm and a heat-through ratio of about 0.812 W/m²K (0.7 kcal/m²hr°C), which value is smaller than the target value of 1.16 W/m²K (1.0 kcal/m²hr°C).

Next, the embodiment shown in Fig. 2 will be described.

The thin sheet glasses 1, 2 shown in Fig. 2 had the peripheries thereof fuse-sealed with low melting-point glass and has a thickness t_5 of 1.5 mm and a gap S_3 of 0.2 mm. And, this gap S_3 was depressurized to be lower than 10^{-3} Torr.

The spacer 5 is a stainless piece having a diameter d of 0.5 mm, and these spacers were arranged on a diagonal grating pattern with a disposing pitch p of 15 mm. The spacer 23 has a height of 0.2 mm.

The vacuum multiple glazing 2 manufactured under the above conditions had a thickness t_2 of 3.2 mm and a heat-through ratio of about 2.958 W/m²K (2.55 kcal/m²hr°C), which thickness t_2 is about 1/2 of that of the convention.

Incidentally, as for the sound-proof performance, a value equivalent to JIS (Japanese Industrial Standards) sound-proof performance Class 25 was achieved.

Claims

1. A heat-insulating multiple glazing comprising:

 a vacuum multiple glazing including two sheet glasses having peripheries thereof sealed with solder glass and a plurality of spacers disposed within a gap therebetween, with the gap being depressurized;
 an ordinary sheet glass overlapped with the vacuum multiple glazing with a gap thereto and having the periphery thereof sealed with a sealing material, with the gap being charged with dry air or rare gas; and
 a low-radiating film formed on an opposing inner face of the ordinary sheet glass opposing the vacuum multiple
2. The heat-insulating multiple glazing according to claim 1, wherein said low-radiating film provides the heat-insulating multiple glazing with a heat-through ratio not exceeding 1.16 W/m² K (1 kcal/m²hr°C).

3. The heat-insulating multiple glazing according to claim 1 or 2, wherein said gap between the vacuum multiple glazing and the ordinary sheet glass is 6-20 mm.

4. The heat-insulating multiple glazing according to any one claims 1-3, wherein the sealing material includes a primary sealing material and a secondary sealing material, the primary sealing material being isobutylene-isoprene rubber, the secondary sealing material being sulphide sealant or silicone sealant.

5. The heat-insulating multiple glazing according to any one of claims 1-4, wherein the vacuum multiple glazing has a thickness of about 6 mm.

6. The heat-insulating multiple glazing according to one or more of the claims 1 to 5, wherein each sheet glass of the vacuum multiple glazing has a thickness not exceeding 1.5 mm and the spaces are disposed with a pitch not exceeding 15 mm.

7. The heat-insulating multiple glazing according to claim 6, further comprising a low-radiating film formed on either one or both of opposing inner faces of the two sheet glasses, said low-radiating film providing the heat-insulating multiple glazing with a heat-through ratio not exceeding 1.16 W/m² K (1 kcal/m²hr°C).

25 Patentansprüche

1. Wärmeisoliierendes Verbundglas, aufweisend:

 Ein Vakuumverbundglas mit zumindest zwei Glasscheiben, deren Ränder mit Lötglas abgedichtet sind, und mehreren Abstandhaltern, die in einem Spalt dazwischen angeordnet sind, wobei der Spalt drucklos gemacht ist;
 eine gewöhnliche Glasscheibe, die mit dem Vakuumverbundglas mit einem Spalt gegenüber diesem überlappt ist, und deren Rand mit einem Dichtungsmaterial abgedichtet ist, wobei der Spalt mit Trockenluft oder einem Seltenerdgas gefüllt ist, und
eine gering abstrahlende Dünnschicht, die auf einer gegenüberliegenden Innenseite der gewöhnlichen Glasscheibe in Gegenüberlage zu dem Vakuumverbundglas gebildet ist.

2. Wärmeisoliierendes Verbundglas nach Anspruch 1, wobei die gering abstrahlende Dünnschicht dem wärmeisoliierenden Verbundglas ein Wärmedurchlassverhältnis verleiht, das 1,16 W/m² K (1 kcal/m²hr°C) nicht übersteigt.

3. Wärmeisoliierendes Verbundglas nach Anspruch 1, wobei der Spalt zwischen dem Vakuumverbundglas und dem gewöhnlichen Glas 6 bis 20 mm beträgt.

4. Wärmeisoliierendes Verbundglas nach einem der Ansprüche 1 bis 3, wobei das Dichtungsmaterial ein primäres Dichtungsmaterial und ein sekundäres Dichtungsmaterial umfasst, wobei das primäre Dichtungsmaterial ein Isobutenyl-Isopropen-Gummi ist, und wobei das sekundäre Dichtungsmaterial ein Sulfindichtungsmittel oder ein Silicondichtungsmittel ist.

5. Wärmeisoliierendes Verbundglas nach einem der Ansprüche 1 bis 4, wobei das Vakuumverbundglas eine Dicke von etwa 6 mm aufweist.

6. Wärmeisoliierendes Verbundglas nach einem der Ansprüche 1 bis 5, wobei jede Glasscheibe des Vakuumverbundglases eine Dicke aufweist, die 1,5 mm nicht übersteigt, und wobei die Abstände mit einem Abstand angeordnet sind, der 15 mm nicht übersteigt.

7. Wärmeisoliierendes Verbundglas nach Anspruch 6, außerdem aufweisend eine gering abstrahlende Dünnschicht, die auf einer oder auf beiden der gegenüberliegenden Innenseiten der zwei Glasscheiben gebildet ist, wobei die gering abstrahlende Dünnschicht der wärmeisoliierenden Verbundverglasung ein Wärmedurchlassverhältnis ver-
Revendications

1. Vitrage multiple thermo-isolant, comprenant :
 - un vitrage multiple sous vide qui inclut deux panneaux de verre dont les périphéries sont scellées avec du verre souillé et une pluralité d’éléments d’écartement disposés à l’intérieur d’un intervalle entre ces panneaux de verre, l’intervalle étant mis sous dépression ;
 - un panneau de verre ordinaire en chevauchement avec le vitrage multiple sous vide avec un intervalle vis-à-vis de celui-ci et dont la périphérie est scellée avec un matériau de scellement, l’intervalle étant chargé d’air sec ou de gaz rare ; et
 - un film à faible rayonnement formé sur une face intérieure opposée du panneau de verre ordinaire à l’opposé du vitrage multiple sous vide.

2. Vitrage multiple thermo-isolant selon la revendication 1, dans lequel ledit film à faible rayonnement assure au vitrage multiple thermo-isolant un rapport de transmissibilité thermique qui ne dépasse pas 1,16 W/m² K (1 kcal/m² h °C).

3. Vitrage multiple thermo-isolant selon l’une ou l’autre des revendications 1 et 2, dans lequel ledit intervalle entre le vitrage multiple sous vide et le panneau de verre ordinaire est compris entre 6 et 20 mm.

4. Vitrage multiple thermo-isolant selon l’une quelconque des revendications 1 à 3, dans lequel le matériau de scellement inclut un matériau de scellement primaire et un matériau de scellement secondaire, le matériau de scellement primaire étant un caoutchouc isobutylène-isoprène, et le matériau de scellement secondaire étant un matériau de scellement au sulfure ou au silicone.

5. Vitrage multiple thermo-isolant selon l’une quelconque des revendications 1 à 4, dans lequel le vitrage multiple sous vide a une épaisseur d’environ 6 mm.

6. Vitrage multiple thermo-isolant selon l’une ou plusieurs des revendications 1 à 5, dans lequel chaque panneau de verre du vitrage multiple sous vide a une épaisseur qui ne dépasse pas 1,5 mm, et les espaces sont disposés avec un pas qui ne dépasse pas 15 mm.

7. Vitrage multiple thermo-isolant selon la revendication 6, comprenant en outre un film à faible rayonnement formé sur l’une et/ou sur les deux faces intérieures opposées des deux panneaux de verre, ledit film à faible rayonnement assurant au vitrage multiple thermo-isolant un rapport de transmissibilité thermique qui ne dépasse pas 1,16 W/m² K (1 kcal/m² h °C).