Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates in general to surround sound encoding and decoding and more particularly concerns novel apparatus and techniques for encoding five major channels of a surround sound signal into two channels and decoding the encoded two channels to effectively retrieve the five major channels.

[0002] A typical surround sound signal includes at least left front, center front, right front, left rear and right rear signals. A typical prior art approach combines these signals into two signals that are typically decoded to recover a left front signal, a right front signal, a center front signal and a monophonic rear signal representative of the sum of the original left rear and right rear signals.

[0003] It is an important object of the invention to provide improved apparatus and techniques for encoding and decoding surround signals.

[0004] According to the present invention there is provided a surround sound decoding apparatus comprising, an input decoder having a Lt input for receiving a left transmitted signal and a Rt input for receiving a right transmitted signal, a L output for normally providing a left output signal, a C output for normally providing a center output signal, a S output for normally providing a surround output signal and a R output for normally providing a right output signal, a left decoder having a Lt input for normally receiving a left transmitted signal coupled to the L output of said input decoder, an Rt input for normally receiving a right transmitted signal coupled to the L output of said input decoder, a C output for normally providing a center output signal for providing a right side surround output signal and an R output for normally providing a right output signal, and a surround decoder having a Lt input for normally receiving a left transmitted signal coupled to the R output of said left decoder, an Rt input for normally receiving a right transmitted signal coupled to the R output of said right decoder, an L output for normally providing a left output signal for providing a left surround output signal, a C output for normally providing a center output signal for providing a center surround output signal and a R output for normally providing a right output signal for providing a right surround output signal.

[0005] A feature of the invention resides in an adaptive matrix decode algorithm signal processor which allows for significantly improved steady-state adjacent channel separation, including a processor for generating true-stereo surround-sound signals with limited channel separation, and an additional center surround signal. This center surround signal can be decoded either from conventional matrix-encoded stereo signals or alternately furnished as an additional signal from discrete channel media.

[0006] Another feature resides in electroacoustically manipulating the front stage signals wherein the discrete left or right signal information can be "squeezed" inboard of the left and right channel loudspeakers. This feature facilitates reducing the perceived width of the front left/right sound stage image when listening to audio-for-video sound fields reproduced in concert with a video display device, thereby allowing conventional placement of the left/right channel loudspeakers spaced from the display device as in conventional stereophonic sound field reproduction without unnecessarily comprising the audio-for-video sound field reproduction.

[0007] Still another feature resides in means for encoding the original 5.1 channel source media into a conventional stereophonic signal, wherein the discrete left and right surround signals are monaurally encoded into a more conventional left total/right total signal format, herein referred to as LT, RT, but with much of the original directional concept preserved.

[0008] Other features, objects and advantages of the invention will become apparent from the following detailed description when read in connection with the accompanying drawings in which:

FIG. 1 is a block diagram illustrating the logical arrangement of a generalized standard matrix encoder;
FIG. 2 is a block diagram illustrating the logical arrangement of a system for input amplitude normalization;
FIGS. 3A and 3B are block diagrams illustrating the logical arrangement for generating a difference signal output for sum signal dominance and a sum signal output for difference signal dominance, respectively;
FIG. 4 is a schematic circuit diagram of circuitry for generating the left or right dominant control signal;
FIGS. 5A and 5B are block diagrams illustrating the logical arrangements for generating sum and difference adjacent channel signals, respectively;
FIG. 5C is a block diagram illustrating the logical arrangement of apparatus for removing the adjacent channel signal from the sum and difference signals;
FIG. 6 is a block diagram illustrating the logical arrangement for normalizing the matrix for quadrature encoded signals;
FIG. 7 is a block diagram illustrating the logical arrangement for generating left, center and right surround channel signals;
FIG. 8 is a block diagram illustrating the logical arrangement for generating left/right squeeze signals;
FIG. 9 is a block diagram illustrating the logical arrangement for matrixing the discrete 5.1 channel source media
to derive the center surround channel signal and bass channel signal;
FIG. 10 is a block diagram illustrating the logical arrangement for modified matrix encoding with split surround
channel signals;
FIG. 11 is a block diagram illustrating the logical arrangement of a broadband block decoder;
FIG. 12 is a modification of the block diagram of FIG. 11 illustrating the logical arrangement of a broadband block
decoder with an enhanced sound imaging feature;
FIG. 13 is a block diagram illustrating the logical arrangement of another modification of the arrangement of FIG. 11 characterized by frequency division;
FIG. 14 is a block diagram illustrating the logical arrangement of a system for processing left and right transmitted
signals to provide an output bass signal;
FIG. 15 is a block diagram illustrating the logical arrangement of another decoding system according to the invention
that provides left, center and right output signal and a monophonic surround output signal;
FIG. 16 is another embodiment of a decoder according to the invention that provides a stereo surround signal;
FIG. 17 is a block diagram illustrating the logical arrangement of a decoding system according to the invention using
a plurality of stereo decoders to provide left, right, center, left surround, center surround, right surround, left side
surround and right side surround signals; and
FIG. 18 is a table illustrating the signals at the different terminals of the stereo decoders of FIG. 17.

[0009] With reference now to the drawings and more particularly FIG. 1, there is shown the logical arrangement of a
generalized standard matrix encoder left, center, right and surround input terminals 11, 12, 13 and 14 receive left, center,
right and surround signals, respectively. Left-center adder 15 combines the signals on left and center input terminals 11
and 12 to provide a left-center signal to left center phase shift network 16. Right-center summer 17 combines the signals
on center and right terminals 12 and 13 to provide a right-center signal to right-center phase shift network 18. Quadrature
phase shifter 21 receives the surround signal on terminal 14 to provide a quadrature phase-shifted surround signal that
is combined with the left-center phase-shifted signal provided by left-center phase shifter 16 to left output adder 22 to
provide the left transmitted signal LT and with the right-center phase-shifted signal provided by right-center phase shifter
18 to right output adder 23 to provide the right-transmitted signal RT.

[0010] The surround channel and center channel signals are defined as equal amplitude out-of-phase and in-phase
signals, respectively. Encoding a left and center channel signal simultaneously produces only the center channel output
at the output of right output adder 23, and the left channel signal plus the center channel signal at the output of left adder
22. Thus, the left and center channel signals cannot be accurately retrieved without first normalizing the relative time-
average magnitudes of the left and right transmitted signals LT and RT such that LT is equal to RT at the input terminals
of the input amplitude normalization circuitry shown in FIG. 2.

[0011] Referring to FIG. 2, the left and right transmitted signals LT and RT from left and right output adders 22 and
23, respectively, on terminals 24 and 25, respectively, are multiplied by right and left magnitude signals [R]/Y and [L]/Y,
respectively, on input terminals 26 and 27, respectively, of sum and difference multiplier 31 and 32, respectively. The
outputs of left and right multipliers 31 and 32 are cumulatively combined in adder 33 and differentially combined in
subtractor 34 to provide on terminals 35 and 36 sum and difference levels, respectively.

[0012] One method of normalizing the relative magnitudes of LT and RT at the decoder input terminals involves deriving
the time-averaged magnitude of LT, RT, and the time-averaged magnitude of whichever of the two is greater when [LT] ≠ [RT] (herein referred to as Y). When the two magnitudes are equal, Y is either the time-averaged magnitude of [LT]
or [RT]. Expressing these magnitudes in terms of Y produces two usable coefficients:

\[A_1 = \frac{[LT]}{Y} \]

and

\[A_2 = \frac{[RT]}{Y} \]

[0013] For all LT dominant conditions, the coefficient A1 has a value of one, and the coefficient A2 is the ratio of the
magnitudes of RT to LT. The opposite is true for all RT dominant input signal conditions. The domain of each of the two
coefficients is from 0 to 1 inclusive. Multiplying LT by [RT]/Y and RT by [LT]/Y produces equal magnitude signals at the
output of each of multipliers 31 and 32. If the normalization function is the result of a broadband measurement of the
spectrum at LT and RT, then summing the modified signal will not, in all cases, produce the encoded center channel or
surround channel signal because the sum signal or difference signal may yet contain information for reproduction by the left (or right) channel signal.

For example, consider encoding the center and left channel signals as two sine waves of arbitrary frequency. If the left channel signal L is 5 kHz, and the center channel signal is a 1 kHz signal, each with a unit amplitude of 1 at the encoder output terminals, since the left channel signal is the greater of the left and right channel signals, the coefficient A1 has a value of 1, and the coefficient of A2 has a value 0.707. Thus, the output of sum multiplier 31 is 0.707 (5 kHz sine wave + 1 kHz sine wave) and the output of right multiplier 32 is 1 (1 kHz sine wave). The sum and the difference signals obtained in this example both contain 0.3535 (5 kHz sine wave), which originated as a left channel signal and not as a center or surround channel signal.

Now compare the results of this example with those obtained when the two signals are of the same frequency and phase. In this example, A1 has a value of 1, and the coefficient A2 has a value of 0.5. The resulting outputs of left multiplier 31 and right multiplier 32 are equal, with a unit amplitude of 1. In this example, the sum of the signals and the absence of a difference signal are expected conditions and accurately represent the information in the signals originally encoded.

It has been discovered that the distinction between these and similar examples resides in the indication (or absence) of a difference signal. Stated in general terms, the difference signal obtained when the spectrum is sum signal and left (or right) channel dominant, contains some of the left (or right) channel signal. Similarly, the sum signal obtained when the spectrum is difference signal dominant and left (or right) channel dominant contains some of the left (or right) channel signal. The invention takes advantage of this property to remove the undesired signal from the resulting sum and difference signals furnished by sum and difference summers 33 and 34.

Referring to FIGS. 3A and 3B, there is shown the logical arrangement of apparatus for generating a difference signal output for sum signal dominance and a sum signal output for difference signal dominance.

It is convenient to establish the condition of sum or difference signal dominance by deriving the time-averaged magnitude of each of these signal quantities, and the time-averaged magnitude of whichever of the two is greater (herein referred to as X) when \([L-R] \neq [L+R]\). When \([L+R]=[L-R]\), X is the time-averaged magnitude of either \([L+R]\) or \([L-R]\). Expressing the sum and difference magnitude terms in X produces the coefficients \([L+R]/X\) and \([L-R]/X\), respectively. For all sum signal dominant conditions, the coefficient \([L+R]/X\) has a value of one, and the coefficient \([L-R]/X\) is the ratio of the difference signal magnitude to the sum signal magnitude. The opposite is true for all difference signal dominant conditions. Rearranging these coefficients into a useful form produces:

\[
A_3 = 1 - \frac{[L+R]}{X}, = \frac{(X - [L+R])}{X}
\]

\[
A_4 = 1 - \frac{[L-R]}{X}, = \frac{(X - [L-R])}{X}
\]

The domains A3 and A4 are from zero to one, inclusive. For all sum signal dominant conditions, the coefficient A3 is zero, and the coefficient A4 is 1 minus the ratio of the difference signal magnitude to the sum signal magnitude. The opposite is true for all difference signal dominant conditions. Both A3 and A4 are zero when \([L+R]\) is equal to \([L-R]\). Multiplying the sum signal and difference signal by A3 and A4, respectively, produces only some of the difference signal when the spectrum is sum signal dominant, and only some of the sum signal when the spectrum is difference signal dominant. By multiplying the resulting output signals by the complement of each coefficient A3, A4, undesired signal components may be removed. It is convenient to designate these complementary coefficients as A5 and A6. Thus:

\[
A_5 = \frac{X}{[L+R] - X} + e
\]

\[
A_6 = \frac{X}{[L-R] - X} + e
\]

The quantity e is a small quantity added for theoretical consideration to avoid division by zero. Multiplying the sum signal by A3 X A5 and the difference signal by A4 X A6 produces only the difference signal (when one is present) when the spectrum is sum signal dominant, and only the sum signal (when one is present) when the spectrum is difference signal dominant.

FIG. 3A implements this process with input multiplier 36 multiplying the signal on line 35 by coefficient A3 to provide a first product signal that is multiplied in output multiplier 37 by coefficient A5 to provide no output on line 38 unless \([L-R] > [L+R]\).
For the condition \(LT > RT \), the multipliers connected to the output of comparator 45 are cutoff leaving the multipliers of comparator circuitry of FIG. 4 such that all multipliers have a voltage gain of unity for the condition \(LT \) and \(RT \) are equal.

The output of left comparator 44 is at logical 0 when the spectrum is \(RT \) dominant. The output of right comparator 45 is at logical 0 when the spectrum is \(LT \) dominant. The outputs of comparators 44 and 45 gate multipliers (FIG. 5) from full on to cutoff.

Referring to FIG. 5A, there is shown a block diagram illustrating the logical arrangement for apparatus for generating the sum or difference adjacent channel signal. The voltage gain of the multiplier circuitry is responsive to the comparator circuitry of FIG. 4 such that all multipliers have a voltage gain of unity for the condition \(LT \) and \(RT \) are equal. For the condition \(LT > RT \), the multipliers connected to the output of comparator 45 are cutoff leaving the multipliers connected to comparator 44 at a gain of unity. The opposite is true for the condition \(RT > LT \). Subtracting the input of the multipliers from the output of the multipliers produces the desired signals which are combined with the original sum and difference signals to produce modified sum and difference signals which are free of the left or right channel signals.

Thus, line 38 from FIG. 3A is coupled to the inputs of multipliers 51, 52 and the + input of combiners 53 and 54, respectively. The outputs of multipliers 51 and 52 are connected to the - input of combiners 53 and 54, respectively. The other inputs of multipliers 51 and 52 are coupled to the outputs of comparators 44 and 45, respectively. Thus, combiner 53 produces no output unless both \([L]>[R] \) and \([L+R]>[L-R] \), and combiner 54 provides no output unless both \([R]>[L] \) and \([L-R]>[L+R] \).

Similarly, output 43 from FIG. 3B is coupled to an input of multipliers 55 and 56 and the + inputs of combiners 57 and 58, respectively. The outputs of multipliers 55 and 56 are coupled to the - inputs of combiners 57 and 58, respectively. The other inputs of multipliers 55 and 56 are coupled to the outputs of comparators 44 and 45, respectively. Thus, combiner 57 provides no output unless \([L]>[R] \) and \([L+R]>[L-R] \), and combiner 58 provides no output unless \([R]>[L] \) and \([L-R]>[L+R] \).

Referring to FIG. 5B, there is shown added to the system of FIG. 5A, sum output combiner 61 and difference output combiner 62 each having five inputs added and subtracted as indicated to provide a modified sum signal on output 63 and a modified difference signal on output 64 free of the left or right channel signals.

Similarly, output 43 from FIG. 3B is coupled to an input of multipliers 55 and 56 and the + inputs of combiners 57 and 58, respectively. The outputs of multipliers 55 and 56 are coupled to the - inputs of combiners 57 and 58, respectively. The other inputs of multipliers 55 and 56 are coupled to the outputs of comparators 44 and 45, respectively.

Referring to FIG. 5C, there is shown a block diagram illustrating the logical arrangement of a system for removing the adjacent channel signal from the sum and difference signals.

Referring again to FIG. 1, consider the left transmitted signal \(LT \) and the right transmitted signal \(RT \) on lines 24 and 25, respectively, when the encoded signals are applied as arbitrary sine waves to the center and surround terminals 12 and 14, respectively. Consider the center channel signal being 1 unit of a 1 kHz sine wave as measured at the outputs 25 and 29. Consider that the surround channel signal is 1 unit of a 5 kHz sine wave as measured at the output terminals 24 and 25. In this example, the magnitude of \(LT \) is equal to \(RT \) and the sum signal magnitude is equal to the difference between signal magnitudes. The resulting sum and difference signals provided by the system of FIG. 2 accurately reflect the original signal that was encoded.

Now consider signal conditions at the center and surround input terminals 12 and 14 resulting in sine waves of the same frequency and amplitude on outputs 25 and 29, such as 1 unit of 1 kHz sine waves. These output signals are in phase quadrature, the magnitudes of these signals are equal and the magnitude of their sum is equal to the magnitude of their difference. However, the sum and difference signal components contain some left and right channel information.

By further processing the sum and difference signals according to the invention, the correct amount of left and right channel information remains in the transmitted signals \(LT \) and \(RT \) after the sum and difference signal components (representing the center and surround signals) have been removed from \(LT \) and \(RT \).

When the two output signals are in phase quadrature, the encoded signals processed by the decoder should appear at all output terminals of the decoder with equal amplitude at each output terminal; that is, left, right, center and surround. By adding to the left channel and right channel signals equal predetermined amounts of sum and difference signal, the correct amount of left and right channel information remains in the left and right channels.

Referring to FIG. 6, there is shown a block diagram of the circuitry of FIG. 5B with additional components added to assure proper decoding when the sine wave signals on output terminals 25 and 29 are in phase quadrature and of equal amplitude caused by signals applied to the center and surround inputs 12 and 14, respectively. Center multiplier
65 has one input coupled to left output combiner 61 and the other input receives a signal related to the ratio of \(X\) to the sum of the magnitudes of the sum and difference signals to provide a product signal that is differentially combined with the output of left output combiner 61 to provide a center complement signal by combining complement center combiner 66 to provide the center complement signal \(C\) on line 67 that is differentially combined with the signal on line 63 in combiner 68 to provide the center signal \(C\) on line 71.

[0036] Similarly, surround multiplier 72 has one input coupled to the output 64 of right combiner 62 and the other input receives the same signal applied to the other input of center multiplier 65 to provide a product signal that is differentially combined with the signal on line 64 to complement surround combiner 73 to provide the surround complement signal \(S\) on line 74 that is differentially combined with the signal on line 64 in surround combiner 75 to provide the surround signal \(S\) on line 76.

[0037] Consider still another situation wherein the signal on output terminal 29 includes 1 unit of 5 kHz sine wave and the signal on output terminal 25 includes 1 unit of 1 kHz sine wave caused by a left channel signal on line 11 and right channel signal on right input terminal 13. This third situation is indistinguishable from the previous two. For a broad spectral band it has been discovered that under these conditions it is desirable to maintain the relevant relationship of the sum and difference signals with respect to each other. Any manipulation of the sum and difference signals for subtracting these signal quantities from the transmitted LT and RT as the center and surround signals will result in a degradation of the separation from the left channel to the right channel and right channel to left channel if the relationship of the sum and difference signals (with respect to each other) are not carefully controlled according to the invention.

[0038] According to the invention, multipliers 65 and 72 multiply the processed sum and difference signals furnished by the system of FIG. 5A by the following common coefficient signals \(C\) and \(S\) corresponding to coefficients \(A7\) and \(A8\) related as follows:

\[
A7 = (1 - X/[L+R] + [L-R]) \times 1.414 = \bar{C}
\]

\[
A8 = (1 - X/[L+R] + [L-R]) \times 1.414 = \bar{S}
\]

[0039] The sum and difference signals at the output of center complement combiner 67 and surround complement combiner 73 are each added to LT (\(\bar{C} + \bar{S}\)) and are added with and subtracted from RT, (\(\bar{C} - \bar{S}\)) which restores to LT and RT some L and R, respectively. Similarly, some of the resulting signals \(\bar{C}\) and \(\bar{S}\), are removed from the sum and difference signals. If \([L+R]=[L-R]\), the amount of signals added to LT and RT is 0.707L and 0.707R, respectively.

[0040] When the spectrum of LT and RT is purely in-phase monophonic spectral components, no signal is added to LT and RT. The same is true when the spectrum at LT and RT is purely out-of-phase monophonic components. To complete the basic decoding process, the final sum and difference signals are multiplied (post matrix) by 1.414 for basic adaptive matrix decoding with a singular surround channel. Performing the signal processing in each of the three previous illustrations in individual spectral bands recovers the signals originally encoded.

[0041] There has been described apparatus and techniques which overcomes a basic limitation of conventional decoding techniques when attempting to decode two adjacent channel signals simultaneously, and in particular, removed the center C and surround S components from LT and RT without significant degradation of the left/right separation. Furthermore, by processing in accordance with the invention in an adequate number of spectral bands, the invention accurately decodes the encoded signals.

[0042] Referring again to FIG. 2 and coefficients A1, A2, multiplying the decoded surround channel signal S by these coefficients effectively adds directional capability to the monaural surround signal S. It is possible to have a surround channel signal and a left and right channel signal simultaneously.

[0043] Consider encoding a monaural surround and left channel signal of equal amplitude as provided at the LT and RT terminals 24 and 25, respectively. The LT output then contains 1 unit of left channel information, and the RT output contains 1 unit of right channel information. The relative amplitudes of the LT and RT signals differ by 6 dB, and the signal on the LT input terminal 24 is dominant, the coefficient \(A1 = [LT]/[Y]\) is unity, and the coefficient \(A2 = [RT]/[Y]\) is 0.5. The decoded difference signal then has a magnitude of 1 unit of surround channel information, which, when removed from LT and RT, leaves 1 unit of left information in the left channel.

[0044] Referring to FIG. 7, the left and right surround channels are respectively LS = S X [L]/[Y] and RS = S X [R]/[Y].

[0045] Recall that the behavior of the coefficients is such that for all LT dominant conditions, \(A1 = [L]/[Y]\) is unity and \(A2 = [R]/[Y]\) is the ratio of the RT input to LT input signals. Thus, a 6 dB difference in input signal levels at the input terminals of the decoder produces a 6 dB difference in the left and right surround channel signals. The invention achieves this result, not by raising the relative level of the dominant surround channel, but by decreasing the level of the benign channel. This property prevents unnatural increases in surround channel signal level that would otherwise occur if the dominant surround signal level were increased. The resulting surround channel signals (from the preceding example)
are 1 unit of surround channel information in the left surround channel, and 0.5 of surround channel information in the right surround channel. In FIG. 7, combiner 81 cumulative combines the sum of the signals from combiners 57 and 58 in FIG. 6 with the surround signal S on line 76 of FIG. 6 and combiner 82 differentially combines these signals. Multipliers 83 and 84 multiply the output signals of combiners 81 and 82 with coefficient signals A_1 and A_2, respectively, to provide respective product signals differentially combined with the signals from combiners 81 and 82, respectively, by combiners 85 and 86, respectively, to provide the right channel matrix signal on line 87 and the left channel matrix signal on line 88. Multipliers 83 and 84 furnish the left surround output and right surround output signals on lines 91 and 92, respectively. Center combiner 93 combines the left and right surround output signals and the right channel matrix and left channel matrix signals to provide the center surround output signal on line 94.

In the previous illustration, the surround channel signal is decidedly dominant. It is advantageous to have the left surround channel dominant over the left front channel. By performing the operations $1 - L S = R$ and $1 - R S = L$, it is possible to remove from the dominant front channel the signal which appears as either L or R, and thereby improve the separation between the dominant front and rear channels. For the previous example, $1 - L S$ is 0, and $1 - R S$ furnishes 0.5 units of surround channel signal information. Subtracting this quantity from the left front channel signal decreases the left front channel signal to 0.5 units of left front channel information and effectively places the left rear channel in dominance by 6 dB over the left front channel and right surround channel, respectively. The process is symmetrical for a surround dominant and right channel signal combination. The illustration above is the asymptotic condition, (6 dB left to right surround channel separation with 6 dB dominant rear to dominant front channel separation) because any additional LT or RT dominance results in a diminished surround channel signal.

The directional capability of the surround channel signals is a significant improvement. Still another feature of the invention improves spatial realism of the left/right surround channels by the modified circuitry shown in FIG. 8 and by adding, in matrix fashion, sum signal components to the surround channel signal.

With reference to the coefficient A_3, recall that this coefficient has a value of 0 for all sum signal dominant conditions, and is essentially 1 minus the ratio of the sum signal to the difference signal for all difference signal dominant conditions. In the limit, for a pure difference signal condition, there is no sum signal content in the spectrum. It is thus inconsequential to matrix the sum signal with the difference signal then. When the spectrum is sum signal dominant, the output of the multiplier is zero, and again, there is no sum signal component to matrix with the difference signal component. This property is highly advantageous because there is no sum signal matrix with the difference signal when the signals LT and RT are primarily monaural or dialog dominant typically occurring for voices originating from the stream of a video display. As the spectrum becomes difference signal dominant, there is less sum signal content, and it is advantageous to matrix increasing amounts of sum signal spectrum with the increasing dominant difference signal spectrum. In FIG. 8, multipliers 101 and 102 multiply the LT and RT signals respectively by the coefficient signals A_2 and A_1, respectively, to provide product signals differentially combined by combiners 103 and 104, respectively, with the LT and RT signals, respectively, to provide the squeeze left to center and squeeze right to center signals respectively on lines 105 and 106, respectively, through potentiometers 107 and 108, respectively.

Combiner 111 cumulatively combines the product signals provided by multipliers 101 and 102, and combiner 112 differentially combines these signals to provide the indicated output signals.

Combiner 113 combines the center channel signal on line 71 with the squeeze left to center and squeeze right to center on lines 105 and 106, respectively, to provide the center channel output signal on line 114.

The left and right surround channels are out-of-phase. If A_1 equals A_2, the matrix sum signal appears common mode at the output of the left and right surround outputs on lines 91 and 92 when the left and right surround channels are subtracted from each other. This property is an advantageous characteristic of the center surround channel because the signal is predominantly monaural and unique relative to the left and right surround channels. The circuit arrangement maintains the output amplitude of the center surround channel always equal to the output amplitude of the lesser surround channel signal (left or right). The output amplitude of the center surround channel signal is equal in amplitude to the left and right surround channel signals when A_1 equals A_2. In the limit, the output of the center surround channel is zero for an exclusive LT or RT signal input although there is no surround channel signal for either of these conditions.

These considerations make the derived center surround channel according to the invention very suitable for use with 5.1 channel discrete source material. The original 5.1 channels are matrixed as indicated in the block diagram of FIG. 9 to form the transmitted signals LT and RT and may be applied to the decoding circuitry. When the decoder circuitry is used to decode these signals, only the center surround channel and derived bass signals are used as actual output signals from the decoder. The originating left, right, center, left surround and right surround signals are used in place of the output signals from the matrix decoder, augmented by the center surround channel signal and the bass signal outputs of the decoder.

In FIG. 9, left input combiner 115 cumulatively combines the left signal, the left surround signal, 0.707 of the low frequency effects (LFE) signal and 0.707 of the center channel signal to provide the left transmitted signal LT on line 123. Right signal combiner 122 cumulatively combines the right signal, 0.707 of the center channel signal, 0.707 of the LFE signal and differentially combines the sum of these signals with the right surround channel signal to provide the
right transmitted signal RT on line 124.

[0054] Referring to FIG. 10, there is shown a block diagram illustrating the logical arrangement of a modified matrix encoder with split surround channels. Surround input combiner 131 cumulatively combines the left surround and right surround signals LS and RS to provide a sum signal that is applied to multipliers 132 and 133 multiplied by the ratio of the time-averaged magnitudes of the left and right surround signals, respectively, to the sum of these time-averaged magnitudes to provide product signals that are differentially combined by combiner 134. Combiner 135 cumulatively combines .33 of the output signal of combiner 154 with the signal from combiner 131, and combiner 136 differentially combines .33 of the output signal of combiner 134 with the signal from combiner 131. Left output combiner 137 cumulatively combines the left channel signal, the output signal of combiner 135, 0.707 of the LFE signal and 0.707 of the center channel signal to provide the left transmitted signal LT on line 138. Combiner 139 cumulatively combines 0.707, the center channel signal, 0.707 of the LFE signal, and the right channel signal differentially with the output of combiner 136 to provide the right transmitted signal RT on line 140.

[0055] Referring to FIG. 11, there is shown a broadband block decoder according to the invention that includes an assembly of apparatus described above. Corresponding elements in FIG. 11 and the other figures are identified by corresponding reference symbols. The additional components not described above furnish the bass signal on line 141 at the output of combiner 142. Combiner 142 cumulatively combines the decoded left, right and center channel signals with the output of combiner 143 that differentially combines the output of multiplier 144 with the product signal furnished by multiplier 145 that multiplies the latter product signal with the signal indicating that the magnitude of the right channel signal is greater than that of the left channel signal. Multiplier 144 provides a product signal that is the product of the coefficient A1 signal with the output of combining network 112 (see FIG. 8).

[0056] Left output combiner 152 differentially combines the left squeeze signal from the arm of potentiometer 107, cumulatively combines the LT signal, the signal from multipliers 52 and 56, differentially combines the signals from combiner 66 and 63 and center surround output combiner 152 to provide the L signal on output 152. Right output combiner 154 differentially combines the right squeeze signal from the arm of potentiometer 108, cumulatively combines the RT signal, differentially combines the outputs of multiplier 55 and combiners 63 and 66 and cumulatively combines the outputs of multiplier 51, combiner 62, combiner 66 and center surround output combiner 152 to provide the right output signal on line 155.

[0057] Left input surround combiner 161 cumulatively combines the signals from combiner 75 and multiplier 37 to provide a sum signal that is multiplied by the coefficient A1 in multiplier 162 and differentially combined in left output combiner 163 with the output product signal from multiplier 162 to provide a left surround sum signal that is differentially combined in center surround output combiner 152. The output of multiplier 162 is the left surround signal LS on line 164.

[0058] Right input surround combiner 165 differentially combines the signal from multiplier 37 with the signal from combiner 75 to provide a difference signal that is multiplied by the factor A2 in multiplier 166 and differentially combined with the output of multiplier 166 that is the right surround signal RS on line 167 in right surround output combiner 168 to provide a difference signal that cumulatively combined in center surround output combiner 152 that also differentially combines the right surround signal and cumulatively combines the left surround signal on lines 167 and 164, respectively, to furnish the center surround signal as an output on line 168.

[0059] Referring to FIG. 8, for all signal conditions where the time averaged magnitude of LT is equal to the time averaged magnitude of RT, the coefficients A1 and A2 are equal and have a value of unity. Thus, LT X 1 - A2 = 0 and RT X 1 - A1 = 0.

[0060] It follows that there is no squeezable contribution of the left total input signal or right total input signal to the decoded center channel output, and that there is no corresponding reduction in the decoded left or right channel output signals. However, when the time averaged magnitude of LT is greater than the time averaged magnitude of RT, such as occurs with the signal present in LT exclusively, the resulting signals: LT X (1 - A2) = LT and RT X (1 - A1) = 0 are produced. For all LT dominant conditions, the expression RT X (1 - A1) is always 0. The opposite is true for all RT dominant conditions.

[0061] The outputs of the multiplier cells are fed to independently variable or ganged variable resistors, such as 107 and 108. The variable resistors facilitate adjusting the relative amount of exclusive left/right total input signal information for subtraction from the decoded left and right channel output signals and added to the decoded center channel output signal. For example, placing equal amounts of left channel information in the center and left channel loudspeakers produces a virtual loudspeaker midway between the center and left channel loudspeakers, thereby placing the exclusive left channel apparent speaker location closer to the video display device. Varying the relative amount of exclusive left channel information removed from the decoded left output channel and added to the decoded center channel output channel serves to vary the apparent location of the virtual loudspeaker. The same condition exists for the exclusive right channel information. In this way, it is possible to place the virtual loudspeakers closer to the display device, such as a television screen, and thus maintain a reasonable relationship between the visual and acoustic images. This technique is advantageous for home theater applications where the left and right channel loudspeakers are placed typically well to the left and right of an attending display device and may be asymmetrically placed with respect to the display device.
Returning to FIG. 11, the bass channel output signal is the sum of the decoded left channel, right channel and center channel output signals. In addition, the normalized difference signal obtained from the output of the system of FIG. 2 is applied as one input of a multiplier who second input is the coefficient A3. Thus,

\[(LT \times \frac{[R]}{Y} - RT \times \frac{[L]}{Y}) \times X - \frac{[L+R]}{X}\]

produces an output signal only when the time averaged magnitude of the normalized sum signal is less than that of the normalized difference signal. Under these conditions, the spectrum would contain a dominant surround channel signal, and it is desirable to reproduce a bass signal which contains the dominant surround channel signal. The resulting signal obtained under these conditions, however, is further processed prior to adding it to the sum of the decoded left, right and center channel output signals if the spectrum is simultaneously difference signal dominant and left or right channel dominant. When the spectrum is difference signal dominant and left channel dominant, the processed difference signal is taken as shown in FIG. 11 and added directly to the decoded left, right and center channel output signals. When the spectrum is difference signal dominant and right channel dominant, the processed difference signal is inverted and added to the decoded left, right and center channel output signals. This arrangement excludes destructive summation of the processed difference signal with the decoded (dominant) right channel output signal, and permits reproducing the surround dominant bass signal in the presence of the dominant left or right channel output signal.

Referring to FIG. 12, there is shown a modification of the broadband block decoder according to the invention shown in FIG. 11 that includes modifications at the input end that avoids sound image collapse to the center under certain conditions that might occur with the embodiment of FIG. 11. This circuitry includes left and right multipliers 101' and 102' for providing a product signal to potentiometers 107 and 108, respectively, representative of the product of the left transmitted signal LT with coefficient signal A9 and the product of the right transmitted signal RT with the coefficient signal A10, respectively. The circuitry also includes left signal combiner 103' for cumulatively combining the left and right transmitted signals LT and RT and subtractively combining the product signals at the outputs of multipliers 101' and 102' to provide a signal representative of the magnitude of the sum of the left and right transmitted signals to multiplier 35 and representative of the magnitude of the difference therebetween to multiplier 41.

The coefficient signals A9 and A10 are defined as follows:

\[A9 = \frac{(Y - |R|)}{Y}\]

\[A10 = \frac{(Y - |L|)}{Y}\]

An advantage of this arrangement is that the apparent location of the sound image is initially on the center surround axis that extends between the rear and front of the listening area as distinguished from being on the left-right axis at the front of the listening area. A sudden change in the position of the sound image is significantly less distracting to the listener than an initial sound image on the left-right axis.

Referring to FIG. 13, there is shown another embodiment of the invention representing a modification of the system of FIG. 12 constructed and arranged to couple the transmitted signals LT and RT to respective multipliers 101A ... 101N and 102A ... 102N, respectively, through filters 201A ... 201N and 202A ... 202N, respectively, the filters embracing contiguous frequency bands in the audio frequency range to transmit corresponding spectral components of the left and right transmitted signals LT and RT. The other input of each of these multipliers receive a coefficient signal A21 ... A2N and A11 ... A1N, respectively. The output product signals of multipliers 101A ... 101N energize left combiner 111' to cumulatively combine these signals. The output product signals of multipliers 102A ... 102N energize respective inputs of right combiner 112' to cumulatively combine these signals. The output of left signal combiner 111' energizes one input of signal combiner 41' that differentially combines this signal with the output of right combiner 112' to provide an output signal to multiplier 42. This signal also energizes one input of combiner 35' whose other input receives the signal from right combiner 112' to cumulatively combine these signals and furnish them to multiplier 37.

This embodiment of the invention also includes circuitry constructed and arranged to include a signal representative of the left output signal on line 153 forming the left surround signal on line 164 coupled through signal combiner 204 which cumulatively combines the product signal from left surround output multiplier 203 with the product output signal of multiplier 162. Left surround multiplier 203 furnishes a product signal related to the product of the left output signal on line 153 with the (L-R)/X coefficient signal at the other input. Similarly, there is circuitry constructed and arranged to include in the right surround signal on line 167 a component related to the right output signal on line 155.
provided by output right surround multiplier 205 providing a product signal related to the product of the right output signal on line 155 with a \((L-R)/X\) coefficient signal to provide a product signal cumulatively combined with the output of multiplier 166 in combiner 206. Injecting right signal and left signal into right surround and left surround signal enhances the stereo image perceived by a listener.

Referring to FIG. 14, there is shown an alternative arrangement for providing a bass output signal on line 141’. A left input combiner 211 cumulatively combines the left transmitted signal LT and the right transmitted signal RT to provide a left combined signal multiplied by an All coefficient signal to provide a left product signal by multiplier 212.

Right combiner 213 differentially combines the left transmitted signal LT with the right transmitted signal RT to provide a right combined signal that is multiplied by the A12 coefficient signal in first multiplier 214 to provide a first product signal that is multiplied by the A13 coefficient signal in second multiplier 215 to provide a second product signal that is cumulatively combined with the product signal provided by multiplier 212 to provide a sum signal that is multiplied by the A14 coefficient signal in bass output multiplier 216 to provide the bass output signal on line 141’.

The All coefficient signal =

\[
\{10 \times (\frac{[L+R] - X}{L+R})\} + \frac{[L+R]}{X}
\]

The A12 coefficient signal = 1 - A11.

The A13 coefficient signals is a user selection to establish the surround bass volume to provide a voltage gain of 1 to 3 corresponding to a range in loudness of 0 to 10 db, 3 usually preferred. The A14 coefficient =

\[
\sqrt{|LT|^2 + |RT|^2} / X
\]

which is approximately equal to

\[
Y \times \left\{ Y \times \left(\frac{[LT]}{[LT]} - \frac{[RT]}{[RT]} \times 0.5 \right) \right\} / X
\]

The circuitry is constructed and arranged so that there is a vector combination of bass components. If the phase angle between surround and main bass components is less than 90°, these components are cumulatively combined. If the phase angle is greater than 90°, these components are differentially combined.

Referring to FIG. 15, there is shown the logical arrangement of another decoding system according to the invention having advantageous properties in a system that provides left, center and right output signals and a monophonic surround output signal. Center signal combiner 211’ cumulatively combines the left transmitted signal LT with the right transmitted signal RT to provide an output signal to one input of center combiner 223 for differential combining with the left and right output signals, respectively, from left signal combiner 221 and right signal combiner 222, respectively.

The left transmitted signal also energizes one input of left multiplier 212’ energized by the A1 coefficient signal to provide a left product signal that is differentially combined with the left transmitted signal by left output combiner 221 to provide the left output signal.

The right transmitted signal also energizes one input of right multiplier 214’ energized by the A1 coefficient signal to provide a right product signal that is differentially combined with the right transmitted signal by right output combiner 222 to provide the right output signal.

The following table indicates the values of X and Y for the indicated conditions determined by the magnitude detectors that compare the magnitudes of L and R and the magnitudes of L+R and L-R.

\[
X = [L+R] \text{ for } [L+R] > [L-R]
\]
Referring to FIG. 16, there is shown another embodiment of a decoder according to the invention relatively free from complexity that provides a stereo surround signal. This embodiment is a modification of the embodiment of FIG. 16 and includes additional elements to provide the right and left surround output. The output of left output combiner 221 is delivered to one input of left output multiplier 231 whose other input receives the A3 coefficient signal to provide the left output signal that is differentially combined with the output of left output combiner 221 in left input surround combiner 233 to provide a product signal that is cumulatively combined with the output of surround output combiner 224' by right surround output combiner 235 to provide the right surround output signal.

The output of right output combiner 232 energizes one input of right output multiplier 232 energized at its other input by the A3 coefficient signal to provide the right output signal that is differentially combined with the output of right output combiner 222 in right input surround combiner 234 to provide a signal that is differentially combined with the output of right surround output combiner 224' to provide the left surround output.

Referring to FIG. 17, there is shown a block diagram illustrating the logical arrangement of a multiple axis decoding system that uses a number of stereo decoders, each of which may be a conventional stereo decoder or a decoder described above capable of responding to a left transmitted signal Lt and a right transmitted signal Rt typically having a L left signal output, a C center signal output, a R right signal output with the first also having at least an S surround signal output to provide a left output signal, a right output signal, a center output signal, a left surround output signal, a center surround output signal, a right surround output signal, a left side surround output signal and a right side surround output signal.

Input decoder 301 receives the left transmitted signal Lt on line 24 and the right transmitted signal Rt on line 25 and provides on its L output 301L a signal that is applied to the Lt input 302Lt of left decoder 302 and on its right output 301R a signal delivered to the Rt input 303Rt of right decoder 303.

Input decoder 301 provides on the surround S output 301S a signal that is delivered to the Rt input 302Rt of left decoder 302 and to the Lt input 303Lt of right decoder 303 and provides the center output signal on its C output 301C.

Left decoder 302 provides the left output signal on its L output 302L, the left side surround output signal LS on its C output 302C and a signal on its R output 302R that is delivered to the Lt input 304Lt of surround output decoder 304 that provides the left surround output signal Lt on its R output 304L.

Right decoder 303 provides the right output signal on the L output 303L, the right side surround output signal RS on the C output 303C and a signal on the R output 303R delivered to the Rt input 304Rt of surround decoder 304 that provides the right surround output signal Rt on its R output 304R and the center surround output signal Cs on its C output 304C.

Referring to FIG. 18, there is shown a table helpful in understanding the signals from and to the four decoders. It is convenient to identify the input decoder 301 as decoder 1, the left decoder 302 as decoder 2, the right decoder 303 as decoder 3 and the surround decoder 304 as decoder 4. Designating the two inputs of each decoder as Lt in and Rt in and the outputs of each decoder as L out, R out, C out and S out, the table shows the signals at each of these terminals that results in furnishing left, center and right output signals L, C and R, respectively, normally reproduced by left front, center front and right front speakers, left and right side surround output signals LS and RS, respectively, normally reproduced by left and right side speakers, respectively, and left surround, center surround and right surround output signals, respectively, normally reproduced by left, center and right rear speakers, respectively.

Other embodiments are within the claims.
1. Surround sound decoding apparatus comprising,
an input decoder (301) having a Lt input (24) for receiving a left transmitted signal and a Rt input (25) for receiving a right transmitted signal, a L output (301 L) for normally providing a left output signal (L), a C output (301 C) for normally providing a center output signal (C), a S output (301 S) for normally providing a surround output signal (S) and a R output (301 R) for normally providing a right output signal (R),
a left decoder (302) having a Lt input (302Lt) for normally receiving a left transmitted signal coupled to the L output (301 L) of said input decoder, a Rt input (302Rt) for normally receiving a right transmitted signal coupled to the S output (301S) of said input decoder, a L output (302L) for providing a left output signal (L), a C output (302C) for normally providing a center output signal (C) and providing a left side surround output signal (LSs) and a R output (302R),
a right decoder (303) having an Lt input (303Lt) for normally receiving a left transmitted signal coupled to the S output (301 S) of said input decoder and an Rt input (303Rt) for normally receiving a right transmitted signal coupled to the R output (301 R) of said input decoder, a L output (303L) for normally providing a left output signal, for providing a right side surround output signal (RSs) and an R output (303R) for normally providing a right output signal, and

1. Raumklangdekodiervorrichtung mit
einem Eingangsencoder (301) mit einem Lt-Eingang (24) zum Empfangen eines links übertragenen Signals und einem Rt-Eingang (25) zum Empfangen eines rechts übertragenen Signals, einem L-Ausgang (301 L) zum normalen Bereitstellen eines linken Ausgangssignals (L), einem C-Ausgang (301C) zum normalen Bereitstellen eines mittigen Ausgangssignals (C), einem S-Ausgang (301S) zum normalen Bereitstellen eines Raumklangausgangssignals (S) und einem R-Ausgang (301R) zum normalen Bereitstellen eines rechten Ausgangssignals (R), einem linken Dekoder (302) mit einem Lt-Eingang (302Lt) zum normalen Empfangen eines links übertragenen, mit dem L-Ausgang (301L) des Eingangseckoders gekoppelten Signals, einem Rt-Eingang (302Rt) zum normalen Empfangen eines rechts übertragenen, mit dem S-Ausgang (301S) des Eingangseckoders gekoppelten Signals, einem L-Ausgang (302L) zum Bereitstellen eines linken Ausgangssignals (L), einem C-Ausgang (302C) zum normalen Bereitstellen eines mittigen Ausgangssignals (C) und zum Bereitstellen eines linksseitigen Raumklangausgangssignals (LSs) und einem R-Ausgang (302R),
einem rechten Dekoder (303) mit einem Lt-Eingang (303Lt) zum normalen Empfangen eines links übertragenen, mit dem S-Ausgang (301S) des Eingangseckoders gekoppelten Signals und einem Rt-Eingang (303Rt) zum normalen Empfangen eines rechts übertragenen, mit dem R-Ausgang (301R) des Eingangseckoders gekoppelten Signals, einem L-Ausgang (303L) zum normalen Bereitstellen eines linken Ausgangssignals, zum Bereitstellen eines rechten Ausgangssignals (R), einem C-Ausgang (303C) zum normalen Bereitstellen eines mittigen Ausgangssignals zum Bereitstellen eines rechtsseitigen Raumklangausgangssignals (RSs) und einem R-Ausgang (303R) zum normalen Bereitstellen eines rechten Ausgangssignals, und
einem Raumklangdekoder (304) mit einem Lt-Eingang (304Lt) zum normalen Empfangen eines links übertragenen, mit dem R-Ausgang (303R) des linken Dekoders gekoppelten Signals, einem Rt-Eingang (304Rt) zum normalen Empfangen eines rechts übertragenen, mit dem R-Ausgang (303R) des rechten Dekoders gekoppelten Signalss, einem L-Ausgang (304L) zum normalen Bereitstellen eines linken Ausgangssignals zum Bereitstellen eines linken Raumklangausgangssignals (LS), einem C-Ausgang zum normalen Bereitstellen eines mittigen Ausgangssignals zum Bereitstellen eines mittigen Raumklangausgangssignals (Cs) und einem R-Ausgang (304R) zum normalen Bereitstellen eines rechten Ausgangssignals zum Bereitstellen eines rechten Raumklangausgangssignals (Rs).
un décodeur d’entrée (301) disposant d’une entrée Lt (24) pour recevoir un signal transmis gauche et une entrée Rt (25) pour recevoir un signal transmis droit, une sortie L (301L) pour fournir normalement un signal de sortie gauche (L), une sortie C (301C) pour fournir normalement un signal de sortie central (C), une sortie S (301S) pour fournir normalement un signal de sortie (S) à effet spatial et une sortie R (301R) pour fournir normalement un signal de sortie droit (R),

un décodeur gauche (302) disposant d’une entrée Lt (302Lt) destinée à recevoir normalement un signal transmis gauche couplée à la sortie L (301L) dudit décodeur d’entrée, une entrée Rt (302Rt) destinée à recevoir normalement un signal transmis droit couplée à la sortie S (301S) dudit décodeur d’entrée, une sortie L (302L) pour fournir un signal de sortie gauche (L), une sortie C (302C) destinée à fournir normalement un signal de sortie central (C) et pour fournir un signal de sortie (LS) à effet spatial du côté gauche et une sortie R (302R),

un décodeur droit (303) disposant d’une entrée Lt (303Lt) destinée à recevoir normalement un signal transmis gauche couplée à la sortie S (301S) dudit décodeur d’entrée et une entrée Rt (303Rt) destinée à recevoir normalement un signal transmis droit couplée à la sortie R (301R) dudit décodeur d’entrée, une sortie L (303L) destinée à fournir normalement un signal de sortie gauche, pour fournir un signal de sortie droit (R), une sortie C (303C) destinée fournir normalement un signal de sortie central pour fournir un signal de sortie (RS) à effet spatial du côté droit et une sortie R (303R) pour fournir normalement un signal de sortie droit,

un décodeur d’effet spatial (304) disposant d’une entrée Lt (304Lt) destinée à recevoir normalement un signal transmis gauche couplée à la sortie R (302R) dudit décodeur gauche, une entrée Rt (304Rt) destinée à recevoir normalement un signal transmis droit couplée à la sortie R (303R) dudit décodeur droit, une sortie L (304L) destinée à fournir normalement un signal de sortie droit pour fournir un signal de sortie (Ls) à effet spatial gauche, une sortie C (304C) destinée à fournir normalement un signal de sortie central pour fournir un signal de sortie (Cs) à effet spatial central, et une sortie R (304R) destinée à fournir normalement un signal de sortie droit pour fournir un signal de sortie (Rs) à effet spatial droit.
FIG. 3A

L x [R]/Y + R x [L]/Y
from figure 2

A3 = X - [L+R]/X

A5 = X/X - [L+R] + e

To [L+R] level detector

35
36
37
38

no output unless [L-R] > [L+R]

FIG. 3B

.x [R]/Y - R x [L]/Y
from figure 2

A4 = X - [L-R]/X

A5 = X/X - [L-R] + e

To [L-R] level detector

34
41
38
42
43

no output unless [L+R] > [L-R]
FIG. 5A

From figure 3A
L x [R]/Y + R x [L]/Y

No output unless [L] > [R] and [L-R] > [L+R]

FIG. 5B

From figure 3B
L x [R]/Y - R x [L]/Y

No output unless [R] > [L] and [L+R] > [L-R]
FIG. 11
FIG. 15

X = [L+R] for [L+R] > [L-R]
X = [L-R] for [L+R] < [L-R]
X = [L+R] for [L+R] = [L-R]
Y = [L] for [L] > [R]
Y = [R] for [L] < [R]
Y = [L] for [L] = [R]
FIG. 16

X = [L+R] for [L+R] > [L-R]
X = [L-R] for [L+R] < [L-R]
X = [L+R] for [L+R] = [L-R]
Y = [L] for [L] > [R]
Y = [R] for [L] < [R]
Y = [L] for [L] = [R]

A1 = X · [L]/Y
A2 = X · [R]/Y
A3 = [L+R]/X
A3 = [L-R]/X
FIG. 17
<table>
<thead>
<tr>
<th>Decoder #</th>
<th>Lt in</th>
<th>Rt in</th>
<th>L out</th>
<th>R out</th>
<th>C out</th>
<th>S out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lt</td>
<td>Rt</td>
<td>L</td>
<td>R</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>S</td>
<td>L</td>
<td>Ls</td>
<td>LSs</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>Rs</td>
<td>RSs</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>Ls</td>
<td>Rs</td>
<td>Ls</td>
<td>Rs</td>
<td>Cs</td>
<td>S</td>
</tr>
</tbody>
</table>

Decoder 1

Decoder 2

Decoder 3

Decoder 4

FIG. 18