Method for inhibiting the rate of coke formation during the zeolite catalyzed aromatization of hydrocarbons

Methode zur Hemmung der Koksanlage bei die durch Zeolit katalysierte Aromatization von Kohlenwasserstoffen

Méthode pour inhiber la formation de coke pendant l’aromatisation d’hydrocarbures catalysé par des zéolites

Designated Contracting States:
BE DE ES FR GB IT NL

Priority: 12.11.1996 US 745527

Date of publication of application: 13.05.1998 Bulletin 1998/20

Proprietor: ConocoPhillips Company
Bartlesville, OK 74004 (US)

Inventors:
• Drake, Charles Alfred,
 Nowata, Oklahoma 74048 (US)
• An-Hsiang Wu,
 Bartlesville, Oklahoma 74006 (US)

Representative:
Dost, Wolfgang, Dr.rer.nat., Dipl.-Chem. et al
Patent- und Rechtsanwälte
Altenburg . Geissler
Postfach 86 06 20
81633 München (DE)

References cited:
EP-A- 0 323 132
WO-A-91/06616
US-A- 4 985 135

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Background of the Invention

[0001] The invention relates to a process for converting non-aromatic hydrocarbons in the presence of a zeolite material to aromatic hydrocarbons. More particularly, the invention relates to the reduction in the rate of coke formation during the aromatization of hydrocarbons in the presence of a zeolite material to thereby enhance the stability of such zeolite material.

[0002] It is known to catalytically crack non-aromatic gasoline boiling range hydrocarbons to lower olefins (such as ethylene and propylene) and aromatic hydrocarbons (such as benzene, toluene, and xylenes) in the presence of catalysts which contain a zeolite (such as ZSM-5), as is described in an article by N.Y. Chen et al in Industrial & Engineering Chemistry Process Design and Development, Volume 25, 1986, pages 151-155. The reaction product of this catalytic cracking process contains a multitude of hydrocarbons: unconverted C5+ alkanes, lower alkanes (methane, ethane, propane), lower alkenes (ethylene and propylene), C6-C8 aromatic hydrocarbons (benzene, toluene, xylenes, and ethylbenzene), and C9+ aromatic hydrocarbons.

[0003] One concern with the use of zeolite catalysts in the conversion of hydrocarbons in the gasoline boiling range to aromatic hydrocarbons and lower olefins is the excessive production of coke during the conversion reaction. Coke formed during the zeolite catalyzed aromatization of hydrocarbons tends to deposit upon the surface of the zeolite thereby causing deactivation. It is desirable to improve the process for the aromatization of hydrocarbons by minimizing the amount of coke formed during such aromatization reaction process.

[0004] Surface silylated zeolite catalysts and processes for the preparation and use of said catalysts in the production of high octane gasoline are known from US-A-4985135.

Summary of the Invention

[0005] It is an object of this invention to at least partially convert hydrocarbons contained in gasoline to ethylene, propylene and BTX (benzene, toluene, xylene and ethylbenzene) aromatics.

[0006] A further object of this invention is to provide an improved process for the aromatization of hydrocarbons in which the rate of coke formation during such aromatization of hydrocarbons is reduced below the rate of coke formation in prior art aromatization processes.

[0007] A yet further object of this invention is to provide a method for inhibiting the rate of coke formation during the zeolite catalyzed aromatization of hydrocarbons by adding a silylating agent to the hydrocarbon feed of the aromatization process.

[0008] The inventive process provides for the production of lower olefins and aromatics from a hydrocarbon feed stream with a rate of coke formation during the conversion reaction being below that of other similar conversion processes. A feed stream containing gasoline boiling range hydrocarbons undergoes an aromatization step by contacting the feed stream under aromatization reaction conditions with an acid leached zeolite material. Provided in the feed stream contacted with the acid leached zeolite material is a concentration of a silylating agent.

[0009] Other objects and advantages of the invention will become apparent from the detailed description and the appended claims.

Detailed Description of the Invention

[0010] Any catalyst containing a zeolite which is effective in the conversion of non-aromatics to aromatics can be employed in the contacting step of the inventive process. Preferably, the zeolite component of the catalyst has a constraint index (as defined in U.S. Patent 4,097,367) in the range of 0.4 to 12, preferably 2-9. Generally, the molar ratio of SiO2 to Al2O3 in the crystalline framework of the zeolite is at least 5:1 and can range up to infinity. Preferably the molar ratio of SiO2 to Al2O3 in the zeolite framework is 8:1 to 200:1, more preferably 12:1 to 60:1. Preferred zeolites include ZSM-5, ZSM-8, ZSM-11, ZSM-12, ZSM-35, ZSM-38, and mixtures thereof. Some of these zeolites are also known as "MFI" or "Pentasil" zeolites. It is within the scope of this invention to use zeolites which contain boron and/or at least one metal selected from the group consisting of Ga, In, Zn, Cr, Ge and Sn. The presently more preferred zeolite is ZSM-5.

[0011] The catalyst generally also contains an inorganic binder (also called matrix material) preferably selected from the group consisting of alumina, silica, alumina-silica, aluminum phosphate, clays (such as bentonite), and mixtures thereof. Optionally, other metal oxides, such as magnesia, ceria, thoria, titania, zirconia, hafnia, zinc oxide and mixtures thereof, which enhance the thermal stability of the catalyst, may also be present in the catalyst. Preferably, hydrogenation promoters such as Ni, Pt, Pd and other Group VIII noble metals, Ag, Mo, W and the like, should essentially be absent from the catalyst (i.e., the total amount of these metals should be less than 0.1 weight-%).
The preferred silylating agent is selected from the group of tetra alkyl orthosilicates (Si(OR)₄) and poly(alkyl) siloxanes (cycloalkanes), wherein each of these hydrocarbons contains 5-16 carbon atoms per molecule can be used as the feed in the contacting step of this invention. Frequently these feedstocks also contain aromatic hydrocarbons. Non-limiting examples of suitable, available feedstocks include gasolines from catalytic oil cracking (e.g., FCC) processes, pyrolysis gasolines from thermal hydrocarbon (e.g., ethane) cracking processes, naphthas, gas oils, reformates and the like. The preferred feed is a gasoline-boiling range hydrocarbon feedstock suitable for use at as least a gasoline blend stock generally having a boiling range of 30-210°C. Generally, the content of olefins, naphthenes and aromatics (if present).

The hydrocarbon feed stream can be contacted by any suitable manner with the solid zeolite-containing catalyst contained within the reaction zone of the invention. The contacting step can be operated as a batch process step or, preferably, as a continuous process step. In the latter operation, a solid catalyst bed or a moving catalyst bed or a fluidized catalyst bed can be employed. Any of these operational modes have advantages and disadvantages, and those skilled in the art can select the one most suitable for a particular feed and catalyst. No significant amount of hydrogen gas is required to be introduced with the feed into the reaction zone of the contacting step, i.e., no H₂ gas at all or only insignificant trace amounts of H₂ (e.g., less than 1 ppm H₂) which do not significantly affect the processes are to be introduced into these reactors from an external source.

An important aspect of the inventive process is the provision of a concentration of a silylating agent in the hydrocarbon feed stream that is contacted with the zeolite catalyst contained within the aromatization reaction zone of the invention. It has been discovered that the rate of coke formation during the zeolite catalyzed aromatization of a hydrocarbon feedstock is dramatically decreased when a concentration of silylating agent is present in the feedstock. Critical to this invention is for the silylating agent to be present in the hydrocarbon feed when it is contacted with the zeolite catalyst under aromatization reaction conditions. Use of a zeolite that has been previously modified by a silylating agent prior to its use as an aromatization catalyst does not provide the kind of reduction in coke formation rate that results from the novel process of utilizing a concentration of silylating agent within the hydrocarbon feed being contacted with the zeolite catalyst under aromatization reaction conditions.

The silylating agent used in the inventive process can be any suitable silicon containing compound which is effective in reducing the rate of coke formation when incorporated into a hydrocarbon feedstock that is contacted with a zeolite under reaction conditions suitable for the aromatization of hydrocarbons. More particularly, the silylating agent is an organosilicon compound selected from compounds having the following molecular formulas:

\[\text{SiR}_yX_{4-y} \text{ and } (\text{R}_wX_{3-w} \text{Si})_2\text{-Z} \]

wherein:

- \(y = 1 \) to 4;
- \(w = 1 \) to 3;
- \(\text{R} = \text{alkyl, aryl, H, alkoxy, arylalkyl, and where R has from 1 to 10 carbon atoms}; \)
- \(\text{X} = \text{halide}; \) and
- \(\text{Z} = \text{oxygen or NH or substituted amines or amides.} \)

The preferred silylating agent is selected from the group of tetra alkyl orthosilicates (Si(OR)₄) and poly(alkyl) siloxane. The most preferred silylating agents are tetra ethyl orthosilicate and poly(phenyl methyl) siloxane.

The concentration of silylating agent in hydrocarbon feed contacted with the zeolite catalyst within the aromatization reaction zone should be sufficient to reduce the rate of coke formation below the rate of coke formation when there is no silylating agent present in the feed. An effective concentration of silylating agent in the hydrocarbon feed can be such that the amount of silicon present is in the range upwardly to 50 weight percent silicon based on the total weight of hydrocarbon. Preferably, the concentration of silicon can be in the range of from 0.01 weight percent to 80 weight percent and, most preferably, from 0.1 to 10 weight percent.

The contacting step is carried out within an aromatization reaction zone, wherein is contained the zeolite catalyst, and under reaction conditions that suitably promote the aromatization of at least a portion of the hydrocarbons of the hydrocarbon feed. The reaction temperature of the contacting step is more particularly in the range of from 400°C to 800°C, preferably, from 450°C to 750°C and, most preferably, from 500°C to 700°C. The contacting pressure can range from atmospheric pressure upwardly to 500 psia (≈3.45 MPa), preferably, from 20 psia (≈0.14 MPa) to about...
450 psia ($\cong 3.10$ MPa) and, most preferably, from 50 psia ($\cong 0.34$ MPa) to 400 psia ($\cong 2.76$ MPa).

[0020] The flow rate at which the hydrocarbon feed is charged to the aromatization reaction is such as to provide a weight hourly space velocity ("WHSV") in the range of from exceeding 0 hour$^{-1}$ upwardly to 1000 hour$^{-1}$. The term "weight hourly space velocity", as used herein, shall mean the numerical ratio of the rate at which a hydrocarbon feed is charged to a reaction zone in pounds per hour divided by the pounds of catalyst contained in the reaction zone to which the hydrocarbon is charged. The preferred WHSV of the feed to the contacting zone can be in the range of from 0.25 hour$^{-1}$ to 250 hour$^{-1}$ and, most preferably, from 0.5 hour$^{-1}$ to 100 hour$^{-1}$.

[0021] A particularly preferred embodiment of the invention is the use of zeolite catalyst that has been subject to an acid treatment step prior to being contacted with the hydrocarbon feed containing a concentration of silylating agent. Any suitable means can be used to acid treat the zeolite catalyst, but it is preferred for the zeolite to be soaked with an acid solution by any suitable means known in the art for contacting the zeolite with such acid solution. The acid of the acid solution can be any acid that suitably provides for the leaching of alumina from the zeolite crystalline structure. The acid solution is preferably an aqueous hydrochloric acid. The zeolite is soaked in the acid solution for a period of from 0.25 hours to 10 hours. After soaking, the zeolite is washed free of the acid and then dried and, optionally calcined.

[0022] The following examples are presented to further illustrate this invention and should not be construed as unduly limiting the scope of this invention.

Example I

[0023] This example describes the two preparations of zeolite used in the aromatization reaction runs of Example II.

[0024] A commercially available ZSM-5 catalyst (provided by United Catalysts Inc., Louisville, KY, under product designation "T-4480") was treated by acid leaching. To acid leach the catalyst, it was soaked in an aqueous HCl solution, having a concentration of 19 weight percent HCl, for two hours at a constant temperature of about 90 °C. After soaking, the catalyst was separated from the acid solution and thoroughly washed with water and dried. The acid soaked, washed and dried catalyst was calcined at a temperature of about 500 °C for four hours. This acid leached ZSM-5 catalyst was used in the aromatization reaction runs as described hereafter to determine the coking rate related to its use.

[0025] The acid leached ZSM-5 zeolite described above was treated with a silylating agent by using an incipient wetness technique to impregnate it with a 50 weight percent solution of poly(methyl phenyl) siloxane with cyclohexane as the solvent. The impregnated, acid leached ZSM-5 was dried for two hours followed by calcination at 530 °C for six hours. This silylated and calcined acid leached ZSM-5 catalyst was used in an aromatization reaction run as described hereafter to determine the coking rate related to its use.

Example II

[0026] This example illustrates the benefit of reduced coke formation rate that results from the inventive process of contacting a hydrocarbon feedstock containing a concentration of a silylating agent with a zeolite. The two zeolite preparations of Example I were used in three aromatization reaction runs the results of which are summarized in Table I. The acid leached zeolite and silylated, acid leached zeolite are the base case zeolite catalysts with which the results of the inventive process are compared.

[0027] For each of the aromatization test runs, a sample of 5 g of the particular zeolite catalyst preparation mixed with about 5 cc 10-20 mesh alumina was placed into a stainless steel tube reactor (length: about 18 inches ($\cong 45.7$ cm); inner diameter; about 0.5 inch ($\cong 1.27$ cm)). Gasoline from a catalytic cracking unit of a refinery was passed through the reactor at a flow rate of about 14 ml/hour, at a temperature of about 600 °C and atmospheric pressure (about 0 psig ($\cong 1.01 \times 10^5$ Pa)). The formed reaction product exited the reactor tube and passed through several ice-cooled traps. The liquid portion remained in these traps and was weighed, whereas the volume of the gaseous portion which exited the traps was measured in a "wet test meter". Liquid and gaseous product samples were periodically collected and analyzed by means of a gas chromatograph. After the reaction runs were completed, the coking rate was determined by measuring the amount of coke deposited on the surface of the catalyst.

[0028] In the inventive run, the acid leached zeolite catalyst was used. The initial feed charged to the reactor contained 5 volume parts of the gasoline feed for each 2 volume parts of tetra methyl orthosilicate (TEOS) and was fed at a rate of about 12 ml/hr for 2 hours. Subsequently, the gasoline feed without TEOS was charged to the reactor at a rate of 14 ml/hour for 6 hours.
As can be seen from the coking rate data presented in Table I, the use of a silylated acid leached zeolite in the aromatization of hydrocarbons resulted in a lower coking rate than that of the acid leached zeolite. Moreover, the addition of a silylating agent to the hydrocarbon feed contacted with the acid leached zeolite during aromatization provides an even more significant reduction in the coking rate when compared with the use of a silylated, acid leached zeolite.

Reasonable variations, modification and adaptations for various operations and conditions can be made within the scope of the disclosure and the appended claims without departing from the scope of this invention.

Claims

1. A process for the aromatization of hydrocarbons of a feedstream containing gasoline boiling range hydrocarbons, said process comprises:
 - providing a concentration of a silylating agent in said feed stream; and
 - contacting said feed stream having said concentration of said silylating agent with an acid leached zeolite under aromatization reaction conditions.

2. The process of claim 1, wherein the concentration of said silylating agent in said feedstream is effective in reducing the rate of coke formation during the aromatization of the hydrocarbons of said feed stream.

3. A process for reducing the production of coke during the aromatization of hydrocarbons, said method comprises:
 - contacting under aromatization reaction conditions a hydrocarbon feedstream with an acid leached zeolite; and
 - providing in said hydrocarbon feed stream a silylating agent in an amount that is effective in reducing the rate of coke formation during the aromatization of said hydrocarbon feed.

4. The process of any of claims 1 to 3, wherein the boiling range of said hydrocarbons in said feed stream is from 30 to 210 °C.

5. The process of any of the preceding claims, wherein the amount of silylating agent provided in said feedstream is such as to provide a concentration of silicon in the range upwardly to 50 weight percent silicon based on the weight of hydrocarbon in the hydrocarbon feedstream.

6. The process of any of the preceding claims, wherein said silylating agent is an organosilicon compound.

7. The process of claim 6, wherein said organosilicon compound is selected from tetra alkyl orthosilicate compounds and poly(alkyl)siloxane.

8. The process of claim 7, wherein said tetra alkyl orthosilicate compound is tetra ethyl orthosilicate and said poly (alkyl)siloxane is poly(phenyl methyl)siloxane.

9. The process of any of the preceding claims, wherein said contacting step yields a product stream comprising aromatic hydrocarbons.

Patentansprüche

1. Verfahren zur Aromatisierung von Kohlenwasserstoffen eines Zuführstroms, der Kohlenwasserstoffe im Siedebereich...
reich von Benzin enthält, wobei das Verfahren Bereitstellen einer Konzentration eines Silylierungsmittels im Zu-
führstrom und Inkontaktsbringen des Zuführstroms mit der Konzentration des Silylierungsmittels mit einem säure-
eextrahierten Zeolith unter Aromatisierungsreaktionsbedingungen umfasst.

2. Verfahren nach Anspruch 1, wobei die Konzentration des Silylierungsmittels im Zuführstrom beim Reduzieren der Koksbildungsgeschwindigkeit während der Aromatisierung des Kohlenwasserstoßes des Zuführstroms wirksam ist.

3. Verfahren zum Reduzieren der Kokserzeugung während der Aromatisierung von Kohlenwasserstoffen, wobei das Verfahren Inkontaktsbringen unter Aromatisierungsreaktionsbedingungen eines Kohlenwasserstoffzuführstroms mit einem säureextrahierten Zeolith und Bereitstellen eines Silylierungsmittels im Kohlenwasserstoffzuführstrom in einer Menge, die beim Reduzieren der Koksbildungsgeschwindigkeit während der Aromatisierung der Kohlen-
wasserstoffzufuhr wirksam ist, umfasst.

4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Siedebereich der Kohlenwasserstoffe im Zuführstrom 30 bis 210 °C beträgt.

5. Verfahren nach einem der vorangehenden Ansprüche, wobei die Menge an im Zuführstrom bereitgestellten Sily-
lierungsmittel so ist, dass eine Konzentration an Silicium im Bereich von mehr als 50 Gew.-% Silicium, bezogen auf das Gewicht an Kohlenwasserstoff im Kohlenwasserstoffzuführstrom bereitgestellt wird.

6. Verfahren nach einem der vorangehenden Ansprüche, wobei die Silylierungsmittel eine Organosiliciumverbindung ist.

7. Verfahren nach Anspruch 6, wobei die Organosiliciumverbindung ausgewählt ist aus Tetraalkylorthosilicatverbin-
dungen und Poly(alkyl)siloxan.

8. Verfahren nach Anspruch 7, wobei die Tetraalkylorthosilicatverbindung Tetraethylorthosilicat und das Poly(alkyl) siloxan Poly(phenylmethyl)siloxan ist.

9. Verfahren nach einem der vorangehenden Ansprüche, wobei durch den Schritt des Inkontaktsbringens ein aroma-
tische Kohlenwasserstoffe enthaltender Produktstrom erhalten wird.

Revendications

1. Un procédé pour l'aromatisation d'hydrocarbures d'un flux d'alimentation contenant des hydrocarbures d'intervalle d'ébullition d'essence, ce procédé comprenant ;
 - apporter une concentration d'un agent de silylation dans ledit flux d'alimentation ; et
 - la mise en contact dudit flux d'alimentation présentant ladite concentration dudit agent de silylation avec une
 zéolithe lessivée à l'acide sous des conditions de réaction d'aromatisation.

2. Le procédé de la revendication 1, dans lequel la concentration dudit agent de silylation dans ledit flux d'alimentation est efficace pour réduire la vitesse de formation de coke durant l'aromatisation des hydrocarbures dudit flux d'ali-
mentation.

3. Un procédé pour réduire la formation de coke durant l'aromatisation d'hydrocarbures, ce procédé comprenant :
 - la mise en contact sous des conditions de réaction d'aromatisation d'un flux d'alimentation d'hydrocarbures
 avec une zéolithe lessivée à l'acide ; et
 - l'apport dans ledit flux d'alimentation d'hydrocarbures d'un agent de silylation en une quantité qui soit efficace
 pour réduire la vitesse de formation de coke durant l'aromatisation des hydrocarbures dudit flux d'alimentation
d'hydrocarbures.

4. Le procédé de l'une des revendications 1 à 3, dans lequel l'intervalle d'ébullition desdits hydrocarbures dans ledit
 flux d'alimentation va de 30 à 210 °C.

5. Le procédé de l'une des revendications précédentes, dans lequel la quantité d'agent de silylation apporté dans
ledit flux d'alimentation est tel qu'elle procure une concentration de silicium dans l'intervalle allant jusqu'à 50 pour cent en poids sur la base du poids d'hydrocarbures dans le flux d'alimentation.

6. Le procédé de l'une des revendications précédentes, dans lequel ledit agent de silylation est un composé organosiliceux.

7. Le procédé de la revendication 6, dans lequel ledit composé organosiliceux est choisi parmi les composés tétra alkyl orthosilicates et le poly(alkyl) siloxane.

8. Le procédé de la revendication 7, dans lequel ledit composé tétra alkyl orthosilicate est le tétra éthyl orthosilicate et ledit poly(alkyl) siloxane est le poly(phényl méthyl) siloxane.

9. Le procédé de l'une des revendications précédentes, dans lequel ladite étape de mise en contact fournit un flux de produit comprenant des hydrocarbures aromatiques.