EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 09.01.2002 Bulletin 2002/02

(21) Application number: 97914526.5

(22) Date of filing: 14.04.1997

(54) SPLINE WAVEFORM GENERATION

ERZEUGUNG VON SPLINE-WELLENFORMEN

GENERATION DE FORMES D’ONDES SPLINE

(84) Designated Contracting States: DE FR GB IT

(43) Date of publication of application: 15.04.1998 Bulletin 1998/16

(73) Proprietor: Koninklijke Philips Electronics N.V. 5621 BA Eindhoven (NL)

(72) Inventor: VAN DALFSEN, Age, Jochem NL-5656 AA Eindhoven (NL)

(86) International application number: PCT/IB97/00399

(87) International publication number: WO 97/41680 (06.11.1997 Gazette 1997/47)

(51) Int Cl.7: H04N 3/18

(56) References cited:

US-A- 4 354 143
US-A- 4 660 510

US-A- 4 673 847
US-A- 5 430 357

(74) Representative: Kooiman, Josephus Johannes Antonius et al
INTERNATIONAAL OCTROOIBUREAU B.V ., Prof. Holstlaan 6
5656 AA Eindhoven (NL)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The invention relates to a method and a system for generating a one-dimensional spline waveform, the one-dimensional spline waveform being a function of a position on a screen of a display device in one direction, the method comprising the steps of: generating from a position information indicating the position on the screen a position address, the position address indicating a number of a section and a relative position indicating a position within the section for virtually partitioning the screen in sections in the one direction; calculating, in each section, from the relative position and a set of sub-function coefficients a sub-function being a polynomial for obtaining the one-dimensional spline waveform being a chain of consecutive sub-functions in corresponding consecutive sections, and converting, in each section, predetermined values into the sub-function coefficients.

The invention also relates to a method for generating a two-dimensional spline waveform, the two-dimensional spline waveform being dependent on a position in a first and a second direction on a screen of a display device, the display device being scanned in a raster of lines, the first and the second direction being substantially perpendicular.

Such a waveform may be used for correcting deflection errors of a display tube such as convergence errors or east-west distortions. Such a waveform may also be used as a dynamic focusing waveform, or as a waveform influencing the brightness of a displayed picture to compensate for brightness non-uniformity or a display device.

US-A-4,673,847 discloses a color video monitor which includes a digital convergence circuit using a plurality of memories in which vertical convergence correction values are stored, one memory each for red, green, blue and lateral blue convergence values. An interpolation circuit provides additional values between the points stored in memory such that a smooth transition between successive lines of the display is achieved. The correction values stored in the memories are generated by means of a high-order polynominal function.

It is known that a quadratic spline waveform which extends along the whole width or hight of a picture tube screen, and which is a function of a position address, can be generated as a chain of sections of second order sub-functions of the position address. Input coefficients (the predetermined values) are stored in a memory and are referred to as stored values. If n stored values are available, n-2 second order sub-functions can be generated each in one of n-2 sections. The first second order sub-function is fully determined by 3 of the stored values, and a succeeding second order sub-function in a succeeding section is determined by only one stored value as 2 conditions are already fixed by the demand that the resulting quadratic spline waveform must have a value, and a first derivative which are continuous in every point, so also at the boundary of the two consecutive sections. This follows from the definition of a p-th order spline function, viz. a function which is, and whose first thru (p-1)-th derivatives are continuous in every point.

The quadratic spline waveform is generated as follows:

in a first section a first parabola function is calculated at wished positions determined by the position address and by using three of the stored values as parabola coefficients \(f_1(x) = a_0 + a_1 x + a_2 x^2 \). The stored values are adjustable to obtain a shape of the parabola sections fitting the needed correction on the picture tube screen. In every further section a further parabola is calculated at wished positions determined by the position address using only one stored value not yet used, and by calculating the parabola coefficients out of that one stored value and the two equations determined by the fact that at the border of two succeeding sections the value and the first derivative of the parabola functions in these sections have to be equal. So, two of the parabola coefficients of a succeeding section will depend on coefficients of preceding sections. The calculation of the parabola coefficients from the stored values becomes more and more complex every further section. It is a disadvantage of the known way of generating a quadratic spline waveform that in each section a different program of a computer or different hardware circuits are needed for converting the stored values into parabola coefficients. The most complex calculation in the last section determines the complexity, of the program or the hardware circuits. Further, this complex calculation may need too much time to perform the calculations in real time without storing the sub-function coefficients or intermediate results. A further drawback is that the one extra coefficient used in every section determines the second derivative of the sub-function in this section. The generated quadratic spline waveform will deviate from an intended waveform if this coefficient has been determined slightly wrong. The deviation will influence the generated quadratic spline waveform in all further sections.

It is an object of the invention to calculate a majority of the sub-function coefficients from the predetermined values in a same way in each section.

It is a further object of the invention to convert the predetermined values into the sub-function coefficients without storing the sub-function coefficients for every section.

To this end a first aspect of the invention provides a method for generating a one-dimensional spline waveform as defined in claim 1.

A second aspect of the invention provides a method for generating a two-dimensional spline waveform as is defined in claim 7.

A third aspect of the invention provides a system for generating a one-dimensional spline waveform as is defined in claim 9.

A fourth aspect of the invention provides a display apparatus comprising a system for generating a one-
The sub-function coefficients are obtained by multiplying the selected values with a weight function. The weight function is a polynomial of the position address. The polynomial is defined as a linear combination of the position address and its derivatives. The position address is partitioned into a section number indicating the number of a section and a relative position indicating the position within a section. If n stored values or predetermined values are available, n-p p-th order sub-functions can be generated each in one of n-p sections. The first p-th order sub-function is fully determined by p+1 of the predetermined values. A succeeding p-th order sub-function in a succeeding section is determined by only one predetermined value not yet used as p conditions are already fixed by the demand that the resulting p-th order spline correction waveform must have a value, and a first up to and including (p-1)-th derivative which are continuous in every point, so also at the boundary of two consecutive sections. The invention uses the fact that any p-th order sub-function is fully determined by at least p+1 sub-function coefficients. The invention relates to first selecting q>(p+1) selected values from an array containing the n predetermined values and then converting the q selected values into sub-function coefficients determining each of the p-th order sub-functions. The conversion is performed such that a p-th order spline waveform is generated. In a first section, a first set of q consecutive selected values which have indices 1 to q may be selected from the array of n consecutive predetermined values. In a succeeding second section, a second set of q consecutive predetermined values which have indices 2 to q+1 are selected from the n consecutive predetermined values. So, the index of a set of q selected values is incremented by one in a succeeding section.

It is possible that the selection of the set of q selected values from the n predetermined values starts with selecting a subset r < q of the n predetermined values which have indices 1 to r, while the q-r selected values which are selected outside the range of n predetermined values (which is the case for indices smaller than 1 or larger than n) get a value zero. These zero values precede the r selected values in the set of q selected values. In the next section r+1 selected values correspond to predetermined values which have indices 1 to r+1, and only q-r-1 selected values will be zero. A same selection outside the array of n predetermined values is possible at the end of the array. In this way it is possible to use an identical conversion of selected values into sub-function coefficients although not a same amount of predetermined values is used in every section. This will become more clear in the description of the Figures.

In the following, the conversion from the selected values into the sub-function values is described.

The invention is based on the insight that it is possible to imagine the p-th order spline waveform extending over the n-p sections to be composed out of a linear addition of basic p-th order spline functions each multiplied by a weighting factor, whereby each weighting factor is one of the n stored values. The basic p-th order spline functions may extend over a few or all sections. A part of the basic p-th order spline function in one section is called a portion or a basic section function.

A p-th order sub-function which is the p-th order spline waveform in one of the sections is obtained by an addition of portions of the weighted basic p-th order spline functions in this section. Each of the portions of the basic p-th order spline functions is written as a linear combination of portion coefficients (or multiplication factors) corresponding to polynomials of the position address. The polynomials range from zero order up to the p-th order. The portion coefficients determine the shape of the basic p-th order spline functions, and are determined to obtain a same conversion of stored values into sub-function coefficients in every section for a majority or all of the sub-function coefficients (a few examples are given in the Figures 3 and 6).

The conversion from the stored values into the sub-function coefficients is obtained by calculating the sub-function coefficients out of the added portions of the basic p-th order spline functions, wherein each of the portions is multiplied with an associated one of the stored values. In other words, the addition, in one of the sections, of the portions of the basic p-th order spline functions each multiplied with an associated selected value provides the p-th order sub-function in this section. The p-th order sub-function may be written as having a zero order polynomial of the position address multiplied with a first sub-function coefficient, added to a first order polynomial multiplied with a second sub-function coefficient, and so on. As a last term a p-th order polynomial of the position address multiplied with a (p+1)th sub-function coefficient is added. Each of the sub-function coefficients is thus a linear combination of the portion coefficients associated with the same polynomial of each of the added portions of the basic p-th order spline functions multiplied by the associated selected values, whereby the portions occurring in a same section are added. Whilst in the above, reference is made to polynomials having a given order also powers of the position address may be used. So, as the sub-function coefficients are determined by linear combinations of the portion coefficients (or multiplication factors) and the selected values, the sub-function coefficients are obtained by multiplying the selected values with a (p+1)"n spline matrix of multiplication factors. The term spline indicates that the multiplication factors are determined.
As stated earlier, the invention is based on the insight that it is possible to compose the p-th order spline waveform extending over the n-p sections out of a linear addition of basic p-th order spline functions each multiplied by one of the n predetermined values. The fact that the basic functions must be p-th order spline functions causes the succeeding portions of one of the basic functions to have shapes that depend on each other. Thus, portion coefficients of succeeding portions depend on each other. This dependence manifests itself in a specific relation between the multiplication factors of the spline matrix. This relation will become clear from the description of the Figures. Numerous possibilities exists to choose basic functions that are p-th order spline functions. Examples of basic spline functions are shown in Figures 3 and 6.

The spline matrix has to fulfil a further condition to obtain a same conversion in every section for a majority of sub-function coefficients. If the basic p-th order spline functions, as defined above, are copies of each other which each are shifted over one section with respect to each other, the portions which together, in a chain, compose one of the basic p-th order spline functions will repeat in every section as portions of different basic p-th order spline functions. Thus, in every section the same portions of succeeding different basic p-th order spline functions are added, only the weighting factors or stored values differ. This means that the process of converting the stored values into sub-function coefficients is the same in every section: the sub-function coefficients are the same linear combination of different stored values multiplied by chosen portion coefficients. Such a same linear combination gives rise to a fixed matrix of multiplication factors or portion coefficients.

It is advantageous to use a same process in every section for converting the selected stored values into the sub-function coefficients of the p-th order sub-function of the position address to be able to use one algorithm in a suitably programmed computer. If the correction waveform generation is obtained by a circuit which comprises hardware circuits it is advantageous to be able to use the same hardware in every section.

The sub-function coefficients may actually be calculated as claimed in the independent claims 1, 9 and 10. In this case the calculation of a sub-function at positions in a section determined by the position address is performed by multiplying each of the sub-function coefficients with the associated polynomial of the position address and adding the results of the multiplications.

It is also possible to calculate the sub-functions directly from the basic p-th order spline functions which each are multiplied with an associated stored value, as claimed in claim 11. The waveform generation according to the invention needs only a few stored values as the generated correction waveform has an order higher than one.

The waveform generated according to the invention may be used directly, for example, to influence the deflection of a picture tube to correct a deflection error which is dependent on a position on the screen in one direction, for example for correcting an east-west error which only depends on the vertical position on the screen. Such a waveform is referred to as a one-dimensional waveform as this waveform depends on only one variable (a horizontal or a vertical position address). Such a one-dimensional waveform may also be used to correct for a non-uniform brightness on a picture tube, for example caused by a varying glass thickness of the picture tube screen. In this case the one-dimensional waveform may be used to obtain a correction voltage influencing the contrast control. In the same way a non uniformity of a brightness of a LCD display due to a non-uniform back-lighting can be corrected. Further would it be possible to generate a one-dimensional waveform which drives a vertical deflection of a picture tube, or which is a correction waveform for obtaining a position dependent scan velocity modulation.

If a deflection error depends on a position on the screen in both directions (horizontal and vertical), as is often the case if a convergence error has to be corrected, in every line a final correction waveform has to be generated which depends on the horizontal and vertical position on the screen. Such a waveform is referred to as a two-dimensional correction waveform which depends on two variables (the horizontal and vertical position address). It is known to generate such a two dimensional correction waveform according to the expression:

\[Wa(x,y) = a_1 f_1(x,y) + \ldots + a_n f_n(x,y) \]

wherein:
- \(x \) is a horizontal position on the screen,
- \(y \) is a vertical position on the screen,
- \(a_i \) are adjustable stored values, and
- \(f_i(x,y) \) are waveform functions of \(x \) and \(y \), for example: \(x, y, x^2, xy, x^2 y^2 \).

Such a known correction waveform generator has to generate complex waveform functions, such as the cross-terms \(x! y! \), and is very difficult to adjust to obtain a wished quality of correction.

It is a further aspect (see claim 7) of the invention that the two-dimensional correction waveform can be
An advantageous embodiment of the invention is claimed in claim 2. To obtain optimal freedom in selecting the one dimensional p-th order spline waveform, it should be possible to generate any wished p-th order sub-function in every section. This implies that the basic p-th order spline functions have to be chosen such that the portions added in each segment give rise to a zero order component up to and including the p-th order of the position address. Thus, each of the basic p-th order spline functions is composed out of portions which if they would be added thereby using appropriate weighting factors deliver a zero-th, a first, up to and including a p-th order component of the position address. A sub-function comprises all orders of the position address if all sub-function coefficients are not zero. A consequence of this is that in every row of the spline matrix at least one of the multiplication factors is not zero. Of course the portions of each of the basic p-th order spline functions should be selected such that the composition is a p-th order spline function.

An embodiment of the invention as claimed in claim 3, has the advantage that the conversion from selected values into sub-function coefficients is very simple, as a minimal number of selected values is used to calculate the sub-function coefficients. Therefore, each of the basic p-th order spline functions is only non zero during p+1 consecutive sections. Thus, in every section only p+1 portions of p+1 consecutive basic spline functions multiplied with p+1 consecutive selected values, respectively, are added. The sub-function coefficients of the sub-function obtained in this way are a simple linear combination of only p+1 consecutive selected values multiplied with portion coefficients determining the portions of the basic spline function. With p+1 portions it is possible to generate any wished p-th order sub-function in every section.

In a next section, the portions added have the same shape but now are multiplied by p+1 consecutive selected values shifted by one with respect to the p+1 consecutive selected values in the preceding section. Thus, p consecutive selected values from the preceding section are again used in the succeeding section. This is based, as explained earlier, on the fact that at the border of the two sections the value and all derivatives up to and including the (p-1)th derivative of the sub-functions must be equal to obtain a correction waveform which is a p-th order spline function. The above gives rise to a spline matrix which only has p+1 rows and p+1 columns. The conversion can be performed fast as a simple calculating device is used. It is an advantage if the conversion is fast, because then a more complex high order spline waveform can be generated without a need to calculate and store all p+1 sub-function coefficients of each of the n-p p-th order sub-functions, before these p-th order sub-functions can be calculated in real time in each section as a function of the stored sub-function coefficients and the position address. It is further advantageous that the conversion is simple to minimise the demands on the calculating device which then becomes cheap.

An embodiment of the invention as claimed in claim 4, has the advantage that the needed number of stored values is considerably less if quadratic spline functions are used instead of linear functions. On the other hand the implementation of a quadratic spline function is easier than that of a spline having a higher order, such as a cubic spline function, as due to the lower order less multiplications of sub-function coefficients and polynomials of the position address are needed.

The embodiment of the invention according to claim 5 offers a very simple and inexpensive address generator for generating an address representing the spot position on the screen of the display tube.

It is common practice to generate the position dependent waveform as a function of a variable depending on the time, or depending on a line number. The position dependent waveform which is generated in this way depends on the amplitude and the frequency of the horizontal or vertical deflection. For example, suppose, the cathode ray tube display arrangement displays a PAL picture which has a vertical amplitude suitable to scan the screen along the whole height. A position dependent waveform depending on time is generated to obtain a certain correction, for example an east-west correction. This waveform has a suitable shape and extends during a vertical scan period over the whole vertical height of the screen. If then the amplitude of the vertical scan is decreased to scan only a part of the height of the screen, the generated position dependent waveform will have the same suitable shape extending during the same vertical scan period but now across only part of the height of the screen. So, the values of the position dependent waveform occur at a wrong position as now the same correction is performed on a smaller part of the screen. At different vertical frequencies (by example: 50Hz PAL, 60Hz NTSC, and 45Hz free running) a different total number of lines appears (as the line frequency does not change significantly) and thus a different position dependent waveform is generated as the lines at different vertical frequencies appear at different positions on the screen. Thus, the position address should be related to the vertical spot position to obtain a position dependent waveform independent of the frequency and amplitude of the vertical deflection. A same reasoning holds for a position waveform depending on the
horizontal position on the screen.

[0033] The invention provides a position information signal (further referred to as address) generator based on the insight that the spot position on the screen is a linear function in time. The spot position is a linear function in time if the deflection current has a shape for obtaining a linear scan on the picture tube screen. Further, use is made of the fact that a certain deflection current corresponds to a certain position on the picture tube screen. As, in case of a linear scan, the spot position on the screen is a linear function of time, the address generator should generate an address which is a linear function in time. The address generator supplies an address which represents the spot position on the screen if the linear function in time representing the address is coupled to the linear function in time representing the spot position. Thus, the address generator supplies an address which is related to the spot position if two predetermined (wished) addresses occur at two selected levels of the deflection current to which belong two positions on the picture tube screen. The actual value of an address at a certain moment depends on the choice of the predetermined addresses which have to occur at the selected positions on the screen. As the address should be a linear function in time, the address is written as an initial position indication value (further referred to as initial value) added to an incremental value multiplied with the time. The initial value and the incremental value are determined from two measured moments on which the deflection current reaches the two selected values, respectively, and the values of the above mentioned predetermined addresses.

[0034] It is known to obtain a line position indication signal which indicates the vertical spot position on a raster scanned display screen for every line by using an analog to digital converter (further referred to as ADC). The ADC measures a value of the vertical deflection current at a moment a line occurs. The vertical position of the spot and thus of a line on the display screen is determined by the value of the vertical deflection current in this line. So, the ADC supplies a line position indication signal that is a measure of the vertical position of the spot on the screen. If a repetition frequency, or an amplitude of the vertical deflection current changes, still the ADC supplies the actual vertical spot position at the moment a line occurs as the vertical spot position is still determined by the vertical deflection current. The ADC must have a resolution of approximately 13 bits for display systems displaying about 600 lines. A striping would become visible on the screen if a lower resolution would be used. This striping is a brightness modulation caused by different distances between adjacent lines due to inaccuracy in the position of the lines. Such a high resolution ADC is expensive.

[0035] An embodiment of an address generator according to the invention as claimed in claim 6 measures the two moments in time at which the two selected levels of the deflection current occur in a simple way by using two comparators, two latches and a counter. Each of the comparators detects whether a corresponding one of the selected levels is reached. The count value of the counter occurring at this moment is stored in a corresponding one of the latches.

[0036] These and other aspects will be described and elucidated with reference to the accompanying drawings.

[0037] In the drawings:

- Figure 1 shows a basic block diagram of a two-dimensional correction waveform generator according to the invention.
- Figure 2 shows a basic block diagram of a one-dimensional waveform generator according to the invention.
- Figure 3 shows an example of a set of basic functions selected according the invention.
- Figure 4 shows a one-dimensional quadratic spline waveform generated based on the selected basic functions and predetermined values.
- Figure 5 shows a circuit according an embodiment of the invention for calculating sub-functions from the predetermined values.
- Figure 6 shows an other example of a set of basic functions selected according the invention.
- Figure 7 shows an address generator according to an embodiment of the invention.
- Figure 8 shows a waveform of a deflection information being related to a deflection current.
- Figure 9 shows a waveform representing the address.
- Figure 10 shows two graphs representing two vertical deflection currents which have different amplitudes.
- Figure 11 shows a picture to elucidate the relation between the vertical deflection current, the vertical position on the screen and the position indication signal with respect to the two vertical deflection currents shown in Figure 10.
- Figure 12 shows two graphs representing two vertical deflection currents which have a scan period with a different duration, and
- Figure 13 shows a picture to elucidate the relation between the vertical deflection current, the vertical position on the screen and the position indication signal with respect to the vertical deflection currents shown in Figure 12.

[0038] Figure 1 shows a basic block diagram of a two-dimensional correction waveform generator according to the invention. The two-dimensional correction waveform generator comprises a position address determining circuit 4a receiving a position information l for supplying a horizontal position address Ph and a vertical address Pv. The position information l is related to a position on a display screen of a display device, for example the position where an electron
beam hits a screen of a cathode ray tube CRT under influence of a deflection field. The two-dimensional correction waveform generator further comprises a waveform generator 200 receiving the horizontal position address Ph and calculated coefficients gi for generating a digital correction waveform Wd in every line. Every one-dimensional waveform generator 100 receives the vertical position information Pv and stored values aij for generating, in every line, the calculated coefficients gi depending on the vertical position on the screen. In this way, the digital correction waveform Wd is a linear combination of functions of the horizontal position address Ph each multiplied with a corresponding calculated coefficient gi which depends on the vertical position information P. The digital correction waveform Wd thus depends on the horizontal and vertical position on the screen.

The operation of the waveform generator will be elucidated with an example based on an application in a cathode ray tube (further referred to as CRT) projection television. The invention can also be used in other displays. The projection television comprises three CRT’s each emitting one of three primary colours. The CRT’s are positioned under an angle to have their respective images overlapping as much as possible for composing a colour picture on a screen. If, without a pre-distorted geometry, each of the CRT’s emits a same geometrical figure, these figures will not overlap each other on the screen due to the different angles of the CRT’s with respect to the screen. So, the deflection geometry of the CRT’s has to be pre-distorted to obtain overlapping or converted pictures on the screen. Two correction waveforms Wa may be generated to correct the geometry in horizontal and vertical direction of the picture generated by the CRT positioned central and representing green. The images on the CRT’s representing red and blue have to be predistorted by generating appropriate currents through horizontal and vertical convergence coils Lc. Therefore, four two-dimensional correction waveforms Wd have to be generated which are used as reference signals for these currents. For convergence correction of raster scanned CRT’s, usually, all the above mentioned correction waveforms Wd are generated in every line and depend on the horizontal and vertical position on the screen and on a number of adjustable predetermined (stored) values ai.

It was found that the deflection errors occurring in such a projection television can be corrected sufficiently accurate by using seven sets of five stored values ai. From the seven sets of five stored values ai is generated a set of seven coefficients gi in every line. In every line, each of the coefficients gi out of a set of seven is calculated from every set of five stored values ai. This calculation is performed by the one-dimensional waveform generator shown in Figure 2. The one-dimensional waveform generator generates a waveform Cw depending on the vertical position address Pv and a set of five of the stored values aij, which waveform Cw has in every line a value representing one of the seven coefficients gi. In this way the seven coefficients gi are interpolated in every line from the only seven sets of five stored values ai. The waveform generator 200 calculates, every line from seven coefficients gi available in this line the digital correction waveform Wd.

Figure 2 shows a basic block diagram of a one-dimensional waveform generator according to the invention. The one-dimensional waveform generator generates a p-th order spline waveform Cw of a position address Ph. This waveform Cw may be used directly to influence the deflection of a picture tube CRT to correct a deflection error which is dependent on a position on the screen in one direction, for example for correcting an east west error which only depends on the position on the screen. The one-dimensional waveform generator may also generate a waveform Cw which represents the calculated coefficients gi as used in the two-dimensional waveform generator shown in figure 1. The waveform generator 200 of the two-dimensional correction waveform generator also converts coefficients (the calculated coefficients gi) into a waveform (the digital correction waveform Wd) which depends on only one position address (the horizontal position address Ph) and thus may also be configured as the one-dimensional waveform generator according to the invention.

The one-dimensional waveform generator comprises a position address determining circuit 4 receiving a position information P related to a position where an electron beam hits a screen of a cathode ray tube CRT under influence of a deflection field, for supplying the position address P. The position address P may be a horizontal or a vertical position address. The waveform Cw, which is a p-th order spline function, may be imagined to be a polynomial having terms of the position address P ranging from a power zero up to p. An associated coefficient is multiplied with every power of the position address P. The coefficients must be selected such that a spline waveform is obtained with a suitable shape, for example for correcting a deflection distortion or for obtaining a dynamic focusing voltage or a correction signal to improve brightness uniformity of a displayed picture on the picture tube screen. The p-th order spline waveform Cw also may be imagined to be composed out of a linear combination of polynomials instead of powers of the position address P.

The invention uses the insight that a p-th order spline waveform Cw extending along the whole width or hight
of the picture tube screen can be generated as a chain of sections of p-th order sub-functions S_i of the position address P. Figure 4 shows three sub-functions S_1, S_2, S_3 in three section S_1, S_2, S_3. Each of the p-th order sub-functions S_i comprises a linear combination of polynomials with maximum order p. Each polynomial is multiplied by an associated sub-function coefficient b_i. The shape of the p-th order spline waveform C_w is determined by the sub-function coefficients b_i used in each of the sections. Instead of the polynomials also powers of the position address P may be used.

The invention relates to a conversion of a limited amount of predetermined values a_i into the sub-function coefficients b_i in each of the sections S_i. In this case the predetermined values a_i are stored in a memory. The stored values a_i are determined such that a correction waveform C_w is obtained which has a shape optimally fitting the use of the correction waveform. The predetermined values a_i are stored in the memory 1 via a data input D. The optimal stored values a_i may be determined by an operator looking at a picture displayed on the screen. If n stored values a_i are available, $n-p$ p-th order sub-functions S_i can be generated, each in one of $n-p$ sections S_i.

In every section S_i, a conversion circuit 2 (Figure 2) converts the stored values a_i into the sub-function coefficients b_i. A calculation circuit 3 calculates a sub-function S_i from the sub-function coefficients b_i and the position address P.

For clarity the operation of the one-dimensional waveform generator is elucidated by way of example, for a situation in which five predetermined or stored values a_i are used and in which the generated one-dimensional spline waveform C_w is a quadratic spline waveform, so $n=5$ and $p=2$.

The one-dimensional quadratic spline waveform C_w can be defined as a function composed of a chain of sub-functions S_i being parabola sections. The parabola sections S_i must fulfil two conditions to obtain a quadratic spline waveform C_w: they must be continuous and continuously differentiable with respect to the position address P at boundaries of the sections S_i. So, there are no jumps or sharp bends in the quadratic spline waveform C_w. The number of sections S_i is two less than the number of stored values a_i. In the first section S_1 any parabola section S_f can be generated by using three of the stored values a_i. In every further section S_j only one stored value a_i is needed to define a further parabola section S_f, as two constraints are imposed on the further parabola section S_f at the boundary between this further parabola section S_f and a preceding parabola section S_f. So, three sections S_1, S_2, S_3 are obtained by using five stored values a_1, a_2, a_3, a_4, a_5. It is assumed that the width of each of the sections is chosen equal. The invention addresses the conversion, in each of the sections S_i, of the five stored values a_i into parabola coefficients (or sub-function coefficients) b_i. The conversion is the same in every section for the majority or all sub-function coefficients b_i, and does not need to store intermediate results or any other values than the stored values a_i.

Further, a fast and simple conversion is realized to be able to calculate the parabola sections S_i in real time.

The invention is based on the insight that it is possible to compose the quadratic spline waveform C_w out of a linear addition of basic functions F_i which are quadratic spline functions each multiplied by one of the stored values a_i. In this case, five basic functions F_i are defined, an example of a set of basic functions F_i is shown in Figure 3.

The basic functions F_i are composed out of a chain of basic section functions or portions p_i, each portion p_i extending over one section S_i. Figure 3 only shows the portions p_i occurring in the three sections S_1, S_2, S_3. The portions may be defined by polynomials having terms of the position address P ranging from a power zero up to 2. With every power of the position address P an associated function coefficient c_{ij} is multiplied. The function coefficients c_{ij} are selected such that a basic function F_i is obtained which is a quadratic spline function. The portions p_i of the basic functions F_i may also be defined to be composed out of a linear combination of polynomials instead of powers of the position address P.

Each of the parabola sections S_f (which are the sub-functions which compose together the quadratic spline waveform C_w) may be imagined to be obtained by the addition of portions p_i of the weighted basic functions F_i in a section S_i. The conversion from the stored values a_i into the parabola coefficients b_i can now be imagined as the process calculating the parabola coefficients b_i out of the added portions p_i of the basic functions F_i in a section S_i.

In words, the addition of the portions p_i of the basic functions F_i each multiplied with a stored value a_i provides a parabola function (the parabola section S_f), which may be written as an addition of a zero order component of the position address P multiplied with a first parabola coefficient b_1, a first order component of the position address P multiplied with a second parabola coefficient b_2, and a second order component of the position address P multiplied with a third parabola coefficient b_3. Each of the parabola coefficients b_i is a linear combination of the function coefficients c_{ij} weighted by the stored values a_i associated with the added portions p_i of the basic functions F_i. It is not essential to the invention that the parabola function is written as is described above, the parabola function may, by example, also be written in polynomial terms, by example as an addition of a zero order component of the position address P, a first order component, and a multiplication of two different first order components (for example: $b_0+b_1 P+b_2 P(P-1)$).

The basic functions F_i are copies of each other which are shifted over one section S_i (Figure 3). So, the portions p_i which together compose one of the basic functions F_i will repeat in every section S_i as portions p_i of different basic functions F_i. Thus, in every section S_i always the same portions p_i of the different basic functions F_i are added, only the weighting factors or stored values a_i differ. This means that the process of converting the stored
values a_i into parabola coefficients (or sub-function coefficients) b_i is the same in every section S_i: the parabola coefficients b_i are the same linear combination of different stored values a_i in every section S_i. Examples of basic functions which are shifted over one segment are shown in Figure 3 and Figure 6.

Figure 3 shows portions of five basic functions F_{b1} up to F_{b5} in the three available segments $S1,S2,S3$. A relative address d runs from zero to one in each of the sections S_i. A first portion $p1$ of each of the basic functions is defined by (see the portion $p1$ of F_{b4} in segment $S2$):

$$p1(d) = d^2 = d+d.(d-1).$$

A second portion $p2$ of each of the basic functions is defined by (see the portion $p2$ of F_{b3} in segment $S2$):

$$p2(d) = 1-2.d.(d-1).$$

A third portion $p3$ of each of the basic functions is defined by (see the portion $p3$ of F_{b2} in segment $S2$):

$$p3(d) = (d-1)^2 = 1-d+d.(d-1).$$

The portions p_i defined above should be looked at as an advantageous example. In case of quadratic spline basic functions F_{bi} a more generic expression of a portion p_i would be

$$p_i(d) = c1i+c2i.d+c3i.d.(d-1).$$

So, the portion $p1$ is a special choice wherein the function coefficients cij are defined as $c11=0$, $c21=1$ and $c31=1$. The other function coefficients are $c12=1$, $c22=0$, $c32=-2$, $c33=-1$, and $c33=1$. In an other generic expression, powers of the relative position address d are used in a linear combination. In an even more generic expression each of the portions is composed out of a linear combination of polynomials of the relative position address d.

The sub-functions S_{fi}, which are parabola sections in this example, are a linear combination of the portions p_i of the basic functions F_{bi} weighted with an associated stored value a_i. In the first section $S1$ the sub-function S_{f1} can be written as:

$$S_{f1}(d,a_i) = a1.p3(d) + a2.p2(d) + a3.p1(d)$$

This can be rewritten as:

$$S_{f1}(d,a_i) = a3.c11+a2.c12+a1.c13 + (a3.c21+a2.c22+a1.c23).d + (a3.c31 +a2.c32+a1.c33).d.(d-1)$$

$$= b1 + b2.d + b3.d.(d-1)$$

Thus, each of the parabola coefficients b_i is a linear combination of function coefficients c_i weighted by the stored values a_i associated with the added portions p_i of the basic functions F_{bi} in one segment S_i. This conversion can be written as:
After substitution of the values of the function coefficients c_{ij} as determined earlier, this expression becomes:

$$ \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} c_{11}c_{12}c_{13} \\ c_{21}c_{22}c_{23} \\ c_{31}c_{32}c_{33} \end{bmatrix} \cdot \begin{bmatrix} a_3 \\ a_2 \\ a_1 \end{bmatrix} $$

which corresponds to:

$$ S_f1(d, a_i) = a_1 + a_2 + (-a_1 + a_3).d + (a_1 - 2.a_2 + a_3).d.(d-1) $$

So, with the basic functions F_{bi} selected as shown in Figure 3, in the first section S_1, the parabola coefficients b_i are calculated as:

$$ b_1 = a_1 + a_2 $$

$$ b_2 = -a_1 + a_3 $$

$$ b_3 = a_1 - 2.a_2 + a_3 $$

In the second section S_2 the sub-function S_f2 can be written as:

$$ S_f2(d, a_i) = a_2.p_3(d) + a_3.p_2(d) + a_4.p_1(d) $$

or, written differently:

$$ \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} c_{11}c_{12}c_{13} \\ c_{21}c_{22}c_{23} \\ c_{31}c_{32}c_{33} \end{bmatrix} \cdot \begin{bmatrix} a_4 \\ a_3 \\ a_2 \end{bmatrix} $$

[0056] This is the same expression as found in the first section S_1, only the stored values a_i have been linearly shifted. So, if the basic functions F_{bi} are copies of each other which are shifted over one segment a general expression determining the parabola sections S_fi in each section Si is:

$$ S_fi(d, a_i) = c_{11}.as_3 + c_{12}.as_2 + c_{13}.as_1 + (as_3.c_{21} + as_2.c_{22} + as_1.c_{23}).d + $$
wherein:

d is the relative position address used within each of the segments Si, and as1, as2, as3 is a switched subset of the stored values ai.

The sub-function coefficients bij in section Sj can be calculated from the selected values asi according to:

\[
\begin{bmatrix}
 b_{j1} \\
 b_{j2} \\
 b_{j3}
\end{bmatrix} =
\begin{bmatrix}
 c_{11} c_{12} c_{13} \\
 c_{21} c_{22} c_{23} \\
 c_{31} c_{32} c_{33}
\end{bmatrix} \cdot
\begin{bmatrix}
 as_3 \\
 as_2 \\
 as_1
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 & 1 \\
 1 & 0 & -1 \\
 1 & -2 & 1
\end{bmatrix} \cdot
\begin{bmatrix}
 as_3 \\
 as_2 \\
 as_1
\end{bmatrix}
\]

The in this way generated quadratic spline waveform Cw can be imagined to be composed out of a linear addition of the basic functions Fbi each multiplied by one of the stored values ai:

\[
Cw(P) = a_1.Fb_1(P) + a_2.Fb_2(P) + a_3.Fb_3(P) + a_4.Fb_4(P) + a_5.Fb_5(P),
\]

wherein P is an absolute address, ranging from zero at a start of the first section S1 to a maximum value at an end of the third section S3. A quadratic spline correction waveform Cw obtained if a1 =-1, a2=2, a3=-2, a4=-3, and a5=1 is shown in Figure 4.

[0057] In each of the sections Si only three stored values ai contribute in the parabola coefficients bi, as the basic functions Fbi used in this example are only non-zero in three consecutive sections Si.

[0058] The shape of each of the portions pi which are associated with a certain stored value ai can be found as the difference between a first one-dimensional waveform generated with a first set of stored values ai and a second one-dimensional waveform generated with a second set of stored values ai wherein only this certain stored value ai differs with respect to the first set of stored values ai. The same holds for a chain of portions pi associated with a certain coefficient.

[0059] The known quadratic spline waveform generator calculates the sub-functions Sfi by using the expression:

\[
Sfi(p) = b_{i1} + b_{i2}.p + b_{i3}.p^2
\]

wherein, for simplicity, p is introduced to be a relative address running from 0 to 1 in each section Si. In a first section S1, the sub-function coefficients bi are chosen to be the first three stored values ai:

\[
b_{11} = a_1, b_{21} = a_2, b_{31} = a_3
\]

This substituted in the sub-function expression delivers:

\[
Sf1(p) = a_1 + a_2.p + a_3.p^2
\]

the first derivative is:

\[
dSf1(p) = a_2 + 2.a_3.p
\]

In a second section S2, the sub-function Sf2 and its derivative dSf2 are determined by:
As the total waveform is a quadratic spline function, the sub-function coefficients b_i of the sub-function S_{f2} in the second section S_2 are calculated from the expressions:

\[S_{f2}(0) = b_{12} = S_{f1}(1) = a_1 + a_2 + a_3 \]
\[dS_{f2}(0) = b_{22} = dS_{f1}(1) = a_2 + 2a_3 \]

the sub-function coefficient b_i belonging to the p^2 term is chosen to be a new stored value a_i:

\[b_{32} = a_4. \]

In a third section S_3, the sub-function S_{f3} and its derivative dS_{f3} are determined by:

\[S_{f3}(p) = b_{13} + b_{23}p + b_{33}p^2 \]
\[dS_{f3}(p) = b_{23} + 2b_{33}p \]

As the total waveform is a quadratic spline function, the sub-function coefficients b_i of the sub-function S_{f3} in the third section S_3 are calculated from the expressions:

\[S_{f3}(0) = b_{13} = S_{f2}(1) = b_{12} + b_{22} + b_{32} = a_1 + a_2 + a_3 + a_2 + 2a_3 + a_4 \]
\[dS_{f3}(0) = b_{23} = dS_{f2}(1) = b_{22} + 2b_{32} = a_2 + 2a_3 + 2a_4 \]

the sub-function coefficient b_i belonging to the p^2 term is chosen to be a new stored value a_i:

\[b_{33} = a_5. \]

The above shows clearly that the conversion process of calculating the sub-function coefficients b_i from stored values a_i becomes more complex in every further section S_i. This conversion process is thus not the same in every section S_i for a majority or all of the sub-function coefficients b_i. It can also be seen that, in a section S_i, the sub-function coefficient b_i associated to the zero order term of the relative position d depends on sub-function coefficients b_i of all preceding sections S_i.

The parabola sections S_{fi} according to the invention can be calculated in real time from the stored values a_i as the calculation of the parabola coefficients b_i is very simple. Such a simple calculation can be performed fast enough to avoid that first all parabola coefficients b_i have to be calculated and stored before the parabola sections S_{fi} can be calculated in real time.

Figure 6 shows another example of five basic functions F_{b1} up to F_{b5} in the three available segments S_1, S_2, S_3. A first portion p_1 of each of the basic functions is defined by (see the portion p_1 of F_{b3} in segment S_1):

\[p_1(d) = d^2 \]

A second portion p_2 of each of the basic functions F_{bi} is defined by (see the portion p_2 of F_{b2} in segment S_1):
A third portion p_3 of each of the basic functions is defined by (see the portion p_3 of Fb_1 in segment S_1):

\[p_3(d) = 2 \]

Wherein the position address d again is a relative address running from zero to one within each of the segments S_i.

In the same way as described above for the basic functions Fb_i shown in Figure 3, the conversion from the stored values a_i into the sub-function coefficients b_i can be calculated to be,

- **In the first segment S_1:**
 \[b_{11} = 2a_1 + a_2 \]
 \[b_{21} = 2a_2 \]
 \[b_{31} = -a_2 + a_3 \]

- **In the second segment S_2:**
 \[b_{12} = 2a_1 + 2a_2 + a_3 \]
 \[b_{22} = 2a_3 \]
 \[b_{32} = -a_3 + a_4 \]

- **In the third segment S_3:**
 \[b_{13} = 2a_1 + 2a_2 + 2a_3 + a_4 \]
 \[b_{23} = 2a_4 \]
 \[b_{33} = -a_4 + a_5 \]

wherein the sub-functions S_{fi} are written as:

\[S_{fi}(p) = b_{1i} + b_{2i}p + b_{3i}p^2 \]

The first sub-function coefficient b_1 is not the same linear combination in every section S_i, as the basic functions Fb_i are non zero in more than three succeeding sections S_i. The sub-function coefficients b_2 and b_3 are the same in each section, only the associated stored values a_i differ. Again, the sub-function coefficients b_i can be calculated from the stored values a_i in a very simple way.

In this situation, it is possible to use a same conversion in every section S_i by adapting the selection of selected values a_{si} from the stored values a_i as described below. In every section S_i, five selected values a_{si} are selected from the array of five stored values a_i. In the first section S_1 the first two selected values a_{s1}, a_{s2} are selected outside the array of stored values. The selected values a_{si} selected outside the array are chosen to be zero. The next three selected values a_{s3}, a_{s4}, a_{s5} are selected to be the consecutive stored values a_1, a_2, a_3, respectively. In the second section the
indices of the stored values are incremented by one: the four selected values a_2,a_3,a_4,a_5 are selected to be a_1,a_2,a_3,a_4, respectively, and only the first selected value a_1 is selected outside the array and thus will be zero. In the third segment all selected values a_i are selected within the array and thus are equal to the stored values with a same index. So, if a new array is imagined which comprises the consecutive elements $0,0,a_1,a_2,a_3,a_4,a_5$, the selection of the selected values a_i can be imagined to select five consecutive elements starting in the first section S_1 with the first five elements $(0,0,a_1,a_2,a_3)$, and succeeding in the second section S_2 with selecting five consecutive elements with indices one higher $(0,a_1,a_2,a_3,a_4)$, and so on. The process of converting, for a sub-function S_f in section S_i, the stored (or predetermined) values a_i into the sub-function coefficients b_i can be described by the next expression:

$$S_f(p) = 2.a_1+2.a_2+2.a_3+2.a_4+2.a_5.d+(-a_4+a_5).d^2$$

and by selecting the selected values a_i as described before.
In the first section S_1 is obtained:

$$S_{f1}(p) = 2.0+2.0+2.a_1+a_2+2.a_2.d+(-a_2+a_3).d^2$$

In the second section S_2 is obtained:

$$S_{f2}(p) = 2.0+2.a_1+2.a_2+a_3+2.a_3.d+(-a_3+a_4).d^2$$

And in the third section S_3 is obtained:

$$S_{f3}(p) = 2.a_1+2.a_2+2.a_2+a_4+2.a_4.d+(-a_4+a_5).d^2$$

In this way, even if basic functions F_{bi} are used which comprise a number of consecutive portions p_i which are non zero, whereby the number is higher than $p+1$ it is possible to use the same program in a computer or the same hardware to convert the predetermined values a_i into the sub-function coefficients b_i.

[0066] Figure 5 shows a circuit according to an embodiment of the invention for calculating each of the sub-functions S_f from the stored values a_i in each of the sections S_i. This embodiment is based on the example of basic functions F_{bi} as shown in Figure 3.

[0067] A selection circuit 20 receives the five stored values a_i for supplying a selection of three stored values a_i to a conversion circuit 21. In the first section S_1 the selected stored values a_1,a_2,a_3 are a_1,a_2,a_3 respectively. In the second section S_2 the selected stored values a_1,a_2,a_3 are a_2,a_3,a_4 respectively. In the third section S_3 the selected stored values a_1,a_2,a_3 are a_3,a_4,a_5 respectively.

[0068] In this example, the conversion circuit 21 comprises three sub conversion circuits 210,211,212 which each convert the three selected stored values a_i into one of the three parabola or sub-function coefficients b_i. The first sub conversion circuit 210 comprises a first, second and third multiplier 2100,2101,2102 and an adder 2103. The first multiplier 2100 receives the first selected stored value a_1 and an associated function coefficient c_{33} (which is 1 in the above described example), for generating a first output value which is a multiplication of the selected stored value a_1 with the associated function coefficient c_{33} (the function coefficients c_{ij} are determined by the choice of the basic functions F_{bi}). The second multiplier 2101 receives the second selected stored value a_2 and an associated function coefficient c_{32} (which is 1 in the above described example), for generating a second output value which is a multiplication of the selected stored value a_2 with the associated function coefficient c_{32}. The third multiplier 2102 receives the third selected stored value a_3 and an associated function coefficient c_{31} (which is 0 in the above described example), for generating a third output value which is a multiplication of the selected stored value a_3 with the associated function coefficient c_{31}. The adder 2103 receives the first, second and third output values to supply the first sub-function coefficient b_3 which is the sum of the first, second and third output values. In a same way, the second and third sub conversion circuits 211,212 convert the three selected stored values a_1,a_2,a_3 into the second and third sub-function coefficients b_2,b_1. The second and third sub conversion circuits 211,212 have the same topology as the first sub conversion circuit 210, only different function coefficients c_{ij} are used. Instead of multipliers 2100,2101,2102 also bit shifters can be used, as the function coefficients c_{ij} are very simple.

[0069] The calculation circuit 3 comprises: a first multiplier 31 for multiplying the first parabola coefficient b_3 with a function of the position address being $d-1$, a first adder 32 for adding a second parabola coefficient b_2 to the result obtained by the first multiplier 31, a second multiplier 33 for multiplying the result of the first addition with the relative
position address \(d \), and a second adder \(34 \) for adding a third parabola coefficient \(b1 \) to the result of the second multiplier \(33 \). The second adder \(34 \) supplies the parabola sections \(Sfi \) which together compose the quadratic spline waveform \(Cw \). It is possible to use another first order polynomial than the function \(d-1 \) of the relative position address \(d \) to be multiplied with the first parabola coefficient \(b3 \). It is also possible to use one hardware multiplier instead of the first and the second multiplier \(31, 34 \), but then an intermediate result has to be stored. It is further possible to replace a part of or the complete circuit by a suitably programmed computer.

[0070] Although the above used example is limited to the generation of a quadratic spline waveform \(Cw \) from five stored values \(ai \), it is obvious for the man skilled in the art how to generate a higher order spline waveform \(Cw \), or a spline waveform using a different amount of stored values \(ai \). Still the same conversion circuit can be used in every section \(Si \) to convert the selected stored values \(asi \) into the sub-function coefficients \(bi \) if more stored values \(ai \) are available to generate a spline waveform \(Cw \) which has the same order. If a higher order spline waveform \(Cw \) is generated, lets assume a \(p \)-th order, next adaptations have to be made: a) the calculation circuit \(3 \) has to generate sub-functions \(Sfi \) having the \(p \)-th order, b) the conversion circuit \(21 \) has to generate \(p+1 \) sub-function coefficients \(bi \) for determining the \(p \)-th order sub-functions \(Sfi \), c) each of the sub-function coefficients \(bi \) has to be calculated as a linear combination of function coefficients \(cij \) weighted with selected stored values \(asi \). The number of selected stored values \(asi \) depends on the freedom of choice wanted in generating the waveform \(Cw \). This number should be at least \(p+1 \) if full freedom is wanted (all \(p \)-th order sub-functions can have all shapes possible, as long as the resulting waveform \(Cw \) is a \(p \)-th order spline function). The function coefficients \(cij \) depend on a choice of the basic functions, as explained above.

[0071] Figure 1 shows a cathode ray display apparatus with a position indication signal (or address) generator \(4a \) according to the invention, which will be described below.

[0072] Figure 8 and 9 show waveforms elucidating the operation of the address generator \(4 \). Figure 8 shows a waveform of a position information \(I \) being related to a deflection current \(Ih;lv \). The deflection current \(Ih;lv \) may be the vertical \(lv \) or horizontal \(Ih \) deflection current.

[0073] The address generator \(4 \) has to supply an address \(A \) (uptill now referred as \(P \)) which is a linear function in time, as is shown in Figure 9:

\[
A(t) = A0 + dA.t
\]

wherein \(A0 \) is an initial value and \(dA \) an incremental value.
The address \(A \) is related to the spot position if two wished addresses \(A1, A2 \) occur at two selected levels of the deflection current \(Ih;lv \). This holds if the deflection current \(Ih;lv \) has a shape for obtaining a substantially linear scan on the screen of the cathode ray tube CRT. Under this condition the spot position on the screen is a substantially linear function of time.

[0074] Two positions on the screen belong to two selected levels of the deflection current \(Ih;lv \). These two selected levels of the deflection current are represented by two levels \(I1,I2 \) of the position information \(I \), see Figure 8. These two levels \(I1,I2 \) occur at two moments \(T1,T2 \), respectively. The address \(A \) is generated to obtain the two wished addresses \(A1,A2 \) at the two moments \(T1,T2 \), respectively. This will be further elucidated below.

[0075] An address generator \(4 \) according to the invention is shown in Figure 7. This address generator \(4 \) comprises a first and a second comparator \(40,41 \) both receiving a position information \(I \) which is related to the deflection current and reference levels indicating the two levels \(I1,I2 \) for supplying a first and second comparator signal \(Cs1, Cs2 \), respectively, to a first and a second latch \(42,43 \). The position information \(I \) may, for example, be obtained (not shown) in a known manner from the deflection current \(Ih;lv \) via a current transformer, or a resistor through which the deflection current flows, or, if the deflection current \(Ih;lv \) is generated by a power amplifier in a feedback loop, by a reference waveform to which the deflection current \(Ih;lv \) is compared. Instead of the latches \(42,43 \) any other storage circuit may be used.

[0076] A counter \(44 \) receives a reset signal \(R \) occurring during a flyback period, and a clock signal \(C1k \) which is summed during the trace period to obtain a count value \(C \) which is supplied to a further input of both the first and second latch \(42,43 \). A first calculation unit \(45 \) receives an output value \(O1 \) from the first latch \(42 \), and an output value \(O2 \) from the second latch \(43 \), to calculate the initial value \(A0 \) and the incremental value \(dA \). The first calculation unit \(45 \) receives a start information \(S \) indicating that new initial and incremental values \(A0,dA \) have to be calculated. The start informations may be related to the second moment \(T2 \) as after this second moment \(T2 \) all necessary information for the calculation is available. The start information may also be the reset signal \(R \). A second calculation unit \(46 \) calculates the address \(A \) to supply the address \(A \) according to the expression:

\[
A(t) = A0 + dA.t.
\]
The second calculation unit 46 receives the reset signal R indicating that the new initial and incremental values A_0,dA calculated by the first calculation unit 45 have to be used to calculate the address A in a next field or line. It is possible to combine the first and second calculation units 45,46 in one calculation unit. If the address A represents a vertical position of horizontal scanned lines the above expression may be written as:

\[
\begin{align*}
i &= \text{line} \\
A \ (\text{line}) &= A_0 + \sum dA \\
i &= 1
\end{align*}
\]

wherein the address A is calculated to be the initial value A_0 to which is added in every line the incremental value dA. In this case, the second calculation unit 46 only needs to perform additions in every line instead of multiplying the incremental value dA with the time t.

[0077] The first and second comparator signals Cs_1,Cs_2 indicate two moments in time T_1,T_2 (Figure 8) at which two selected levels I_1,I_2 of the position information I occur which correspond to the two selected levels of the deflection current I_h,I_v. A first count value C_1 generated by the counter 44 is stored by the first latch 42 at the moment T_1 that the first comparator signal Cs_1 indicates that the position information I has the first selected value I_1. The second latch stores in the same way a second count value C_2 at the moment that the second comparator 41 indicates that the position information I has the second wished value I_2. The clock signal CLK needs to have a sufficient high repetition rate to be able to obtain sufficiently accurate count values C_1 and C_2. The first calculating unit 45 calculates the initial value A_0 and the incremental value dA from the first and second stored values C_1,C_2 knowing that these values represent the time moments T_1,T_2 at which the wished address values A_1 and A_2 should occur, respectively. The initial value A_0 and the incremental value dA are defined by the formulae:

\[
A_0 = \frac{(T_1.A_2-T_2.A_1)}{(T_1-T_2)}
\]

\[
dA = \frac{(A_1-A_2)}{(T_1-T_2)}
\]

These formulae follow from a simple substitution of the measured moments T_1,T_2 and the wished address values A_1,A_2 occurring at these moments in the linear function representing the address A. So, an address generator is realised for calculating with the second calculation unit 46 an address A from the initial value A_0 and the incremental value dA in such a way that at the moment the first comparator 40 detects a first selected level of the deflection current, the address A is equal to the first wished address value A_1, and that at the moment the second comparator 41 detects a second selected level of the deflection current, the address A is equal to the second wished address value A_2. The selected values of the deflection current I_h,I_v have to be selected such that in every display mode (by example a vertical compress mode to display pictures having a 16:9 aspect ration on a picture tube having a 4:3 aspect ratio) the deflection current I_h,I_v covers these values. Preferably, the selected values of the deflection current I_h,I_v are selected as far away as possible from each other to obtain a maximal accuracy. In case the position address A represents the vertical position on the screen, in the way described above, it is possible to obtain an address A which for every horizontal line represents the vertical spot position on the screen, independent on the deflection amplitude or frequency. This will be further elucidated in the description of Figures 10, 11, 12 and 13.

[0078] The address A in a certain line may be generated by adding the incremental value dA to the address A of a line preceding the certain line. This addition can be performed with a suitably programmed computer or with the second calculating unit 46 adapted to be a hardware adder. Also the counter 44, the first and second latches 42,43 and the first calculating unit 45 may be replaced by a suitably programmed computer.

[0079] An offset value has to be added to the initial value A_0 depending on the field if a picture is composed by interlaced fields.

[0080] The address generator 4 according to the invention also supplies an address A which is independent on the deflection amplitude or frequency if the deflection current has a shape for obtaining only an approximate linear scan on the screen instead of a substantial linear scan. This is based on the insight that the absolute accuracy is not very important as a small difference between the actual spot position and the address A (a few lines if the address A is the vertical address) still produces an acceptable waveform. This difference causes a fixed error which will be compensated for by adjusting the shape of the waveform. In case the waveform generator is used to generate convergence waveforms, the differential accuracy of a vertical address from field to field is also not very critical, the difference should be
below about one eight of a distance between two consecutive lines to obtain a good interlace. The differential accuracy
in case of a vertical address: from line to line) must be very high, otherwise striping occurs. As the address A is a
linear function this only imposes a condition on the number of bits used to represent the address, this number must
be high enough (about 14 bits in the vertical direction) to avoid striping. It is especially this high demand on differential
accuracy that makes the known ADC expensive.

[0081] Figure 10 shows two graphs representing two vertical deflection currents I_{v1}, I_{v2} which have different ampli-
tudes during a scan period with a duration T_s. A first vertical deflection current I_{v1} starts at moment 0 with a start current
value I_{s1}, and ends at the moment T_s with an end current value I_{e1}. A second vertical deflection current I_{v2} starts at
moment 0 with a start current value $I_{s2} \leq I_{s1}$, and ends at moment T_s with an end current value $I_{e2} \leq I_{e1}$. As an example
both vertical deflection currents I_{v1}, I_{v2} are S-corrected sawtooth waveforms which cause an approximately linear
vertical scan on the cathode ray tube screen. The first and second vertical deflection current I_{v1}, I_{v2} reach a first
predetermined value I_1 at moments T_1 and T_1' respectively. The first and second vertical deflection current I_{v1}, I_{v2}
reach a second predetermined value I_2 at moments T_2 and T_2' respectively.

[0082] Figure 11 shows a picture to elucidate the relation between the vertical deflection current I_v, the vertical position
on the screen and the position indication A with respect to the vertical deflection currents I_{v1}, I_{v2} shown in Figure 10.
The dashed line 3 represents a cathode ray tube screen with an aspect ratio of 4:3. The line positioned left from the
screen 3 indicates values of the vertical deflection current I_v. At this line are indicated: the start current I_{s1} and end
current I_{e1} related to the first vertical deflection current I_{v1} as shown in Figure 4; the start current I_{s2} and end current
I_{e2} related to the second vertical deflection current I_{v2}; and the first and second predetermined vertical deflection
values I_1, I_2. With a certain value of the vertical deflection current I_v corresponds in a one to one relation a
certain vertical position on the screen 3. The first line Sc1 indicates the scanned part of the screen 3 belonging to the
first vertical deflection current I_{v1}. The first line Sc1 starts at the vertical position P_{s1} corresponding to the start current
I_{s1} and ends at the vertical position P_{e1} corresponding to the end current I_{e1}. In this example the first vertical deflection
current I_{v1} is chosen to obtain a vertical scan larger than the height of the screen 3. The second line Sc2 indicates the
scanned part of the screen 3 belonging to the second vertical deflection current I_{v2}. The second line Sc2 starts at the
vertical position P_{s2} corresponding to the start current I_{s2} and ends at the vertical position P_{e2} corresponding to the
end current I_{e2}. In this example the second vertical deflection current I_{v2} is chosen to obtain a vertical scan smaller
than the height of the screen 3, for example for displaying a display information with an aspect ratio of 16:9.

[0083] The predetermined vertical deflection current values I_1, I_2 correspond to the vertical positions P_1 and P_2,
respectively. The references T_1, T_1' associated with the vertical position P_1 denote the moments at which the first and
the second vertical deflection current I_{v1}, I_{v2} reaches the first predetermined value I_1, respectively (see also Figure
4). The references T_2, T_2' denote the moments at which the first and the second vertical deflection current I_{v1}, I_{v2}
reaches the second predetermined value I_2, respectively.

[0084] The line positioned right from the screen 3 indicates values of the vertical spot position indication signal or
the vertical address A_v according to the invention in relation to the vertical position on the screen 3.

[0085] The vertical address A_v generated in response to the first vertical deflection current I_{v1} follows from the two
equations:

$$A_v(T_1) = A_0 + dA.T_1 = A_1$$

$$A_v(T_2) = A_0 + dA.T_2 = A_2$$

Due to the first equation it is ensured that at moment T_1 at which the vertical current I_v has the first predetermined
value I_1 a vertical address A_v is generated equal to a chosen value A_1. Due to the second equation it is ensured that
at moment T_2 at which the vertical current I_v has the second predetermined value I_2 a vertical address A_v is generated
equal to a chosen value A_2.

[0086] From this two equations the initial and incremental values A_0, dA can be calculated, the calculated values
substituted in the linear function representing the vertical address A_v gives:

$$A_v(t) = (A_1.T_2-A_2.T_1)/(T_2-T_1) + t.(A_2-A_1)/(T_2-T_1)$$

wherein

$$A_v(T_1) = A_1 \text{ and } A_v(T_2) = A_2.$$
So, the vertical address \(Av(t) \) depends on a choice of the first and second address values \(A_1, A_2 \).

As the first vertical deflection current \(I_{v1} \) has a shape to obtain a linear vertical scan it is sufficient to lock the vertical address \(Av \) on two positions \(P_1, P_2 \) to the screen. All other positions on the screen will then be locked to the vertical address \(Av \) as the vertical address \(Av \) is a linear function in time. This means that the start value \(A_0 = 0 \) corresponds to the vertical position \(P_{s1} \) and that the end value \(A_s \) corresponds to the vertical position \(P_{e1} \).

In the following is elucidated that the vertical address \(Av \) generated as described above supplies the same address values at the same vertical positions if the amplitude of the vertical deflection current is changed.

The vertical address \(Av \) generated in response to the second vertical deflection current \(I_{v2} \) follows from the two equations:

\[
Av(T_1') = A_0 + dA.T_1' = A_1 \\
Av(T_2') = A_0 + dA.T_2' = A_2
\]

Due to the first equation it is ensured that at moment \(T_1' \) at which the vertical current \(I_v \) has the first predetermined value \(I_1 \) a vertical address \(Av \) is generated equal to a chosen value \(A_1 \). Due to the second equation it is ensured that at moment \(T_2' \) at which the vertical current \(I_v \) has the second predetermined value \(I_2 \) a vertical address \(Av \) is generated equal to a chosen value \(A_2 \).

From these two equations the initial and incremental values \(A_0, dA \) can be calculated, the calculated values substituted in the linear function representing the vertical address \(Av \) gives:

\[
Av(t) = \frac{(A_1.T_2'-A_2.T_1')}{(T_2'-T_1')} + t . \frac{(A_2-A_1)}{(T_2'-T_1')}
\]

wherein

\[
Av(T_1') = A_1 \text{ and } Av(T_2') = A_2.
\]

Thus, the vertical address \(Av \) has the same first address value \(A_1 \) at the first vertical position \(P_1 \) at which the vertical current has the first predetermined value \(I_1 \). And, the vertical address \(Av \) has the same second address value \(A_2 \) at the first vertical position \(P_2 \) at which the vertical current has the second predetermined value \(I_2 \). As also the second vertical deflection current \(I_{v2} \) has a shape to obtain a linear vertical scan it is sufficient to lock the vertical address \(Av \) on two positions \(P_1, P_2 \) to the screen. All other positions on the screen will then be locked to the vertical address \(Av \) as the vertical address \(Av \) is a linear function in time. So, the vertical address generator 4 generates a vertical address \(Av \) which has the same values at same positions on the screen 3 although the amplitude of the vertical deflection current \(I_v \) has been changed.

Figure 12 shows a first and a second vertical deflection current \(I_{v1}, I_{v2} \) which have a scan period with a different duration \(T_{s1}, T_{s2} \), respectively. The first and second deflection current \(I_{v1}, I_{v2} \) have the same amplitude. The first deflection current \(I_{v1} \) starts at moment 0 with a start current value \(I_s \), and ends at the moment \(T_{s1} \) with an end current value \(I_e \). The second deflection current \(I_{v2} \) starts at moment 0 with the same start current value \(I_s \), and ends at the moment \(T_{s2} \) with the same end current value \(I_e \). As an example both vertical deflection currents \(I_{v1}, I_{v2} \) are S-corrected sawtooth waveforms which cause an approximate linear vertical scan on the cathode ray tube screen. The first and second vertical deflection current \(I_{v1}, I_{v2} \) reach a first predetermined value \(I_1 \) at moments \(T_1 \) and \(T_1' \) respectively. The first and second vertical deflection current \(I_{v1}, I_{v2} \) reach a second predetermined value \(I_2 \) at moments \(T_2 \) and \(T_2' \) respectively.

Figure 13 shows a picture to elucidate the relation between the vertical deflection current \(I_v \), the vertical position on the screen and the position indication \(A \) with respect to the vertical deflection currents \(I_{v1}, I_{v2} \) shown in Figure 12. The dashed line 3 represents a cathode ray tube screen with an aspect ratio of 4:3. The line positioned left from the screen 3 indicates values of the vertical deflection current \(I_v \). At this line are indicated: the start current \(I_s \), the end current \(I_e \), and the first and second predetermined vertical deflection current values \(I_1, I_2 \). With a certain value of the vertical deflection current \(I_v \) corresponds in a one to one relation a certain vertical position on the screen 3. The first line \(Sc_1 \) indicates the scanned part of the screen 3 belonging to the first vertical deflection current \(I_{v1} \). The second line \(Sc_2 \) indicates the scanned part of the screen 3 belonging to the second vertical deflection current \(I_{v2} \). The first and second lines \(Sc_1, Sc_2 \) both start at the vertical position \(P_{s} \) corresponding to the start current \(I_s \) and both end at the vertical position \(P_{e} \) corresponding to the end current \(I_e \).
The vertical address Av generated in response to the first vertical deflection current $Iv1$ follows from the two equations:

$$Av(T1) = A0 + dA.T1 = A1$$
$$Av(T2) = A0 + dA.T2 = A2$$

Again, the first and second predetermined vertical deflection current values $I1,I2$ occurring at the moments $T1,T2$, respectively are locked to a first and a second predetermined vertical address value $A1,A2$, respectively. All other vertical address values are locked to a vertical position, as the vertical address Av is a linear function of time and the shape of the first vertical deflection current $Iv1$ causes a linear vertical scan.

The vertical address Av generated in response to the second vertical deflection current $Iv2$ follows from the two equations:

$$Av(T1') = A0 + dA.T1' = A1$$
$$Av(T2') = A0 + dA.T2' = A2$$

Now, the first and second predetermined vertical deflection current values $I1,I2$ occurring at the moments $T1',T2'$, respectively are locked to the first and a second predetermined vertical address value $A1,A2$, respectively. Again, all other vertical address values Av are locked to a vertical position, as the vertical address Av is linear function of time and the shape of the second vertical deflection current $Iv1$ causes a linear vertical scan.

The invention can be used to interpolate a vertical or a horizontal correction waveform from a few stored values ai. The invention can also be used to correct for convergence or other deflection distortions (for example north-south pincushion distortion) occurring in so called transposed scanned picture tubes whereby vertical scanned lines succeed each other in the horizontal direction. Any reference signs in the claims cannot be construed as limiting the claim.

Claims

1. A method for generating a one-dimensional spline waveform (Cw), the one-dimensional spline waveform (Cw) being a function of a position on a display screen of a display device (CRT) in one direction, the method comprising the steps of:

 - generating (4) from a position information (I) indicating the position on the display screen a position address (P), the position address (P) being partitioned in a section number indicating a number of a section (Si), and a relative position (d) indicating a position within the section (Si) for virtually partitioning the display screen in sections (Si) in the one direction;
 - calculating (3), in each section (Si), from the relative position (d) and a set of $p+1$ sub-function coefficients $(b1i,\ldots,b(p+1)i)$ a sub-function (Sfi) being a polynomial of degree $p > 1$ for obtaining the one-dimensional spline waveform (Cw) being a chain of $n-p$ consecutive sub-functions ($Sf1,\ldots,Sf(n-p)$) in $n-p$ corresponding consecutive sections ($S(1),\ldots,S(n-p)$), an analog representation of the one-dimensional spline waveform (Cw) being continuous and at least $p-1$ times continuously differentiable;
 - selecting (20), in response to the section number, from an array of n consecutive predetermined values $(a(1),\ldots,a(n))$ a selected subset of q consecutive selected values $(a(i+r),a(i+r+1),\ldots,a(i+r+q-1))$ with r being selected from a range $p+1-q \leq r \leq 0$, wherein $a(i) = 0$ for $i < 1$ and $i > n$; and
 - multiplying (21) in each section (Si), the selected subset $(a(1),\ldots,a(q))$ with a fixed $(p+1)^*q$ spline matrix of multiplication factors (cij) to produce the set of $p+1$ subfunction coefficients $(b1i,\ldots,b(p+1)i)$.

2. A method as claimed in claim 1, characterised in that in every row of the spline matrix at least one of the multiplication factors (cij) is not zero for obtaining sub-functions (Sfi) comprising all powers of the relative position (d) from zero up to and including the p-th power.
3. A method as claimed in claim 1, characterised in that \(q = p + 1 \) for obtaining a \((p+1)^* \) spline matrix and selecting a number of selected values \((a_i)\) being equal to a number of sub-function coefficients \((b_i)\).

4. A method as claimed in claim 1, characterised in that \(p = 2 \) for obtaining the waveform \((C_w)\) being a quadratic spline function.

5. A method as claimed in claim 1, characterised in that the step of generating \((4)\) the position address \((P)\) from the position information \((I)\) being related to a deflection current comprises the steps of:

 - Measuring \((40,42,44)\) a first moment in time \((T_1)\) at which the position information \((I)\) has a first value \((I_1)\),
 - Measuring \((41,43,44)\) a second moment in time \((T_2)\) at which the position information \((I)\) has a second value \((I_2)\), and
 - Calculating \((45)\) the position address \((P)\) as a linear function in time from predetermined position address values \((P_1, P_2)\) at the first and second moments in time \((T_1, T_2)\), whereby the deflection current has a shape for obtaining an approximately linear scan on the screen.

6. A method as claimed in claim 5, characterized in that the step of measuring \((40,42,43)\) the first and second moment in time \((T_1, T_2)\) comprises the steps of:

 - Generating \((44)\) a count value \((C)\) indicative for a period of time,
 - Storing \((42)\) a first count value \((O_1)\) in response to detecting \((40)\) that the position information \((I)\) has the first value \((I_1)\),
 - Storing \((43)\) a second count value \((O_2)\) in response to detecting \((41)\) that the position information \((I)\) has the second value \((I_2)\), and
 - Calculating \((45)\) the position address \((P)\) as a linear function in time from predetermined position address values \((P_1, P_2)\) at the first and second moments in time \((T_1, T_2)\) which are related to the first and second count values \((O_1, O_2)\).

7. A method for generating a two-dimensional spline waveform \((W_d)\), the two-dimensional spline waveform \((W_d)\) being dependent on a position in a first and a second direction on a screen of a display device (CRT), the display device being scanned in a raster of lines, the first and the second direction being substantially perpendicular, the method comprises the steps of:

 - Generating \((100)\) \(m \) one-dimensional spline waveforms \((C_{w_i})\) from \(m \) sets of predetermined values \((a_{1i} , ..., a_{ni})\), the one-dimensional spline waveforms \((C_{w_i})\) being generated according to the method as claimed in claim 1, wherein the position address \((P)\) is a position address \((P_v)\) related to the position on the screen in the first direction, each of the one-dimensional waveforms \((C_{w_i})\) representing output values \((g_i)\) being the values of the one-dimensional waveforms \((C_{w_i})\) at the positions of the lines in the raster, and
 - Generating \((200)\) from the output values \((g_i)\) and a position address \((P_h)\) related to the position on the screen in the second direction the two-dimensional spline waveform \((W_d)\).

8. A method as claimed in claim 7, characterized in that the step of generating \((200)\) the two-dimensional spline waveform \((W_d)\) is performed according to the method of claim 1, wherein the position address \((P)\) is related to the position on the screen in the second direction and the predetermined values \((a_i)\) are the output values \((g_i)\).

9. A system for generating a one-dimensional spline waveform \((C_{w1})\), the one-dimensional spline waveform \((C_{w})\) being a function of a position on a display screen of a display device (CRT) in one direction, the system comprising:

 - Means \((4)\) for generating from a position information \((I)\) indicating the position on the display screen a position address \((P)\), the position address \((P)\) being partitioned in a section number indicating a number \((i)\) of a section \((S_i)\) and a relative position \((d)\) indicating a position within the section \((S_i)\) for virtually partitioning the display screen in sections \((S_i)\) in the one direction,
 - Calculating means \((3)\) for calculating, in each section \((S_i)\), from the relative position \((d)\) and a set of \(p + 1 \) sub-function coefficients \((b_{1i} , ..., b_{(p+1)i})\) a sub-function \((S_{fi})\) being a polynomial of degree \(p \geq 1 \) for obtaining the one-dimensional spline waveform \((C_{w})\) being a chain of \(n-p \) consecutive sub-functions \((S_{f1} , ..., S_{f(n-p)})\) in \(n-p \) corresponding consecutive sections \((S_{i1} , ..., S_{i(n-p)})\), an analog representation of the one-dimensional spline waveform \((C_{w})\) being continuous and at least \(p-1 \) times continuously differentiable,
 - Means \((20)\) for selecting, in response to the section number, from an array of \(n \) consecutive predetermined
values \(a(1),\ldots,a(n)\) a selected subset of \(q \geq p+1\) consecutive selected values \((as(1),\ldots,as(q))\), the selected subset for the section \((Si)\) being \(a(i+r),a(i+r+1),\ldots,a(i+r+q-1)\) with \(r\) being selected from a range \(p+1-q\leq r\leq 0\), wherein \(a(i)=0\) for \(i<1\) and \(i>n\); and means \((21)\) for multiplying in each section \((Si)\), the selected subset \((as(1),\ldots,as(q))\) with a fixed \((p+1)\times q\) spline matrix of multiplication factors \((c_{ij})\) to produce the set of \(p+1\) subfunction coefficients \((b_{1i},\ldots,b_{(p+1)i})\).

10. A display apparatus comprising:

a display device (CRT) with a display screen for displaying display information,
an addressing circuit (7) receiving a horizontal and vertical position signal \((H,V)\) for supplying position determining signals to means determining the position on the display screen \((Lh,Lv)\),
means for generating a one-dimensional digital waveform \((Cw)\) being represented by discrete values, the one-dimensional digital waveform \((Cw)\) being a function of a position on the display screen in one direction, the means for generating the one-dimensional digital waveform \((Cw)\) comprising:

means \((4)\) for generating from a position information \((I)\) indicating the position on the display screen a position address \((P)\), the position address \((P)\) being partitioned in a section number indicating a number of a section \((Si)\) and a relative position \((d)\) indicating a position within the section \((Si)\) for virtually partitioning the display screen in sections \((Si)\) in the one direction, calculating means \((3)\) for calculating, in each section \((Si)\), from the relative position \((d)\) and a set of \(p+1\) sub-function coefficients \((b_{1i},\ldots,b_{(p+1)i})\) a sub-function \((Sfi)\) being a polynomial of degree \(p > 1\) for obtaining the one-dimensional digital waveform \((Cw)\) being a chain of \(n-p\) consecutive sub-functions \((Sf1,\ldots,Sf(n-p))\) in \(n-p\) corresponding consecutive sections \((S(1),\ldots,S(n-p))\),
means \((20)\) for selecting, in response to the section number, from an array of \(n\) consecutive predetermined values \((a(1),\ldots,a(n))\) a selected subset of \(q \geq p+1\) consecutive selected values \((as(1),\ldots,as(q))\), the selected subset for the section \((Si)\) being \(a(i+r),a(i+r+1),\ldots,a(i+r+q-1)\) with \(r\) being selected from a range \(p+1-q\leq r\leq 0\), wherein \(a(i)=0\) for \(i<1\) and \(i>n\); and means \((21)\) for multiplying in each section \((Si)\), the selected subset \((as(1),\ldots,as(q))\) with a fixed \((p+1)\times q\) spline matrix of multiplication factors \((c_{ij})\) to produce the set of \(p+1\) subfunction coefficients \((b_{1i},\ldots,b_{(p+1)i})\),
means \((5)\) for converting the one-dimensional digital waveform \((Cw)\) into an analog one-dimensional spline waveform \((Wa)\), the analog one-dimensional spline waveform \((Wa)\) being continuous and at least \(p-1\) times continuously differentiable, and
means \((Lc;Lh;Lv)\) receiving the analog one-dimensional spline waveform \((Wa)\) for influencing the position on the display screen.

11. A method for generating a \(p\)-th order one-dimensional spline waveform \((Cw1)\), the one-dimensional spline waveform \((Cw1)\) being a function of a position on a display screen of a display device (CRT) in one direction, the method comprising the steps of:

generating \((4)\) from a position information \((I)\) indicating the position in the one direction a position address \((P)\), and
generating \((2,3)\) at positions indicated by the position address \((P)\) the waveform \((Cw1)\) from \(n\) predetermined input values \((ai)\), the correction waveform \((Cw1)\) being a \(p\)-th order spline function composed of \(n-p\) consecutive sub-functions \((Sfi)\) in \(n-p\) respectively corresponding consecutive sections \((Si)\), wherein \(p\) is larger than \(1\), the correction waveform generating step \((2,3)\) comprising the steps of:

generating \(n\) basic functions \((Fbi)\) of the position address \((P)\), the basic functions \((Fbi)\) all having a same shape and being shifted over one section \((Si)\) with respect to each other, and each being a \(p\)-th order spline function, the basic functions \((Fbi)\) being composed as a chain of portions \((pi)\) each extending over one section \((Si)\), multiplying each of the basic functions \((Fbi)\) with an associated one of the stored values \((ai)\), calculating each of the sub-functions \((Sfi)\) by adding, in a same section \((Si)\), the portions \((pi)\) of the basic functions \((Fbi)\) in this section \((Si)\) multiplied with the associated stored values \((ai)\).
lenform (Cw) eine Funktion einer Position auf einem Bildschirm einer Anzeigevorrichtung (CRT) in einer Richtung ist und das Verfahren folgende Schritte umfasst:

Erzeugen (4) einer Positionsadresse (P) aus Positionsinformationen (I), die die Position auf dem Bildschirm angeben, wobei die Positionsadresse (P) in eine Teilbereichsnummer, die die Nummer eines Teilbereichs (Si) angibt, und eine relative Position (d) aufgeteilt ist, die eine Position innerhalb des Teilbereichs (Si) angibt, um den Bildschirm virtuell in einer Richtung in Teilbereiche (Si) aufzuteilen; in jedem Teilbereich (Si) Berechnen (3) einer Teilfunktion (Sfi) aus der relativen Position (d) und einer Gruppe von p+1 Teilfunktionskoeffizienten (b1i,...,b(p+1)i), welche ein Polynom des Grades p > 1 ist, um die eindimensionale Spline-Wellenform (Cw) zu erzielen, die eine Kette von n-p aufeinanderfolgenden Teilfunktionen (Sf1,...,S(n-p)) in n-p entsprechenden aufeinanderfolgenden Teilbereichen (S1,...,S(n-p)) darstellt, wobei die analoge Darstellung der eindimensionalen Spline-Wellenform (Cw) stetig und mindestens p-1 mal stetig differenzierbar ist;

Auswählen (20) in Reaktion auf die Teilbereichsnummer einer ausgewählten Teilgruppe von q aufeinanderfolgenden, ausgewählten Werten (as(1),...as(q)) aus einer Matrix aus n aufeinanderfolgenden, vorher festgelegten Werten (a(1),a(n)), wobei die ausgewählte Teilgruppe für den Teilbereich (Si) a(i+r),a(i+r+1),...,a(i+r+q-1) ist und r aus einem Umfang p+1-q £ r £ 0 ausgewählt wird und wobei a(i) = 0 bei i < 1 und i > n; und In jedem Teilbereich (Si) Multiplizieren (21) der ausgewählten Teilgruppe (as(1),...,as(q)) mit einer feststehenden Spline-Matrix (p+1)*q von Multiplikationsfaktoren (cij), um die Gruppe aus p+1 Teilfunktionskoeffizienten (b1i,...,b(p+1)i) zu erzeugen.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in jeder Zeile der Spline-Matrix mindestens einer der Multiplikationsfaktoren (cij) ungleich Null ist, um Teilfunktionen (Sfi) zu erhalten, die alle Potenzen der relativen Position (d) von Null bis einschließlich der p-ten Potenz enthalten.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass q = p+1 ist, um eine Spline-Matrix (p+1)^(p+1) zu erhalten und eine Anzahl ausgewählter Werte (asi) auszuwählen, die einer Anzahl von Teiltionskoeffizienten (bi) entspricht.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass p = 2 ist, um die Wellenform (Cw) zu erzielen, die eine quadratische Spline-Funktion ist.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt der Erzeugung (4) der Positionsadresse (P) aus den mit einem Ablenkstrom verknüpften Positionsinformationen (I) folgende Schritte umfasst:

Messen (40,42,44) eines ersten Zeitpunkts (T1), zu dem die Positionsinformationen (I) einen ersten Wert (I1) haben;
Messen (41,43,44) eines zweiten Zeitpunkts (T2), zu dem die Positionsinformationen (I) einen zweiten Wert (I2) haben;
Berechnen (45) der Positionsadresse (P) als eine lineare Funktion der Zeit aus vorher festgelegten Positionsadressenwerten (P1,P2) zum ersten und zweiten Zeitpunkt (T1,T2),

wobei der Ablenkstrom eine Form hat, um eine ungefähr lineare Abtastung auf dem Bildschirm zu erhalten.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Schritt der Messens (40,42,43) des ersten und zweiten Zeitpunkts (T1,T2) folgende Schritte umfasst:

Erzeugen (44) eines Zählfuhrters C , der eine Zeitspanne angibt;
Speichern (42) eines ersten Zählfuhrters (O1) in Reaktion auf das Erkennen (40), dass die Positionsinformationen (I) einen ersten Wert (I1) haben;
Speichern (43) eines zweiten Zählfuhrters (O2) in Reaktion auf das Erkennen (41), dass die Positionsinformationen (I) einen zweiten Wert (I2) haben; und
Berechnen (45) der Positionsadresse (P) als eine lineare Funktion der Zeit aus vorher festgelegten Positionsadressenwerten (P1,P2) zum ersten und zweiten Zeitpunkt (T1,T2), die mit dem ersten und dem zweiten Zählfuhrt (O1,O2) in Zusammenhang stehen.

7. Verfahren zum Erzeugen einer zweidimensionalen Spline-Wellenform (Wd), wobei die zweidimensionale Spline-Wellenform (Wd) von einer Position in einer ersten und einer zweiten Richtung auf einem Bildschirm einer Anzei-
gevorrichtung (CRT) abhängt, die Anzeigevorrichtung in einem Zeilenraster abgetastet wird und die erste und die zweite Richtung im Wesentlichen senkrecht zueinander stehen, wobei das Verfahren die folgenden Schritte umfasst:

Erzeugen (100) von m eindimensionalen Spline-Wellenformen (Cwi) aus m Gruppen aus vorher festgelegten Werten (A1i,...,ani), wobei die eindimensionalen Spline-Wellenformen (Cwi) gemäß dem Verfahren nach Anspruch 1 erzeugt werden und wobei die Positionsadresse (P) eine Positionsadresse (Pv) ist, die mit der Position auf dem Bildschirm in der ersten Richtung in Zusammenhang steht, und jede der eindimensionalen Wellenformen (Cwi) Ausgangswerte (gi) darstellt, die Werte der eindimensionalen Wellenformen (Cwi) an den Positionen der Zeilen im Raster sind; und

Erzeugen (200) der zweidimensionalen Spline-Wellenform (Wd) aus den Ausgangswerten (gi) und einer Positionsadresse (Ph), die mit der Position auf dem Bildschirm in der zweiten Richtung in Zusammenhang steht.

8. Verfahren nach Anspruch 7, **dadurch gekennzeichnet, dass** der Schritt der Erzeugung (200) der zweidimensionalen Spline-Wellenform (Wd) gemäß dem Verfahren nach Anspruch 1 durchgeführt wird, wobei die Positionsadresse (P) mit der Position auf dem Bildschirm in der zweiten Richtung in Zusammenhang steht und die vorher festgelegten Werte (ai) die Ausgangswerte (gi) sind.

9. System zum Erzeugen einer eindimensionalen Wellenform (Cw1), wobei die eindimensionale Spline-Wellenform (Cw) eine Funktion einer Position auf einem Bildschirm einer Anzeigevorrichtung (CRT) in einer Richtung ist und das System folgendes umfasst:

Mittel (4) zum Erzeugen der Positionsadresse (P) aus Positionsinformationen (I), die die Position auf dem Bildschirm angeben, wobei die Positionsadresse (P) in eine Teilbereichsnummer, die die Nummer (i) eines Teilbereichs (Si) angibt, und eine relative Position (d) aufgeteilt ist, die eine Position innerhalb des Teilbereichs (Si) angibt, um den Bildschirm virtuell in einer Richtung in Teilbereiche (Si) aufzuteilen; Rechenmittel (3), um in jedem Teilbereich (Si) eine Teilfunktion (Sfi) aus der relativen Position (d) und einer Gruppe von p+1 Teilfunktionsskoeffizienten (b1i,...,b(p+1)i) zu berechnen, welche ein Polynom des Grades p > 1 ist, um die eindimensionale Spline-Wellenform (Cw) zu erhalten, die eine Kette von n-p aufeinanderfolgenden Teilfunktionen (Sf1,...,Sf(n-p)) in n-p entsprechenden aufeinanderfolgenden Teilbereichen (S1,...,S(n-p)) darstellt, wobei die analoge Darstellung der eindimensionalen Spline-Wellenform (Cw) stetig und mindestens p-1 mal stetig differenzierbar ist;

Mittel (20), um in Reaktion auf die Teilbereichsnummer eine ausgewählte Teilgruppe von q ≥ p+1 aufeinanderfolgenden, ausgewählten Werten (as(1),...,as(q)) aus einer Matrix aus n aufeinanderfolgenden, vorher festgelegten Werten (a(1),...,a(n)) auszuwählen, wobei die ausgewählte Teilgruppe für den Teilbereich (Si) a(i+r), a(i+r+1),...,a(i+r+q-1) ist und r aus einem Umfang p + 1 + q ≤ r ≤ 0 ausgewählt wird und wobei a(i) = 0 bei i < 1 und i > n; und

Mittel (21), um in jedem Teilbereich (Si) die ausgewählte Teilgruppe (as(1),...,as(q)) mit einer feststehenden Spline-Matrix (p+1)*q der Multiplikationsfaktoren (cij) zu multiplizieren, um die Gruppe aus p+1 Teilfunktionsskoeffizienten (b1i,...,b(p+1)i) zu erzeugen.

10. Anzeigesystem, das folgendes umfasst:

 eine Anzeigevorrichtung (CRT) mit einem Bildschirm zum Anzeigen von Informationen;
 eine Adressierschaltung (7), die ein horizontales und eine vertikale Positionssignal (H,V) empfängt, um die die Position bestimmenden Signale Mitteln zuzuführen, die die Position auf dem Bildschirm bestimmen (Lh,Lv).
 Mittel zum Erzeugen einer eindimensionalen, digitalen Wellenform (Cw), die durch diskrete Werte dargestellt wird, wobei die eindimensionale, digitale Wellenform (Cw1) folgendes umfasst:

 Mittel (4) zum Erzeugen einer Positionsadresse (P) aus Positionsinformationen (I), die die Position auf dem Bildschirm angeben, wobei die Positionsadresse (P) in eine Teilbereichsnummer, die die Nummer eines Teilbereichs (Si) angibt, und eine relative Position (d) aufgeteilt ist, die eine Position innerhalb des Teilbereichs (Si) angibt, um den Bildschirm virtuell in einer Richtung in Teilbereiche (Si) aufzuteilen;
 Rechenmittel (3), um in jedem Teilbereich (Si) eine Teilfunktion (Sfi) aus der relativen Position (d) und einer Gruppe von p+1 Teilfunktionsskoeffizienten (b1i,...,b(p+1)i) zu berechnen, welche ein Polynom des Grades p > 1 ist, um die eindimensionale Spline-Wellenform (Cw) zu erhalten, die eine Kette von n-p aufeinanderfolgenden Teilfunktionen (Sf1,...,Sf(n-p)) in n-p entsprechenden aufeinanderfolgenden Teilbereichen (S1,...,S(n-p)) zu erzeugen.
Mittel (20), um in Reaktion auf die Teilbereichsnummer eine ausgewählte Teilgruppe von \(q \geq p+1 \) aufeinanderfolgenden, ausgewählten Werten \((a(1), \ldots, a(n))\) aus einer Matrix aus \(n \) aufeinanderfolgenden, vorher festgelegten Werten \((a(1), \ldots, a(n))\) auszuwählen, wobei die ausgewählte Teilgruppe für den Teilbereich \((Si)\) \(a(i+r), a(i+r+1), \ldots, a(i+r+q-1) \) ist und \(r \) aus einem Umfang \(p + 1 \leq r \leq 0 \) ausgewählt wird und wobei \(a(i) = 0 \) bei \(i < 1 \) und \(i > n \); und

Mittel (21), um in jedem Teilbereich \((Si)\) die ausgewählte Teilgruppe \((a(1), \ldots, a(q))\) mit einer feststehenden Spline-Matrix \((b(1), \ldots, b(p+1))\) zu multiplizieren, um die Gruppe aus \(p+1 \) Teilfunktionen zu erzeugen;

Mittel (5) zum Umwandeln der eindimensionalen, digitalen Wellenform \((Cw)\) in eine analoge, eindimensionale Spline-Wellenform \((Wa)\), wobei die analoge, eindimensionale Spline-Wellenform \((Wa)\) stetig und mindestens \(p-1 \) mal stetig differenzierbar ist; und

Mittel \((Lc; Lh; Lv)\), die die analoge, eindimensionale Spline-Wellenform \((Wa)\) empfangen, um die Position auf dem Bildschirm zu beeinflussen.

11. Verfahren zum Erzeugen einer eindimensionalen Spline-Wellenform \((Cw)\) \(p \)-ter Ordnung, wobei die eindimensionale Spline-Wellenform \((Cw)\) eine Funktion einer Position auf dem Bildschirm einer Anzeigevorrichtung (CRT) in einer Richtung ist und das Verfahren folgende Schritte umfasst:

Erzeugen (4) einer Positionsadresse \((P)\) aus Positionsinformationen \((I)\), die die Position in einer Richtung angeben; und

Erzeugen (2,3) der Wellenform \((Cw)\) an durch die Positionsadresse \((P)\) angegebenen Positionen aus \(n \) vorher festgelegten Eingangswerten \((ai)\), wobei die Korrekturwellenform \((Cw)\) eine Spline-Funktion \(p \)-ter Ordnung ist, die aus \(n-p \) aufeinanderfolgenden Teilfunktionen \((Sfi)\) in \(n-p \) entsprechenden aufeinanderfolgenden Teilbereichen \((Si)\) besteht, wobei \(p \) größer als 1 ist und der Schritt (2,3) der Erzeugung der Korrekturwellenform folgende Schritte umfasst:

Erzeugen von \(n \) Grundfunktionen \((Fbi)\) der Positionsadresse \((P)\), wobei die Grundfunktionen \((Fbi)\) alle die gleiche Form haben und um einen Teilbereich \((Si)\) in Bezug aufeinander verschoben sind und jede eine Spline-Funktion \(p \)-ter Ordnung ist, und wobei die Grundfunktionen \((Fbi)\) aus einer Kette von Teilstücken \((pi)\) bestehen, die sich jeweils über einen Teilbereich \((Si)\) erstrecken;

Multiplizieren jeder der Grundfunktionen \((Fbi)\) mit einem zugehörigen gespeicherten Wert \((ai)\);

Berechnen jeder der Teilfunktionen \((Sfi)\) durch Addieren im selben Teilbereich \((Si)\) der Teilstücke \((pi)\) der Grundfunktionen \((Fbi)\) in diesem Teilbereich \((Si)\), multipliziert mit den zugehörigen gespeicherten Werten \((ai)\).

Reverdications

1. Procédé pour produire une forme d'onde spline unidimensionnelle \((Cw)\), la forme d'onde spline unidimensionnelle \((Cw)\) étant une fonction d'une position sur un écran d'affichage d'un dispositif d'affichage (CRT) dans une direction, le procédé comprenant les étapes suivantes :
(p+1)*q fixe de facteurs de multiplication (c_{ij}) pour produire le jeu de p+1 coefficients de sous-fonction (b_{1i}, ..., b_{(p+1)i}).

2. Procédé suivant la revendication 1, **caractérisé en ce que** dans chaque rangée de la matrice spline au moins un des facteurs de multiplication (c_{ij}) n'est pas zéro pour obtenir des sous-fonctions (S_{fi}) comprenant toutes les puissances de la position relative (d) de zéro à et la première puissance comprise.

3. Procédé suivant la revendication 1, **caractérisé en ce que** q=p+1 pour obtenir une matrice spline (p+1)*(p+1) et sélectionner un certain nombre de valeurs sélectionnées (a_{si}) étant égal à un certain nombre de coefficients de sous-fonction (b_{i}).

4. Procédé suivant la revendication 1, **caractérisé en ce que** p=2 pour obtenir la forme d'onde (C_{w}) étant une fonction spline quadratique.

5. Procédé suivant la revendication 1, **caractérisé en ce que** l'étape de production (4) de l'adresse de position (P) à partir de l'information de position (I) étant liée à un courant de déviation comprend les étapes suivantes:

 mesure (40, 42, 44) d'un premier moment dans le temps (T_1) auquel l'information de position (I) a une première valeur (I_1);
 mesure (41, 43, 44) d'un deuxième moment dans le temps (T_2) auquel l'information de position (I) a une deuxième valeur (I_2), et
 calcul (45) de l'adresse de position (P) sous la forme d'une fonction linéaire dans le temps à partir de valeurs d'adresse de position précédemment (P_1, P_2) aux premier et deuxième moments dans le temps (T_1, T_2), de telle sorte que le courant de déviation présente une forme pour obtenir un balayage sensiblement linéaire sur l'écran.

6. Procédé suivant la revendication 5, **caractérisé en ce que** l'étape de mesure (40, 42, 43) des premier et deuxième moments dans le temps (T_1, T_2) comprend les étapes suivantes :

 production (44) d'une valeur de comptage (C) indicative d'une période de temps ;
 stockage (42) d'une première valeur de comptage (O_1) en réaction à la détection (40) que l'information de position (I) a la première valeur (I_1);
 stockage (43) d'une deuxième valeur de comptage (O_2) en réaction à la détection (41) que l'information de position (I) a la deuxième valeur (I_2), et
 calcul (45) de l'adresse de position (P) sous la forme d'une fonction linéaire dans le temps à partir de valeurs d'adresse de position précédemment (P_1, P_2) aux premier et deuxième moments dans le temps (T_1, T_2) qui sont liés aux première et deuxième valeurs de comptage (O_1, O_2).

7. Procédé pour produire une forme d'onde spline bidimensionnelle (W_{d}), la forme d'onde spline bidimensionnelle (W_{d}) dépendant d'une position dans une première et une deuxième directions sur un écran d'un dispositif d'affichage (CRT), le dispositif d'affichage étant balayé dans une trame de lignes, la première et la deuxième directions étant pratiquement perpendicaulaires, le procédé comprenant les étapes suivantes :

 production (100) de m formes d'onde spline unidimensionnelles (C_{wi}) à partir de m jeux de valeurs précédéterminées (a_{1i}, ..., a_{ni}), les formes d'onde spline unidimensionnelles (C_{wi}) étant produites suivant le procédé suivant la revendication 1, dans lequel l'adresse de position (P) est une adresse de position (P_v) liée à la position sur l'écran dans la première direction, chacune des formes d'onde spline unidimensionnelles (C_{wi}) représentant des valeurs de sortie (g_{i}) étant les valeurs des formes d'onde spline unidimensionnelles (C_{wi}) aux positions des lignes dans la trame, et
 production (200) à partir des valeurs de sortie (g_{i}) et d'une adresse de position (P_h) liée à la position sur l'écran dans la deuxième direction de la forme d'onde spline bidimensionnelle (W_{d}).

8. Procédé suivant la revendication 7, **caractérisé en ce que** l'étape de production (200) de la forme d'onde spline bidimensionnelle (W_{d}) est effectuée suivant le procédé de la revendication 1, dans lequel l'adresse de position (P) est liée à la position sur l'écran dans la deuxième direction et les valeurs précédéterminées (a_{i}) sont les valeurs de sortie (g_{i}).

9. Système pour produire une forme d'onde spline unidimensionnelle (C_{w1}), la forme d'onde spline unidimensionnelle...
(Cw) étant une fonction d’une position sur un écran d’affichage d’un dispositif d’affichage (CRT) dans une direction, le système comprenant :

des moyens (4) de production à partir d’une information de position (I) indiquant la position sur l’écran d’affichage d’une adresse de position (P), l’adresse de position (P) étant divisée en un numéro de section indiquant un numéro (i) d’une section (Si) et une position relative (d) indiquant une position dans la section (Si) pour diviser visuellement l’écran d’affichage en sections (Si) dans la une direction :

des moyens de calcul (3) pour calculer, dans chaque section (Si), à partir de la position relative (d) et d’un jeu de p+1 coefficients de sous-fonction (b1i, ..., b(p+1)i) une sous-fonction (Sfi) étant un polynôme d’un degré p > 1 pour obtenir la forme d’onde spline unidimensionnelle (Cw) étant un enchaînement de n-p sous-fonctions consécutives (Sf1, ..., Sn-p) dans n-p sections consécutives correspondantes (S1, ..., S(n-p)), une représentation analogique de la forme d’onde spline unidimensionnelle (Cw) étant continue et pouvant être différenciée de manière continue au moins p-1 fois :

des moyens (20) de sélection, en réaction au numéro de section, à partir d’un groupe de n valeurs prédéterminées consécutives (a(1), ..., a(n)) d’un sous jeu sélectionné de q ≥ p+1 valeurs sélectionnées consécutives (as(1), ..., as(q)), le sous jeu sélectionné pour la section (Si) étant a(i+r), a(i+r+1), ..., a(i+r+q-1), r étant sélectionné dans un intervalle p+1-q ≤ r ≤ 0, dans lequel a(i)=0 pour i<1 et i>n, et des moyens (21) de multiplication dans chaque section (Si) du sous jeu sélectionné (as(1), ..., as(q)) par une matrice spline (p+1)*q fixe de facteurs de multiplication (cij) pour produire le jeu de p+1 coefficients de sous-fonction (b1i, ..., b(p+1)i).

10. Appareil d’affichage comprenant :

un dispositif d’affichage (CRT) pourvu d’un écran d’affichage pour afficher une information d’affichage ;

un circuit d’adressage (7) recevant un signal de position horizontale et verticale (H, V) pour fournir des signaux de détermination de position à des moyens déterminant la position sur l’écran d’affichage (Lh, Lv) ;

des moyens de production d’une forme d’onde numérique unidimensionnelle (Cw) étant représentée par des valeurs discrètes, la forme d’onde numérique unidimensionnelle (Cw) étant une fonction d’une position sur l’écran d’affichage dans une direction, les moyens de production de la forme d’onde numérique unidimensionnelle (Cw1) comprenant :

des moyens (4) de production à partir d’une information de position (I) indiquant la position sur l’écran d’affichage d’une adresse de position (P), l’adresse de position (P) étant divisée en un numéro de section indiquant un numéro d’une section (Si) et une position relative (d) indiquant une position dans la section (Si) pour diviser visuellement l’écran d’affichage en sections (Si) dans la une direction :

des moyens de calcul (3) pour calculer, dans chaque section (Si), à partir de la position relative (d) et d’un jeu de p+1 coefficients de sous-fonction (b1i, ..., b(p+1)i) une sous-fonction (Sfi) étant un polynôme d’un degré p > 1 pour obtenir la forme d’onde numérique unidimensionnelle (Cw) étant un enchaînement de n-p sous-fonctions consécutives (Sf1, ..., Sn-p) dans n-p sections consécutives correspondantes (S1, ..., S(n-p)) ;

des moyens (20) de sélection, en réaction au numéro de section, à partir d’un groupe de n valeurs prédéterminées consécutives (a(1), ..., a(n)) d’un sous jeu sélectionné de q ≥ p+1 valeurs sélectionnées consécutives (as(1), ..., as(q)), le sous jeu sélectionné pour la section (Si) étant a(i+r), a(i+r+1), ..., a(i+r+q-1), r étant sélectionné dans un intervalle p+1-q ≤ r ≤ 0, dans lequel a(i)=0 pour i<1 et i>n, et des moyens (21) de multiplication dans chaque section (Si) du sous jeu sélectionné (as(1), ..., as(q)) par une matrice spline (p+1)*q fixe de facteurs de multiplication (cij) pour produire le jeu de p+1 coefficients de sous-fonction (b1i, ..., b(p+1)i);

des moyens (5) de conversion de la forme d’onde numérique unidimensionnelle (Cw) en une forme d’onde spline unidimensionnelle analogique (Wa), la forme d’onde spline unidimensionnelle analogique (Wa) étant continue et pouvant être différenciée de manière continue au moins p-1 fois, et des moyens (Lc; Lh; Lv) recevant la forme d’onde spline unidimensionnelle analogique (Wa) pour influencer la position sur l’écran d’affichage.

11. Procédé de production d’une forme d’onde spline unidimensionnelle du pième ordre (Cw1), la forme d’onde spline unidimensionnelle (Cw1) étant une fonction d’une position sur un écran d’affichage d’un dispositif d’affichage (CRT) dans une direction, le procédé comprenant les étapes suivantes :

production (4) à partir d’une information de position (I) indiquant la position dans la une direction d’une adresse
de position (P), et
production (2,3) en des positions indiquées par l'adresse de position (P) de la forme d'onde (Cw1) à partir de
n valeurs d'entrée prédéterminées (ai), la forme d'onde de correction (Cw1) étant une fonction spline du pième
ordre composée de n-p sous-fonctions consécutives (Sfi) dans n-p sections consécutives (Si) respectivement
correspondantes, dans laquelle p est supérieur à 1, l'étape de production de la forme d'onde de correction (2,
3) comprenant les étapes suivantes :

production de n fonctions de base (Fbi) de l'adresse de position (P), les fonctions de base (Fbi) présentant
toutes une forme identique et étant décalées sur une section (Si) les unes par rapport aux autres, et
chacune étant une fonction spline du pième ordre, les fonctions de base (Fbi) étant composées sous la
forme d'un enchaînement de parties (pi) s'étendant chacune sur une section (Si) ;
multiplication de chacune des fonctions de base (Fbi) par une valeur associée des valeurs stockées (ai), et
calcul de chacune des sous-fonctions (Sfi) en ajoutant, dans une même section (Si), les parties (pi) des
fonctions de base (Fbi) dans cette section (Si) multipliées par les valeurs stockées associées (ai).