EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
05.03.2003 Bulletin 2003/10

Application number: 97105402.8

Date of filing: 01.04.1997

Piezoelectric resonator and electric component using the same
Piezoelektrischer Resonator und elektrisches Bauteil unter Verwendung derselben
Résonateur piézoélectrique et composant électrique en faisant usage

Designated Contracting States:
DE FI FR SE

Priority: 18.07.1996 JP 20885796
10.01.1997 JP 1458497

Date of publication of application:

Proprietor: MURATA MANUFACTURING CO., LTD.
Nagaokakyo-shi Kyoto-fu 226 (JP)

Inventors:
• Unami, Toshihiko
 Nagaokakyo-shi, Kyoto-fu (JP)
• Inoue, Jiro
 Nagaokakyo-shi, Kyoto-fu (JP)

Representative: Laufhütte, Dieter, Dr.-Ing. et al
Lorenz-Seidler-Gossel
Widenmayerstrasse 23
80538 München (DE)

References cited:
GB-A- 2 280 809

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

[0001] The present invention as it is defined in the claims relates to a piezoelectric resonator which uses the mechanical resonance of a piezoelectric member, and more particularly, to a piezoelectric resonator comprising a base member having a longitudinal direction, an active section composed of polarized piezoelectric member and constituting at least a part of the base member, and a pair of external electrodes provided with the active section. The present invention also relates to electronic components for use with the piezoelectric resonator, such as an oscillator, a discriminator, and a filter.

[0002] Fig. 34 is a perspective view of a conventional piezoelectric resonator. A piezoelectric resonator 1 includes a piezoelectric substrate 2 having, for example, a rectangular plate shape viewed from the top. The piezoelectric substrate 2 is polarized in the thickness direction. On both surfaces of the piezoelectric substrate 2, electrodes 3 are formed. When a signal is input between the electrodes 3, an electric field is applied to the piezoelectric substrate 2 in the thickness direction and the piezoelectric substrate 2 vibrates in the longitudinal direction. In Fig. 35, there is shown a piezoelectric resonator 1 in which electrodes 3 are formed on both surfaces of a piezoelectric substrate 2 having a square plate shape viewed from the top. The piezoelectric substrate 2 of the piezoelectric resonator 1 is polarized in the thickness direction. When a signal is input between the electrodes 3 in the piezoelectric resonator 1, an electric field is applied to the piezoelectric substrate 2 in the thickness direction and the piezoelectric substrate 2 vibrates in square-type vibration mode (in the plane direction).

[0003] These piezoelectric resonators are of an unstiffened type, in which the vibration direction differs from the direction of polarization and the electric field. The electromechanical coupling coefficient of such an unstiffened piezoelectric resonator is lower than that of a stiffened piezoelectric resonator, in which the vibration direction, the direction of polarization, and the direction in which an electric field is applied are the same. An unstiffened piezoelectric resonator has a relatively small frequency difference ΔF between the resonant frequency and the antiresonant frequency. This leads to a drawback in which a frequency-band width in use is narrow when an unstiffened frequency resonator is used as an oscillator or a filter. Therefore, the degree of freedom in characteristics design is low in such a piezoelectric resonator and electronic components using the same.

[0004] The piezoelectric resonator shown in Fig. 34 uses the first-order resonance in the longitudinal mode. It also generates due to its structure large spurious resonances in odd-number-order harmonic modes, such as the third-order and fifth-order modes, and in width mode. To suppress these spurious resonances, some measures are considered, such as polishing, increasing mass, and changing the shape of the electrodes. These measures increase manufacturing cost.

[0005] In addition, since when viewed from the top the piezoelectric substrate has a rectangular plate shape, the substrate cannot be thinner due to restrictions in strength. Therefore, the distance between the electrodes cannot be reduced and a capacitance between terminals cannot be made large. This is extremely inconvenient for achieving impedance matching with an external circuit. To form a ladder filter by connecting a plurality of piezoelectric resonators in series and in parallel alternately, the capacitance ratio of the series resonator to the parallel resonator needs to be made large in order to increase attenuation. Because a piezoelectric resonator has shape restriction described above, however, large attenuation cannot be obtained.

[0006] The piezoelectric resonator shown in Fig. 35 uses square-type first-order resonance (in the plane direction). Due to its structure, large spurious resonances such as those in the thickness mode and in the triple-wave mode in the plane direction are also generated. Since the piezoelectric resonator needs a large size as compared with a piezoelectric resonator using the longitudinal vibration in order to obtain the same resonant frequency, it is difficult to reduce the piezoelectric resonator in size. When a ladder filter is formed by a plurality of piezoelectric resonators, in order to increase the capacitance ratio between the series resonator and the parallel resonator, the resonators connected in series are made thick and electrodes are formed only on part of a piezoelectric substrate to make the capacitance small as well. In this case, since the electrodes are only partially made, the difference ΔF between the resonant frequency and the antiresonant frequency as well as the capacitance is reduced. The resonators connected in parallel are accordingly required to have small ΔF. As a result, the piezoelectricity of the piezoelectric substrate is not effectively used, and the transmission bandwidth of the filter cannot be increased.

[0007] The inventors thought out a piezoelectric resonator having small spurious resonance and a large difference ΔF between the resonant frequency and the antiresonant frequency. In the piezoelectric resonator, a plurality of piezoelectric layers and a plurality of electrodes are alternately laminated to form a narrow base member, and the plurality of piezoelectric layers is polarized in the longitudinal direction of the base member. This laminated piezoelectric resonator is of a stiffened type, and has the piezoelectric layers in which the vibration direction, the direction of polarization, and the direction in which an electric field is applied are the same. Therefore, as compared with an unstiffened piezoelectric resonator, in which the vibration direction differs from the direction of polarization and electric field, the stiffened
piezoelectric resonator has a larger electromechanical coupling coefficient and a larger frequency difference ΔF between the resonant frequency and the antiresonant frequency. In addition, vibrations in modes such as the width and thickness modes, which are different from the basic vibration, are unlikely to occur in a stiffened piezoelectric resonator.

Since in the piezoelectric resonator having this lamination-structure each piezoelectric layer constituting the base member has the same length in the longitudinal direction of the base member and each electrode has the same area, the capacitance between each pair of adjacent electrodes is the same and the driving force piezoelectrically generated by each piezoelectric layer is also the same.

In longitudinal basic vibration, a stronger driving force is required at a portion located closer to the center of the base member in the longitudinal direction because of the large mass from this portion to an end of the base member in the longitudinal direction. Therefore, the piezoelectric resonator has an insufficiently large electromechanical coupling coefficient and thus ΔF is not sufficiently large.

In the piezoelectric resonator, high-order-mode vibration is unlikely to occur. However, charges generated in each piezoelectric layer by odd-number-high-order-mode vibration, such as the third-order and fifth-order vibrations, are not sufficiently canceled, and cause high-order-mode spurious vibrations, because the capacitance between each pair of adjacent electrodes is constant.

It is the main object of the present invention to provide a piezoelectric resonator having a further small spurious resonance, a further large difference ΔF between the resonant frequency and the antiresonant frequency, and adjustable ΔF, and to provide an electronic component using the piezoelectric resonator.

The foregoing object is achieved with a piezoelectric resonator having the features of claim 1. The subclaims are directed to preferable embodiments.

Piezoelectric resonator according to this invention may further comprise a support member securing the base member via a mounting member, the mounting member being provided at a center section of the base member in the longitudinal direction.

The foregoing object is achieved in another aspect of the present invention through the provision of an electronic component for use with the above described piezoelectric resonator, which is characterized in that the support member is an insulating substrate, and a pattern electrode is provided on the insulating substrate and connected to said external electrodes of said piezoelectric resonator via said mounting member. When electronic components such as an oscillator, a discriminator, and a filter are made using a piezoelectric resonator according to the present invention, the piezoelectric resonator is mounted on an insulating substrate on which the pattern electrodes are formed.

The electronic component may be a ladder filter in which a plurality of the pattern electrodes are provided on the insulating substrate and connected to the external electrodes of a plurality of the piezoelectric resonators such that the piezoelectric resonators are connected each other in a ladder shape.

In the above electronic components, a cap may be disposed on the insulating substrate so as to cover the base member to form chip-type (surface mount) electronic components.

The piezoelectric resonator may be fixed in a case by the support member.

The piezoelectric resonator according to the present invention is of a stiffened type, and has piezoelectric layers in which the vibration direction, the direction of polarization, and the direction in which an electric field is applied are the same. polarization, and the direction in which an electric field is applied are the same. Therefore, as compared with an unstiffened piezoelectric resonator, in which the vibration direction differs from the direction of polarization and electric field, the stiffened piezoelectric resonator has a larger electromechanical coupling coefficient and a larger frequency difference ΔF between the resonant frequency and the antiresonant frequency. In addition, vibrations in modes such as the width and thickness modes, which are different from longitudinal vibration, are unlikely to occur in the stiffened piezoelectric resonator.

And, since at least one capacitance between one pair of said internal electrodes differs from the other capacitance between the other pair of said internal electrodes.
itance between the other pair of said internal electrodes, ΔF can be adjusted.

[0022] Especially, when at least one pair of the internal electrodes opposed to each other has a common area which is different in size from other pairs of said internal electrodes, ΔF can be adjusted easily by changing the sizes of the common area.

5

[0023] In a piezoelectric resonator according to the present invention, when electrodes are formed such that the common area of opposing electrodes becomes larger in size as the electrodes are located closer to the center of the base member in the longitudinal direction, the piezoelectric resonator has a larger capacitance between the electrodes than a lamination-structure piezoelectric resonator having the common area constant in size of opposing electrodes. Since strong driving force required for longitudinal basic vibration is obtained at the center of the base member in the longitudinal direction, the electromagnetic coupling coefficient becomes further larger, and thus ΔF also becomes further larger. Charges generated in each piezoelectric layer by odd-number-high-order-mode vibration, such as the third-order and fifth-order vibrations, are canceled, and high-order-mode spurious vibrations are suppressed.

10

[0024] When electronic components such as an oscillator, a discriminator, and a filter are made using a piezoelectric resonator according to the present invention, the piezoelectric resonator is mounted on an insulating substrate on which pattern electrodes are formed and is covered by a cap to form chip-type (surface mount) electronic components.

15

[0025] According to the present invention, a piezoelectric resonator having a small spurious resonance, a large difference ΔF between the resonant frequency and the antiresonant frequency, and adjustable ΔF is obtained.

[0026] According to the present invention, the frequency difference ΔF between the resonant frequency and the antiresonant frequency can be made further large as compared with a piezoelectric resonator having the common area constant in size of opposing electrodes, and thus a wide-frequency-band piezoelectric resonator is obtained. In addition, vibrations in modes other than the basic-vibration mode are unlikely to occur in a piezoelectric resonator according to the present invention, and superior characteristics are achieved.

20

[0027] Since a chip-type electronic component can be made using the piezoelectric resonator, it is easy to mount the component on a circuit board.

25

[0028] The above-described object, other objects, other features, and other advantages of the present invention will be made clear in the following description noted by referring to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029]

Fig. 1 is a perspective view of a piezoelectric resonator according to the present invention.

Fig. 2 is a view showing the structure of the piezoelectric resonator shown in Fig. 1.

Fig. 3 is a plan of an electrode used in the piezoelectric resonator shown in Fig. 1.

Fig. 4 is a plan of another electrode used in the piezoelectric resonator shown in Fig. 1.

Fig. 5A is a plan of a modified electrode.

Fig. 5B is a plan of another modified electrode.

Fig. 6 is a perspective view of an unstiffened piezoelectric resonator which vibrates in the longitudinal direction, shown for comparison.

Fig. 7 is a perspective view of a stiffened piezoelectric resonator which vibrates in the longitudinal direction.

Fig. 8 is a perspective view of an unstiffened piezoelectric resonator which vibrates in the plane direction (square-type vibration), shown for comparison.

Fig. 9 is a view indicating ideal driving force required for the base member during longitudinal basic vibration.

Fig. 10 is a view showing a lamination-structure piezoelectric resonator having the common area constant in size of opposing electrodes.

Fig. 11 is a view indicating charges generated by the third-order spurious vibration in the base member of the piezoelectric resonator shown in Fig. 10.

Fig. 12 is a view showing charges generated by the third-order spurious vibration in the base member of the piezoelectric resonator shown in Figs. 1 and 2.

Fig. 13 is a view indicating charges generated by the fifth-order spurious vibration in the base member of the piezoelectric resonator shown in Fig. 10.

Fig. 14 is a view showing charges generated by the fifth-order spurious vibration in the base member of the piezoelectric resonator shown in Figs. 1 and 2.

Fig. 15 is a view showing a modified example of the piezoelectric resonator shown in Figs. 1 and 2.

Fig. 16 is a view showing another modified example of the piezoelectric resonator shown in Figs. 1 and 2.

Fig. 17 is a view showing still another piezoelectric resonator according to the present invention.

Fig. 18 is a view showing an inactive section.

Fig. 19 is a view of a main portion including another inactive section.
On one side face of the base member 12, the insulating film 16 covers the exposed end sections of alternate electrodes 14 with holes 15 being made in the electrodes 14 as shown in Fig. 5B. Surface of the piezoelectric layer 12a as shown in Fig. 5A. Electrodes 14 may also be formed on the main surfaces of the piezoelectric layer 12a. Further, the common area of the second electrode 14a and the third electrode 14b covers 95% of the main surface of the piezoelectric layer 12a. Two electrodes 14c disposed outside the three electrodes 14a are formed at the center in the width direction on both main surfaces of the six piezoelectric layers 12a in the base member 12, which are perpendicular to the longitudinal direction of the base member 12, respectively.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

One electrode 14a located at the center of the base member 12 in the longitudinal direction and two electrodes 14a disposed closest thereto are formed on the entire areas of the main surfaces of the piezoelectric layers 12a as shown in Fig. 3. In other words, these electrodes 14a have the same area (100%) as the main surface of the piezoelectric layer 12a. Two electrodes 14b disposed outside the three electrodes 14a are formed at the center in the width direction on the main surfaces of the piezoelectric layers 12a as shown in Fig. 4. The two electrodes 14b cover 95% of the area of the main surface of the piezoelectric layer 12a. Two electrodes 14c disposed outermost are formed at the center in the width direction on the main surfaces of the piezoelectric layers 12a such that the electrodes are narrow. The electrodes occupy 5% of the area of the main surface of the piezoelectric layer 12a. Therefore, in the longitudinal direction of the base member 12, the common (overlapping) area of opposing electrodes, the first and second electrodes 14a from the electrode 14a disposed at the center, covers 100% of the area of the main surface of the piezoelectric layer 12a. Further, the common area of the second electrode 14a and the third electrode 14b covers 95% of the main surface of the piezoelectric layer 12a, and the common area of the third electrode 14b and the fourth electrode 14c, which is disposed outermost, covers 5% of the area. The electrodes 14a, 14b, and 14c are formed such that the common area of two adjacent (opposing) electrodes becomes wider as the electrodes come closer to the center of the base member 12 in the longitudinal direction.

In Figs. 2 and 4, the electrodes 14b are drawn exaggeratedly small and the electrodes 14c are drawn exaggeratedly large. To adjust the common area of opposing electrodes, electrodes 14 may be formed in stripes on the main surface of the piezoelectric layer 12a as shown in Fig. 5A. Electrodes 14 may also be formed on the main surfaces of the piezoelectric layers 12a with holes 15 being made in the electrodes 14 as shown in Fig. 5B. On opposing side faces of the base member 12, a plurality of insulating films 16 and 18 is formed, respectively.

On one side face of the base member 12, the insulating film 16 covers the exposed end sections of alternate electrodes.
14a, 14b, and 14c. On the other side face of the base member 12, the insulating film 18 covers the exposed end sections of alternate electrodes 14a, 14b, and 14c not covered by the insulating film 16 on the above-described side face. The two side faces of the base member 12 on which the insulating films 16 and 18 are formed serve as connection sections to external electrodes, which will be described later.

[0036] In these connection sections, namely, the side faces of the base member 12 on which the insulating films 16 and 18 are formed, external electrodes 20 and 22 are formed. The electrode 20 connects to electrodes 14a, 14b, and 14c which are not covered by the insulating film 16, and the electrode 22 connects to electrodes 14a, 14b, and 14c which are not covered by the insulating film 18. In other words, two adjacent electrodes among the electrodes 14a, 14b, and 14c are connected to the electrodes 20 and 22, respectively.

[0037] The piezoelectric resonator 10 uses the external electrodes 20 and 22 as input and output electrodes. The piezoelectric layers 12a of the base member 12 are piezoelectrically active because an electric field is applied between adjacent electrodes among the electrodes 14a, 14b, and 14c by applying a signal to the external electrodes 20 and 22. Since voltages are applied in opposite directions to the piezoelectric layers 12a polarized in opposite directions in the base member 12, the piezoelectric layers 12a expand and contract in the same direction as a whole. Therefore, the entire piezoelectric resonator 10 vibrates in the longitudinal direction in basic mode with the center of the base member 12 serving as a node.

[0038] In the piezoelectric resonator 10, the polarization direction of the piezoelectric layer 12a, the applied electric field direction due to an input signal, and the direction of vibration in the piezoelectric layer 12a are all the same. In other words, the piezoelectric resonator 10 is of stiffened type. The piezoelectric resonator 10 has a larger electromagnetic coupling coefficient than an unstiffened piezoelectric resonator, in which the direction of vibration differs from the direction of polarization and electric field. Therefore, the piezoelectric resonator 10 has a larger frequency difference \(\Delta F \) between the resonant frequency and the antiresonant frequency than the conventional unstiffened piezoelectric resonator. This means that the piezoelectric resonator 10 obtains wide-frequency-band characteristics as compared with the conventional unstiffened piezoelectric resonator.

[0039] To measure differences between stiffened and unstiffened piezoelectric resonators, piezoelectric resonators shown in Figs. 6, 7, and 8 were made. The piezoelectric resonator shown in Fig. 6 was made by forming electrodes on both surfaces in the thickness direction of a piezoelectric substrate measuring 4.0 mm by 1.0 mm by 0.38 mm. This piezoelectric resonator was polarized in the thickness direction and vibrated in the longitudinal direction when a signal was applied to the electrodes. The piezoelectric resonator shown in Fig. 7 had the same dimensions as the piezoelectric resonator shown in Fig. 6. Electrodes were formed on both surfaces in the longitudinal direction of a piezoelectric substrate. The piezoelectric resonator was polarized in the longitudinal direction and vibrated in the longitudinal direction when a signal was applied to the electrodes. The piezoelectric resonator shown in Fig. 8 was made by forming electrodes on both surfaces in the thickness direction of a piezoelectric substrate measuring 4.7 mm by 4.7 mm by 0.38 mm. This piezoelectric resonator was polarized in the thickness direction and vibrated in the plane direction when a signal was applied to the electrodes. The piezoelectric resonators shown in Figs. 6 and 8 were of unstiffened type and the piezoelectric resonator shown in Fig. 7 was of stiffened type.

[0040] The resonant frequency \(F_r \) and the electromechanical coupling coefficient \(K \) of each of these piezoelectric resonators were measured and the results are shown in Tables 1, 2, and 3. Table 1 indicates the measured results of the piezoelectric resonator shown in Fig. 6. Table 2 indicates the measured results of the piezoelectric resonator shown in Fig. 7. Table 3 indicates the measured results of the piezoelectric resonator shown in Fig. 8.

<table>
<thead>
<tr>
<th>Table 1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant frequency (MHz)</td>
<td>Longitudinal basic vibration</td>
<td>Longitudinal triple-wave vibration</td>
<td>Width-mode vibration</td>
</tr>
<tr>
<td>0.460</td>
<td>0.32</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>Electro-mechanical coupling coefficient (%)</td>
<td>18.9</td>
<td>3.9</td>
<td>25.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant frequency (MHz)</td>
<td>Longitudinal basic vibration</td>
<td>Longitudinal triple-wave vibration</td>
<td>Width-mode vibration</td>
</tr>
<tr>
<td>0.455</td>
<td>0.44</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>Electro-mechanical coupling coefficient (%)</td>
<td>42.9</td>
<td>12.2</td>
<td>4.0</td>
</tr>
</tbody>
</table>
It is understood from the measurement data that a stiffened piezoelectric resonator has a larger electromagnetic coupling coefficient K than an unstiffened piezoelectric resonator, and therefore has a larger frequency difference ΔF between the resonant frequency and the antiresonant frequency. The largest spurious vibration in a stiffened piezoelectric resonator is of longitudinal triple-wave type and the electromagnetic coupling coefficient K is 12.2% during vibration. During width-mode vibration, which is different from basic vibration, the electromagnetic coupling coefficient K is 4.0%. In contrast, the electromagnetic coupling coefficient K during width-mode vibration is 25.2% in an unstiffened longitudinal-vibration piezoelectric resonator. In an unstiffened square-type vibration piezoelectric resonator, the electromagnetic coupling coefficient K is as large as 23.3% during thickness-mode vibration. Therefore, it is understood that a stiffened piezoelectric resonator has smaller spurious vibrations than an unstiffened piezoelectric resonator.

Since the piezoelectric resonator 10 has the common areas different in size of opposing electrodes among a plurality of electrodes 14a, 14b, and 14c, in other words, since the common area of opposing electrodes becomes larger in size among the electrodes 14a, 14b, and 14c as the opposing electrodes are located closer to the center of the base member 12 in the longitudinal direction, the capacitance of each piezoelectric layer 12a can be adjusted appropriately. Therefore, ΔF can be adjusted appropriately. Since a strong driving force required for longitudinal basic vibration is obtained at the center of the base member 12 in the longitudinal direction, the electromagnetic coupling coefficient becomes further larger, and thus ΔF becomes further larger, as compared with a lamination-structure piezoelectric resonator having the common area constant in size of opposing electrodes.

In longitudinal basic vibration, a stronger driving force is required at a portion located closer to the center of the base member in the longitudinal direction because of the large mass from this portion to an end of the base member in the longitudinal direction. Ideally, as shown in Fig. 9, a driving force different in strength corresponding to a cosine curve having the length of the base member as half the wavelength and a maximum amplitude at the center in the longitudinal direction of the base member is required. In contrast, in the piezoelectric resonator 10, since the common area of opposing electrodes becomes larger in size among the electrodes 14a, 14b, and 14c as the opposing electrodes are located closer to the center of the base member 12 in the longitudinal direction, a driving force different in strength, which is suited to longitudinal basic vibration, is obtained in the whole zone in the longitudinal direction of the base member 12. Therefore, the electromagnetic coupling coefficient and ΔF become larger.

To measure differences in ΔF and other factors caused by differences in common areas between a plurality of electrodes, a lamination-structure piezoelectric resonator shown in Fig. 10 was made. This piezoelectric resonator shown in Fig. 10 differed from the piezoelectric resonator 10 shown in Figs. 1 and 2 in that seven electrodes 14a, 14b, and 14c were formed on the entire main surfaces perpendicular to the longitudinal direction of the base member 12 in the piezoelectric layers 12a. Therefore the lamination-structure piezoelectric resonator shown in Fig. 10 had the common area of opposing electrodes among the electrodes 14a, 14b, and 14c, which is the same size as the area of the main surface of the piezoelectric layers 12a.

The resonant frequency F_r and the antiresonant frequency F_a were measured for the piezoelectric resonator 10 shown in Figs. 1 and 2, and the piezoelectric resonator shown in Fig. 10. Table 4 indicates each resonant frequency F_r, each antiresonant frequency F_a, the frequency difference ΔF, and $\Delta F/F_a$.

| Table 4 |
|-------------------|-------------------|-------------------|
| Resonant Frequency F_r (kHz) | 471.65 | 470.26 |
| Antiresonant Frequency F_a (kHz) | 535.48 | 531.14 |
| ΔF (kHz) | 63.83 | 60.88 |
| $\Delta F/F_a$ (%) | 11.92 | 11.46 |

It is found from the results indicated in Table 4 that the piezoelectric resonator 10 shown in Figs. 1 and 2 has larger...
ΔF and larger ΔF/Fa than the piezoelectric resonator shown in Fig. 10.

[0046] Since the piezoelectric resonator 10 shown in Figs. 1 and 2 has different capacitances among the electrodes 14a, 14b, and 14c respectively, in other words, the capacitance among the electrodes becomes larger, as the electrodes are located closer to the center of the base member 12 in the longitudinal direction, charges generated in each piezoelectric layer 12a by odd-number-high-order-mode vibration, such as the third-order and fifth-order vibrations, are canceled, and high-order-mode spurious vibrations are suppressed.

[0047] The third-order-mode spurious vibration is considered, for example. As shown in Fig. 11, charges having a cyclic amplitude and the same maximum amplitude are generated from one end to the other end in the longitudinal direction of the base member in the piezoelectric resonator shown in Fig. 10 and the charges are not sufficiently canceled and thus, remain. In contrast, in the piezoelectric resonator 10 shown in Figs. 1 and 2, charges are generated such that they have a larger amplitude as they are generated closer to the center of the base member in the longitudinal direction as shown in Fig. 12, and most of the charges are canceled. Next, the fifth-order-mode spurious vibration is examined. In the same way as in the third-order-mode spurious vibration, charges having a cyclic amplitude and the same maximum amplitude are generated as shown in Fig. 13 from one end to the other end in the longitudinal direction of the base member in the piezoelectric resonator shown in Fig. 10 and the charges are not sufficiently canceled and thus, remain. In contrast, in the piezoelectric resonator 10 shown in Figs. 1 and 2, charges are generated such that they have a larger amplitude as they are generated closer to the center of the base member in the longitudinal direction as shown in Fig. 14, and most of the charges are canceled. In odd-number-order-mode spurious vibrations, such as the seventh-, ninth-, and eleventh-order vibrations, most charges are canceled as in the third- and fifth-order-mode spurious vibrations. Therefore, the piezoelectric resonator 10 shown in Figs. 1 and 2 suppresses high-order-mode spurious vibrations more than the piezoelectric resonator shown in Fig. 10.

[0048] In the piezoelectric resonator 10 shown in Figs. 1 and 2, the capacitance of the resonator can be adjusted by changing the common areas of opposing electrodes 14a, 14b, and 14c in size, the number of the piezoelectric layers 12a, or the electrodes 14a, 14b, and 14c, or the dimensions of the piezoelectric layers 12a in the longitudinal direction of the base member 12. In other words, the capacitance can be increased by increasing the common areas of opposing electrodes 14a, 14b, and 14c in size, the number of the piezoelectric layers 12a, or the electrodes 14a, 14b, and 14c, or by decreasing the dimensions of the piezoelectric layers 12a in the longitudinal direction of the base member 12. In contrast, the capacitance can be reduced by reducing the common areas of opposing electrodes 14a, 14b, and 14c in size, the number of the piezoelectric layers 12a, or the electrodes 14a, 14b, and 14c, or by increasing the dimensions of the piezoelectric layers 12a in the longitudinal direction of the base member 12. This means that a high degree of freedom is given to capacitance design. Therefore, it is easy to achieve impedance matching with an external circuit when the piezoelectric resonator 10 is mounted on a circuit board and used.

[0049] In order to connect the electrodes 14a, 14b, and 14c to the external electrodes 20 and 22, insulating films 16 and 18 having openings 50 may be provided such that alternate electrodes 14a, 14b, and 14c are exposed as shown in Fig. 15. The external electrodes 20 and 22 are formed on the insulating films 16 and 18, and the electrodes 14a, 14b, and 14c connect to the two external electrodes 20 and 22 alternately. Two external electrodes 20 and 22 may be formed on one side face of the base member 12 as shown in Fig. 16. In this case, insulating films 16 and 18 are formed on one side face of the base member 12 in a two-row manner and two rows of connection sections are formed. These two rows of insulating films 16 and 18 are formed respectively on alternate electrodes 14a, 14b, and 14c. On these two rows of insulating films 16 and 18, two rows of external electrodes 20 and 22 are formed, respectively. The outermost two electrodes 14c are formed, for example, in a T shape such that they connect to the external electrode 22. The piezoelectric resonators shown in Figs. 15 and 16 can achieve the same advantages as the piezoelectric resonator shown in Figs. 1 and 2.

[0050] Internal electrodes 14a, 14b, and 14c may reach the opposite side faces of the base member 12 alternately as shown in Fig. 17. On the opposite side faces of the base member 12, it is necessary to form external electrodes 20 and 22. In the piezoelectric resonator 10 shown in Fig. 17, since the electrodes 14a, 14b, and 14c are exposed alternately, the internal electrodes 14a, 14b, and 14c are connected to the external electrodes 20 and 22 alternately by forming the external electrodes 20 and 22 on the side faces of the base member 12. Therefore, there is no need to form insulating films on the side faces of the base member 12. In this case, it is necessary to form the electrodes 14a, 14b, and 14c on the piezoelectric layers 12a with gaps left such that the electrodes do not reach one end of the piezoelectric layers 12a.

[0051] The electrodes 14a, 14b, or 14c are not formed on the entire area of a cross section of the base member 12 in this piezoelectric resonator 10 shown in Fig. 17. Therefore, the common area of adjacent electrodes among the electrodes 14a, 14b, and 14c is smaller than an electrode formed on the entire cross section. By using this common area, the capacitance and ΔF of the piezoelectric resonator 10 can be adjusted. As the common area of opposing electrodes 14a, 14b, and 14c becomes smaller, the capacitance and ΔF become smaller.

[0052] In the above-described piezoelectric resonator 10, the base member 12 is piezoelectrically active from one end to the other end in the longitudinal direction and vibrates. A part of the base member 12 in the longitudinal direction
may serve as an inactive section, which is piezoelectrically inactive. Such an inactive section 24 may be formed such that an electric field is not applied by not forming electrodes 14 at the ends of the base member 12 as shown in Fig. 18. If the inactive section is formed in that way, a process for forming electrodes at both ends of the base member 12 becomes unnecessary. The ends of the base member 12 may be polarized or may not be polarized. As shown in Fig. 19, only the ends of the base member 12 may not be polarized. In this case, even if an electric field is applied between the electrodes 14, a portion not polarized is piezoelectrically inactive. The structure may be formed such that an electric field is not applied to the piezoelectric layer serving as the inactive section 24 because the section is insulated by the insulating films 16 and 18 even if the section is polarized, as shown in Fig. 20. In other words, only when a piezoelectric layer is polarized and an electric field is applied, the layer becomes piezoelectrically active, otherwise it is inactive. In this configuration, a capacitor is formed in the inactive section, and the capacitance can be increased. A small electrode 52 may be formed on an end face of the base member 12 as shown in Fig. 20 in order to adjust the frequency or to connect to an external circuit.

Using such a piezoelectric resonator 10, electronic components such as oscillators and discriminators are produced. Fig. 21 is a perspective view of an electronic component 60. The electronic component 60 includes an insulating substrate 62 serving as a support member. At opposing end portions of the insulating substrate 62, two indentations 64 are formed, respectively. On one surface of the insulating substrate 62, two pattern electrodes 66 and 68 are formed as shown in Fig. 22. One pattern electrode 66 is formed between opposing indentations 64 and extends in an L-shaped manner from a point near one end toward the center of the insulating substrate 62. The other pattern electrode 68 is formed between opposing indentations 64 and extends straight from a point near the other end toward the center of the insulating substrate 62. The pattern electrodes 66 and 68 are formed such that they are routed in a roundabout fashion from the ends of the insulating substrate 62 to the opposite surface.

At one end of the pattern electrode 66 disposed at the center of the insulating substrate 62, a protrusion 70 serving as a mounting member is formed with electrically conductive adhesive. As shown in Fig. 23, the above-described piezoelectric resonator 10 is mounted on the protrusion 70 such that the center of the base member 12 is disposed on the protrusion 70. An external electrode 22 of the piezoelectric resonator 10 is, for example, connected to the protrusion 70. The other external electrode 20 is connected to a pattern electrode 68 with electrically conductive wire 72. The electrically conductive wire 72 is connected to the center of the external electrode 20 of the piezoelectric resonator 10.

A metal cap 74 is placed on the insulating substrate 62 to complete the electronic component 60. To prevent the metal cap 74 from being short-circuited to the pattern electrodes 66 and 68, insulating resin is applied to the insulating substrate 62 and the pattern electrodes 66 and 68 in advance. The electronic component 60 uses the pattern electrodes 66 and 68, which are formed such that they are routed to the rear surface from ends of the insulating substrate 62, as input and output terminals for connecting to external circuits.

Since the center of the piezoelectric resonator 10 is secured to the protrusion 70 in this electronic component 60, the ends of the piezoelectric resonator 10 are disposed separately from the insulating substrate 62 so vibration is not prevented. Excited longitudinal vibration is not weakened because the center of the piezoelectric resonator, which serves as a node, is secured to the protrusion 70 and is connected to the electrically conductive wire 72.

The electronic component 60 is mounted on a circuit board together with IC chips and other components to form an oscillator or a discriminator. Since the electronic component 60 is sealed and protected by the metal cap 74, it can be used as a chip-type (surface mount) component which can be mounted by reflow soldering.

When the electronic component 60 is used in an oscillator, spurious vibrations are suppressed to a low level and unusual vibration caused by the spurious vibrations are prevented due to the features of the piezoelectric resonator 10 used in the electronic component 60. It is also easy to achieve impedance matching with an external circuit since the capacitance of the piezoelectric resonator 10 can be set to any desired value. Especially when the electronic component is used for an oscillator for voltage-controlled oscillation, a wide frequency range which cannot be obtained conventionally is acquired due to a large ΔF of the resonator.

The piezoelectric resonator 10 may be mounted on the insulating substrate 62 so that two protrusions 70 made from an electrically conductive material such as electrically conductive adhesive are formed on both pattern electrodes 66 and 68, and the external electrodes 20 and 22 of the piezoelectric resonator 10 are connected to the two protrusions 70, as shown in Figs. 24 and 25. The piezoelectric resonator 10 may also be mounted on the insulating substrate 62 in a way shown in Figs. 26 and 27 in which two protrusions 70 made from an insulating material such as insulating adhesive are formed on the insulating substrate 62 and the external electrodes 20 and 22 are connected to the pattern electrodes 66 and 68 with electrically conductive wire 72. The protrusions 70 may be formed on the piezoelectric resonator 10 in advance.

A ladder filter can be made using a plurality of the piezoelectric resonators 10. As shown in Figs. 28 and 29,
three pattern electrodes 76, 78, and 80 are formed on an insulating substrate 62 serving as a support member in an electronic component 60. Protrusions 82 and 86 serving as mounting members are formed with electrically conductive adhesive on both-end pattern electrodes 76 and 80. On the center pattern electrode 78, two protrusions 84 and 88 serving as mounting members are formed with electrically conductive adhesive.

[0062] One external electrode 22 for each of piezoelectric resonators 10a, 10b, 10c, and 10d is mounted to each of the protrusions 82, 84, 86, and 88, respectively. The protrusions 82, 84, 86, and 88 may be formed on the piezoelectric resonators 10a, 10b, 10c, and 10d in advance. The other external electrodes 20 for piezoelectric resonators 10a, 10b, and 10c are connected to each other with electrically conductive wire 72. The other external electrode 20 of a piezoelectric resonator 10d is connected to the pattern electrode 80 with electrically conductive wire 72. A metal cap 74 is placed on the insulating substrate 62.

[0063] The electronic component 60 is used as a ladder filter having a ladder-shaped circuit shown in Fig. 30. Two piezoelectric resonators 10a and 10c serve as series resonators and the other two piezoelectric resonator 10c and 10d serve as parallel resonators. In such a ladder filter, the parallel piezoelectric resonators 10b and 10d are designed to have substantially larger capacitances than the series piezoelectric resonators 10a and 10c.

[0064] Attenuation in the ladder filter is determined by the capacitance ratio between the series resonators and the parallel resonators. In this electronic component 60, the capacitance can be adjusted by changing the number of laminated layers used in the piezoelectric resonators 10a to 10d. Therefore, a ladder filter having a larger attenuation with fewer resonators is implemented by changing the capacitances of the piezoelectric resonators, as compared with a case where the conventional unstiffened piezoelectric resonators are used. Since the piezoelectric resonators 10a to 10d have a larger ΔF than the conventional piezoelectric resonator, a wider transmission frequency band is implemented as compared with the conventional piezoelectric resonator.

[0065] Fig. 31 is a plan of the main section of a ladder filter having a ladder-shaped circuit. Fig. 32 is an exploded perspective view of the main section. In the electronic component 60 shown in Figs. 31 and 32, four pattern electrodes 90, 92, 94, and 96 are formed on an insulating substrate 62 serving as a support member. Five lands disposed in line at a certain interval are formed on the pattern electrodes 90, 92, 94, and 96. The first land, which is closest to an end of the insulating substrate 62, is formed on the pattern electrode 90, the second and fifth lands are formed on the pattern electrode 92, the third land is formed on the pattern electrode 94, and the fourth land is formed on the pattern electrode 96. Mounting members are formed in line at a certain interval using electrically conductive adhesive on the five lands: one protrusion 98 on the first land; two protrusions 100 and 102 on the second land; two protrusions 104 and 106 on the third land; two protrusions 108 and 110 on the fourth land, and one protrusion 112 on the fifth land.

[0066] The external electrodes 20 and 22 of piezoelectric resonators 10a, 10b, 10c, and 10d are mounted on these protrusions 98, 100, 102, 104, 106, 108, 110, and 112 to form a ladder-shaped circuit shown in Fig. 30. The protrusions may be formed in advance on the piezoelectric resonators 10a, 10b, 10c, and 10d. Then, a metal cap (not shown) is placed on the insulating substrate 62.

[0067] The electronic component shown in Figs. 31 and 32 differs from the electronic component shown in Figs. 28 and 29 in that two electrodes of adjacent piezoelectric resonators are mounted on two protrusions formed on the same land. Therefore, the two electrodes of adjacent piezoelectric resonators do not need to be insulated and thus adjacent resonators can be disposed closely, enabling a compact component.

[0068] A two-terminal electronic component 60 such as a ceramic resonator and a ceramic discriminator can be produced with a piezoelectric resonator 10 as shown in Fig. 33. Two terminals 120 made from an electrically conductive material are prepared to produce such a two-terminal component 60. These terminals 120 are formed such that they extend from hoops 122. Practically, a plurality of terminals 120 are formed on each hoop 122 in line. A terminal 120 is provided with a fold section 124, which serves as a spring element. The piezoelectric resonator 10 is spring-supported by the terminals 120. A case 130 having an opening at one end is placed on the piezoelectric resonator 10. The opening of the case 130 is closed with paper and then resin-sealed. The terminals 120 are cut from the protrusions 82, 84, 86, and 88 served as mounting members are formed with electrically conductive adhesive on both-end pattern electrodes 76 and 80. On the center pattern electrode 78, two protrusions 84 and 88 serving as mounting members are formed with electrically conductive adhesive.

[0069] The piezoelectric resonator 10 is supported between the mounting members 128. The mounting members 128 are abutted against the external electrodes 20 and 22 at the center of the piezoelectric resonator 10 in the longitudinal direction. Since the terminals 120 have fold sections 124, which serve as spring elements, the piezoelectric resonator 10 is spring-supported by the terminals 120. A case 130 having an opening at one end is placed on the piezoelectric resonator 10. The opening of the case 130 is closed with paper and then resin-sealed. The terminals 120 are cut from the protrusions 82, 84, 86, and 88 served as mounting members are formed with electrically conductive adhesive on both-end pattern electrodes 76 and 80. On the center pattern electrode 78, two protrusions 84 and 88 serving as mounting members are formed with electrically conductive adhesive.

[0070] In each of the above-described piezoelectric resonators, one piezoelectric layer is provided between two adjacent electrodes. A plurality of piezoelectric layers may be provided.

[0071] A dummy electrode which is not connected to an external electrode may be provided for the base member 12.

[0072] In each of the above-described piezoelectric resonators, the common area of opposing electrodes in the plurality of electrodes is formed larger as the opposing electrodes are located closer to the center of the base member in the longitudinal direction. It is necessary to have at least one pair of opposing electrodes having a common area.
different in size from those of the other pairs of opposing electrodes among the plurality of electrodes.

As described above, ΔF can be adjusted in the piezoelectric resonator 10 according to the present invention. Also in the piezoelectric resonator 10 according to the present invention, the frequency difference ΔF between the resonant frequency and the antiresonant frequency can be made further large as compared with a piezoelectric resonator having the common area constant in size of opposing electrodes, and thus a wide-frequency-band piezoelectric resonator is obtained. In addition, a piezoelectric resonator having a small spurious vibration can be obtained according to the present invention. The capacitance of the piezoelectric resonator 10 according to the present invention can be designed as desired by changing the common areas of opposing electrodes in size, the number of piezoelectric layers and electrodes, or the dimensions of the piezoelectric layers in the longitudinal direction of the base member, and thus it is easy to achieve impedance matching with an external circuit. An electronic component having the above-described features of the piezoelectric resonator 10 can be obtained.

Claims

1. Piezoelectric resonator (10) comprising
 a base member (12) having a longitudinal direction,
 an active section composed of polarized piezoelectric member and constituting at least a part of said base member, and
 a pair of external electrodes (20, 22) provided with said active section,
 characterized in that
 a plurality of internal electrodes (14a, 14b, 14c) connected to said pair of external electrodes (20, 22) are disposed in/on said active section at intervals in the longitudinal direction of said base member (12),
 said active section is polarized in the longitudinal direction of said base member (12),
 at least one capacitance between one pair of said internal electrodes (14a, 14b, 14c) differs from the other capacitance between the other pair of said internal electrodes (14a, 14b, 14c), and
 at least one pair of said internal electrodes (14a, 14b, 14c) opposed to each other has a common area which is different in size from other pairs of said internal electrodes (14a, 14b, 14c).

2. Piezoelectric resonator (10) according to Claim 1, characterized in that
 said common areas become larger in size as said pair of the internal electrodes (14a,14b,14c) opposed to each other are located closer to the center of said base member (12) in the longitudinal direction.

3. Piezoelectric resonator (10) according to one of Claims 1 or 2, characterized in that the piezoelectric resonator (10) further comprises
 a support member (62) securing said base member (12) via a mounting member (70),
 said mounting member (70) being provided at a center section of said base member (12) in the longitudinal direction.

4. An electronic component (60) for use with the piezoelectric resonator (10) according to Claim 3, characterized in that
 said support member (62) is an insulating substrate (62), and
 a pattern electrode (66,68) is provided on said insulating substrate (62) and connected to said external electrodes (20,22) of said piezoelectric resonator (10).

5. An electronic component according to Claim 4, characterized in that
 said electronic component (60) is a ladder filter in which
 a plurality of said pattern electrodes (76,78,80) are provided on said insulating substrate (62) and connected to said external electrodes (20,22) of a plurality of said piezoelectric resonators (10a, 10b, 10c, 10d) such that said piezoelectric resonators (10a,10b,10c,10d) are connected each other in a ladder shape.

6. An electronic component (60) for use with the piezoelectric resonator (10) according to Claim 3, characterized in that
 said piezoelectric resonator (10) is fixed in a case (130) by said support member (126).
Patentansprüche

1. Piezoelektrischer Resonator (10), welcher umfaßt:

 ein Basisbauteil (12) mit Erstreckung in Längsrichtung, einen aktiven, aus einem polarisierten piezoelektrischen Bauteil bestehenden und mindestens einem Teil des genannten Basisbauteils bestehenden Bereich und ein Paar mit dem genannten aktiven Bereich ausgestattete externe Elektroden (20, 22),

dadurch gekennzeichnet, daß

 eine Vielzahl von Innenelektroden (14a, 14b, 14c), die mit dem genannten Paar externer Elektroden (20, 22) verbunden sind, in/auf dem genannten aktiven Bereich in der Längsrichtung des genannten Basisbauteils (12) beabstandet angeordnet sind, der genannte aktive Bereich in der Längsrichtung des genannten Basisbauteils (12) polarisiert ist, mindestens eine Kapazität zwischen einem Paar der genannten Innenelektroden (14a, 14b, 14c) sich von der anderen Kapazität zwischen dem anderen Paar der genannten Innenelektroden (14a, 14b, 14c) unterscheidet, und

 mindestens ein Paar der genannten sich gegenüberliegenden Innenelektroden (14a, 14b, 14c) einen gemeinsamen Bereich aufweist, der sich in der Größe von den anderen Paaren der genannten Innenelektroden (14a, 14b, 14c) unterscheidet.

2. Piezoelektrischer Resonator (10) nach Anspruch 1, dadurch gekennzeichnet, daß die genannten gemeinsamen Bereiche in dem Maße größer werden, wie das genannte Paar sich gegenüberliegender Innenelektroden (14a, 14b, 14c) näher am Mittelabschnitt des genannten Basisbauteils (12) in der Längsrichtung angeordnet ist.

3. Piezoelektrischer Resonator (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der piezoelektrische Resonator (10) des weiteren umfaßt:

 ein Tragebauteil (62), das das genannte Basisbauteil (12) über ein Montagebauteil (70) befestigt,

wobei das genannte Montagebauteil (70) in einem Mittelabschnitt des genannten Basisbauteils (12) in der Längsrichtung angeordnet ist.

4. Elektronisches Bauelement (60) zur Verwendung mit dem piezoelektrischen Resonator (10) nach Anspruch 3, dadurch gekennzeichnet, daß
das genannte Tragebauteil (62) ein Isoliersubstrat (62) ist und auf dem genannten Isoliersubstrat (62) eine strukturierte Elektrode (66, 68) angeordnet und mit den genannten externen Elektroden (20, 22) des genannten piezoelektrischen Resonators (10) verbunden ist.

5. Elektronisches Bauelement nach Anspruch 4, dadurch gekennzeichnet, daß das genannte elektronische Bauelement (60) ein Leiterfilter ist, bei dem eine Vielzahl von strukturierten Elektroden (76, 78, 80) auf dem genannten Isoliersubstrat (62) angeordnet und mit den genannten externen Elektroden (20, 22) einer Vielzahl der genannten piezoelektrischen Resonatoren (10a, 10b, 10c, 10d) in der Weise verbunden ist, daß die genannten piezoelektrischen Resonatoren (10a, 10b, 10c, 10d) in Leiterform miteinander verbunden sind.

6. Elektronisches Bauelement (60) zur Verwendung mit dem piezoelektrischen Resonator (10) nach Anspruch 3, dadurch gekennzeichnet, daß der genannte piezoelektrische Resonator (10) durch das genannte Tragebauteil (126) in einem Gehäuse (130) befestigt ist.

Revendications

1. Résonateur piezoélectrique (10) comprenant :

 un élément (12) de base ayant une direction longitudinale ;

 une section active composée d’un élément piezoélectrique polarisé et constituant au moins une partie dudit élément de base ; et

 une paire d’électrodes externes (20, 22) comportant ladite section active ;
caractérisé :

en ce qu’une pluralité d’électrodes internes (14a, 14b, 14c) connectée à ladite paire d’électrodes externes (20, 22) est disposée dans/sur ladite section active à des intervalles dans la direction longitudinale dudit élément (12) de base ;

en ce que ladite section active est polarisée dans la direction longitudinale dudit élément (12) de base ;

en ce qu’au moins une capacité entre une paire desdites électrodes internes (14a, 14b, 14c) diffère de l’autre capacité entre l’autre paire desdites électrodes internes (14a, 14b, 14c) ; et

en ce qu’au moins une paire desdites électrodes internes (14a, 14b, 14c) opposées l’une à l’autre a une zone commune qui est d’une taille différente des autres paires desdites électrodes internes (14a, 14b, 14c).

2. Résonateur piézoélectrique (10) selon la revendication 1, caractérisé en ce que lesdites zones communes deviennent d’une taille plus grande à mesure que ladite paire d’électrodes internes (14a, 14b, 14c) opposées l’une à l’autre est située plus près du centre dudit élément (12) de base dans la direction longitudinale.

3. Résonateur piézoélectrique (10) selon l’une des revendications 1 ou 2, caractérisé en ce que le résonateur piézoélectrique (10) comprend en outre :

un élément support (62) fixant ledit élément (12) de base par l’intermédiaire d’un élément (70) de montage ;

ledit élément (70) de montage étant disposé au niveau d’une section centrale dudit élément (12) de base dans la direction longitudinale.

4. Composant électronique (60) pour utilisation avec le résonateur piézoélectrique (10) selon la revendication 3, caractérisé :

en ce que ledit élément support (62) est un substrat isolant (62) ; et

en ce qu’une électrode (66, 68) sous forme de motif est disposée sur ledit substrat isolant (62) et connectée auxdites électrodes externes (20, 22) dudit résonateur piézoélectrique (10).

5. Composant électronique selon la revendication 4, caractérisé en ce que ledit composant électronique (60) est un filtre en échelle dans lequel une pluralité desdites électrodes (76, 78, 80) sous forme de motif est disposée sur ledit substrat isolant (62) et connectée auxdites électrodes externes (20, 22) d’une pluralité desdits résonateurs piézoélectriques (10a, 10b, 10c, 10d) de sorte que ledits résonateurs piézoélectriques (10a, 10b, 10c, 10d) sont connectés les uns aux autres en une forme en échelle.

6. Composant électronique (60) pour utilisation avec le résonateur piézoélectrique (10) selon la revendication 3, caractérisé en ce que ledit résonateur piézoélectrique (10) est fixé dans un boîtier (130) par ledit élément support (126).
Fig. 9

BASE MEMBER

DRIVING FORCE
Fig. 13

BASE MEMBER

CHARGES

Fig. 14

BASE MEMBER

CHARGES
Fig. 30
Fig. 34

1

3

VIBRATION DIRECTION

2

3 POLARIZATION DIRECTION

ELECTRIC-FIELD DIRECTION

Fig. 35

1

3

VIBRATION DIRECTION

2

3 POLARIZATION DIRECTION

ELECTRIC-FIELD DIRECTION