EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 09.05.2001 Bulletin 2001/19
(21) Application number: 96908431.8
(22) Date of filing: 25.03.1996
(54) MACHINE CLOTHING HAVING A SEAM, AND SPIRAL FOR USE IN SUCH A SEAM
PAPIERMASCHINENBESPANNUNG MIT EINER VERBINDUNGSNAHT UND SPIRALE ZUR ANWENDUNG IN EINER SOLCHEN NAHT
HABILLAGE COMPORTANT UNE COUTURE ET SPIRALE UTILISABLE DANS CE TYPE DE COUTURE
(84) Designated Contracting States: AT BE DE ES FI FR GB IT NL
(30) Priority: 27.03.1995 SE 9501074
(43) Date of publication of application: 14.01.1998 Bulletin 1998/03
(73) Proprietor: Albany Nordiskafilt Aktiebolag S-301 80 Halmstad (SE)

(51) Int Cl.: D21F 1/12, D21F 7/10 // F16G3/04
(86) International application number: PCT/SE96/00380
(87) International publication number: WO 96/30589 (03.10.1996 Gazette 1996/44)
(72) Inventor: FAGERHOLM, Lars FIN-01620 Vanda (FI)
(74) Representative: Giver, Sören Bo et al Awapatent AB, P.O. Box 5117 200 71 Malmö (SE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Technical field of the invention

[0001] The present invention relates to the technical field of seamed clothings for paper and cellulose machines. More specifically, the invention relates to an improved spiral for use in seams on clothings comprising flat filament yarns in the machine direction, i.e. in the running direction of the clothing in the machine. According to a first aspect, the invention relates to a machine clothing having such a seam and, according to a second aspect, a spiral for use in such a seam. The invention is especially applicable to the production of seams on dryer fabrics, but it may also be used for forming fabrics, press felts, filter cloths, belts etc, and is not exclusively usable for woven clothings.

Background art

[0002] It is known to use loop seams and spiral seams in openable clothings, such as dryer fabrics, for paper and cellulose machines, the opposite seam edges of the clothing each having a row of loops (see US-A-4 896 702). When the clothing is to be installed in the machine, this is carried out with the seam being open, whereupon the seam edges are moved together and the seam loops of one row are meshed with the seam loops of the other row. Then the seam is joined by a so-called pintle wire being passed through the thus intermeshed rows of loops. The principle of such seamed clothings is described in more detail in an article by T. Branham in Tappi Journal (USA), June 1994, Vol. 77, No. 6, pp 285-288.

[0003] In a so-called warp loop seam, the rows of loops are formed of extended edge loops of warp yarns in the fabric structure of the clothing. In a so-called spiral seam, each row of loops is instead formed of a separate, preformed yarn spiral, which is extended along and attached by means of machine direction yarns, such as warp yarns, to the seam edge of the clothing. The yarn spiral is normally attached to the seam edge by being, after completion of the weaving, spliced into the seam edge by means of a special splicing machine. Alternatively, the spiral can be attached to the clothing by a number of cross-machine direction yarns being ravelled a distance from the seam edge, whereupon the loops of the spiral are inserted into the thus formed looser edge portion. Then the edge is folded back over itself and is attached to the clothing, for instance, by using a sewing-machine. Independently of how the spiral is attached, the clothing comprises two spirals, one along each seam edge, which, when joining together the fabric, are meshed with each other like a zipper so as to be joined together by means of a pintle wire or the like.

[0004] Using such separate spirals is, in some cases, preferred to woven warp loops, since the shape of seam loops formed of a spiral is less dependent on the weaving technique.

[0005] A seam is generally a critical part of a seamed machine clothing, since a uniform paper quality, low marking and an excellent runnability of the clothing require a seam which is as similar as possible to the rest of the clothing in respect of properties such as thickness, structure, strength, permeability etc. These requirements are especially important in dryer fabrics in drying positions with suction rolls.

[0006] However, there are problems in prior-art spiral seams if the yarn spirals are bound to the seam edges by means of so-called flat filament yarns. In many cases, a dryer fabric is today woven of flat filament yarns, at least in its machine direction. By flat filament yarns are below meant yarns of non-circular cross-section. The cross-section of a flat filament yarn can be essentially rectangular, elliptic, an elongated polygon or combinations thereof. In general, the cross-section of the flat filament yarn has a great cross-sectional dimension and a small cross-sectional dimension. In the ready dryer fabric, the flat filament yarn extends with its great cross-sectional dimension and in a reliable and stable operation.

[0007] Flat filament yarns are preferred to round yarns of circular cross-section, on the one hand because a flat filament yarn does not build up in the thickness direction to the same extent as a round yarn, i.e. it results in a thinner clothing and, on the other hand, since a flat filament yarn yields a better contact with the web that is to be dewatered. A further advantage of flat filament yarns is that the wear potential of the fabric increases. Thus, the fabric maintains its surface structure, which results in a reliable and stable operation.

[0008] The flat filament yarn thus extends with its great cross-sectional dimension in parallel with the principal plane of the fabric, but in the area in which the flat filament yarn, for securing the yarn spiral to the seam edge, passes between two neighbouring spiral loops (seam loops) and turns the spiral yarn over so as to bind thereto, the flat filament yarn will, however, normally occupy a different, less favourable orientation, in which the great cross-sectional dimension of the flat filament yarn instead makes an angle with the principal plane of the fabric. The situation at the seam edge thus is that the elongate cross-section of the flat filament yarn "places itself on edge" adjacent the yarn spiral. As a result, the flat filament yarn projects in the same area too high up above the surface of the fabric, which may lead to web marks and/or yarn wear at the risk of yarn breakage. This unfavourable situation is schematically illustrated in Fig. 1A of the enclosed drawing, which shows how a rectangular cross-section of a flat filament yarn, which binds around a known yarn spiral, adapts poorly to the sewing position, a spiral for use in such a seam. The invention is preferred to woven warp loops, since the shape of seam loops formed of a spiral is less dependent on the weaving technique.
the warp yarn to the left in the Figure. This warp yarn has unsatisfactory contact with the yarn spiral, and therefore the binding points between the warp yarn and the spiral are not optimal. Owing to this unsatisfactory contact, the above-mentioned unfavourable displacement and turning of the warp yarns can arise more easily.

According to the invention, this object is achieved by a new and improved spiral structure, which yields optimum contact and binding to flat machine direction yarns in the seam area and which ensures that the machine direction yarns are correctly oriented in the seam area.

According to a first aspect of the invention, a machine clothing for a paper or cellulose machine is provided, comprising machine direction yarns and a spiral seam having two preformed yarn spirals each bound by the machine direction yarns to one seam edge of the clothing so as to form one row each of seam loops, which, for forming a seam, are meshable with each other and joinable onto each other by means of a pintle wire. The machine clothing is characterised in that at least one spiral, preferably both spirals, between neighbouring seam loops in the row, is preformed with special securing portions, to which said spiral is attached at the corresponding seam edge, said securing portions holding the seam loops spaced apart and being extended substantially in the longitudinal direction of the spiral.

According to a second aspect of the invention, a preformed yarn spiral is provided, which is adapted to be secured along a seam edge on a paper or cellulose machine clothing to form a row of seam loops, which, for forming a seam on the clothing, are adapted to be fitted between seam loops of an opposite seam edge on said clothing and then be joined onto these by insertion of a pintle wire into the seam loops. The yarn spiral is characterised in that, between each pair of seam loops formed by the spiral, it is preformed with special securing portions for attaching the spiral to the seam edge, said securing portions holding the seam loops spaced apart and being extended substantially in the longitudinal direction of the spiral.

Preferred embodiments of the two above-mentioned aspects of the invention are as follows.

According to the invention, the special securing portions of the yarn spiral preferably are of a shape which fits the cross-section of the machine direction yarns of the clothing which bind to the securing portions, particularly when said machine direction yarns are flat filament yarns. Thus, the securing portions of the spiral can be substantially rectilinear if the spiral is attached to the seam edge by means of flat filament yarns of rectangular cross-section. If the flat filament yarns instead are elliptic, the securing portions can be slightly concave to fit the elliptic shape of the yarn. In the second-mentioned case, the transition between the securing portions of the spiral and the seam loops of the spiral can comprise relatively pronounced angles in the spiral yarn. In the second case having concave securing portions, a more uniform transition between the securing portions and seam loops of the spiral can be constructed.

However, the invention is applicable not only in combination with flat filament yarns, but also to machine direction yarns of, for instance, square cross-section.

The distance between neighbouring seam loops of the spiral is determined by the length of the individual securing portions and is preferably adjusted to the great cross-sectional dimension of the flat filament yarn. The securing portions normally are of equal length, which results in a constant spacing between the seam loops. The length of the individual securing portions, i.e. the distance between the seam loops, normally is approximately equal to, alternatively somewhat greater than the corresponding dimension of the machine direction yarns binding the spiral to the seam edge, which in the case of flat filament yarns means that the length of the securing portions is approximately equal to or somewhat greater than the great cross-sectional dimension of the flat filament yarn. It would be advantageous to have the securing portions somewhat longer than the width of the yarn, since this makes it possible to reduce the wear between the yarn and the spiral loops.

As stated above, the securing portions of the spiral are, according to the invention, extended substantially in the longitudinal direction of the spiral. This means that each securing portion can be extended substantially quite in parallel with the seam edge or possibly be somewhat inclined relative to the seam edge, such that one end of the securing portion is closer to one principal surface of the clothing and the other end of the securing portion is closer to the opposite principal surface of the clothing. In any case, the securing portions of the spiral are directed substantially in parallel with the seam edge.

Furthermore, it would be preferred to have the securing portions of the spiral arranged successively in alignment with each other along the side of the spiral facing the seam edge. However, the possibility of the securing portions of the spiral instead being arranged at different distances and differently oriented relative to the
seam edge is also within the scope of the invention.

[0022] The yarn portions of the yarn spiral which constitute the seam loops of the spiral can be formed of substantially entire spiral turns, the end points of the seam loops being located on essentially one and the same geometric line along the seam edge. Alternatively, the seam loops may be incomplete spiral turns (<360°). In this case, the end points of the seam loops will not be located on one and the same geometric line, and therefore the securing portions will be inclined correspondingly relative to the seam edge.

[0023] According to the invention, the preformed yarn spiral with the special securing portions thus has a non-constant pitch, both before and after the mounting of the spiral at the seam edge. More precisely, according to the invention most of the pitch of the spiral is normally located in the securing portions, while each seam loop is extended substantially perpendicular to the longitudinal direction of the spiral, i.e. at right angles to the seam edge. Each seam loop can, of course, be more or less compressed in the longitudinal direction of the spiral, and the degree of compression can be altered as the length (extent) of the spiral is changed during mounting thereof.

[0024] The spiral according to the invention can be attached to the clothing by using the per se known folding and splicing methods as described above. If splicing is used, some of the machine direction yarns at the seam edge can form so-called blank loops which do not bind around the spiral, as is known in this technical field.

[0025] The material and the thickness of the inventive spiral and the manufacture of the spiral are not part of the present invention. Most materials that are traditionally used for the manufacture of known spirals for spiral seams on machine clothings in paper and cellulose machines are usable also for the manufacture of spirals according to the invention, and the selection of material will depend on the type of clothing and the position of installation. However, use is generally made of some sort of polymeric material that can be preformed. The actual preforming of the spiral comes easy to an expert in this field. A yarn which is to form the spiral can, for instance, be wound round a suitably formed spear or horn to the desired shape, whereupon the shape of the thus formed spiral can be set by thermal treatment.

[0026] Within the scope of the invention, there is also the possibility of making the spiral by casting, extrusion etc. to a length corresponding to the entire or part of the length of the seam edge to which it should be attached.

[0027] Besides, it is within the scope of the invention to carry out the final setting of the shape of the spiral only in connection with the actual attachment to the seam edge.

[0028] It is also within the scope of the invention to use not only a single yarn material for the spiral, but instead a combination of several materials.

[0029] Other characteristics and variants of the invention will appear from the accompanying claims.

Brief description of the drawings

[0030] The invention will now be described in more detail with reference to the accompanying drawings, in which

Fig. 1A is a schematic view of part of a known spiral attached by means of flat filament yarns.
Fig. 1B is a view of a seam loop of the spiral in Fig. 1A.
Fig. 2 is a schematic perspective view of part of a preferred embodiment of a spiral according to the invention attached by means of flat filament yarns,
Fig. 3 is a schematic side view of the spiral in Fig. 2, and
Fig. 4 is a schematic perspective view of part of an alternative embodiment of a spiral according to the invention.

Detailed description of a preferred embodiment

[0031] Fig. 1A is a schematic view of a broken-away portion of a known symmetric spiral 10 for a spiral seam on, for instance, a woven dryer fabric having flat filament yarns 12 in its machine direction. The spiral 10 has a substantially constant pitch and forms a row of seam loops 14 connecting with each other in "valleys" 16, in which the flat filament yarns 12 bind around the spiral 10 in order to attach this to the seam edge of the dryer fabric.

[0032] Fig. 1B is a schematic view, seen in the longitudinal direction of the spiral 10, of such a seam loop 14, the height and width (thickness) of the loop being designated H and W, respectively. H is normally in the range 3.0-10.0 mm, and W is normally in the range 1.0-6.0 mm. Normally used flat filament yarns usually have a smallest cross-sectional dimension in the order of 0.15-0.40 mm, and a greatest cross-sectional dimension in the order of 0.50-1.20 mm.

[0033] As described by way of introduction, the known spiral 10 yields an unsatisfactory binding to the flat filament yarns 12, and owing to the poor fit in the valleys 16, the flat filament yarns 12 can easily occupy an incorrect orientation, as shown in the two right-hand valleys in Fig. 1A.

[0034] Fig. 2, which is a schematic perspective view of a broken-away portion of an embodiment of a spiral 20 according to the invention, illustrates how the inventive spiral 20 is preformed with seam loops 22 having the same function as the seam loops 14 of the known spiral 10 in Fig. 1, and special securing portions 24 which are arranged between the seam loops 22 to keep them spaced apart and which, in the shown embodiment, are substantially rectilinear and extended along a common geometric line X-X in parallel with the seam edge. This is best shown in Fig. 3.

[0035] The spiral 20 is bound to a clothing (not shown) comprising flat filament yarns 26 in its machine direc-
A machine clothing for a paper or cellulose machine, comprising machine direction yarns (26) and a spiral seam having two preformed yarn spirals (20), each bound by the machine direction yarns (26) to one seam edge of the clothing so as to form one row each of seam loops (22), which, for forming a seam, are meshable with each other and joinable onto each other by means of a pintle wire, characterised in that at least one of said spirals (20), between neighbouring seam loops (22) in the row, is preformed with special securing portions (24), to which the spiral (20) is attached at the corresponding seam edge, said securing portions (24) holding the seam loops (22) spaced apart and being extended substantially in the longitudinal direction (X-X) of the spiral (20).

2. The machine clothing as claimed in claim 1, wherein the machine direction yarns (26) binding to the yarn spiral (20) are flat filament yarns of a cross-section having a small and a great (B) cross-sectional dimension, said flat filament yarns (26) extending with their great cross-sectional dimension (B) in parallel with the principal plane of the clothing.

3. The machine clothing as claimed in claim 2, wherein the securing portions (24) of the yarn spiral (20) are preformed according to the flat filament yarn (26).

4. The machine clothing as claimed in claim 2 or 3, wherein the flat filament yarn (26) is of substantially rectangular cross-section.

5. The machine clothing as claimed in any one of claims 2-4, wherein each securing portion (24) of said spiral (20) is of a length (L) which is substantially equal to the great cross-sectional dimension (B) of the flat filament yarn (26).

6. The machine clothing as claimed in any one of claims 2-4, wherein each securing portion (24) of the spiral (20) is of a length (L) which is slightly greater than the great cross-sectional dimension (B) of the flat filament yarn (26).

7. The machine clothing as claimed in any one of the preceding claims, wherein each securing portion (24) is extended substantially quite in parallel (X-X) with the seam edge.

8. The machine clothing as claimed in any one of claims 1-6, wherein each securing portion (24) is slightly inclined relative to the seam edge.

9. The machine clothing as claimed in any one of the preceding claims, wherein the securing portions (24) are arranged successively along a common geometric line (X-X) extending in parallel with and positioned adjacent the seam edge.

10. The machine clothing as claimed in any one of the preceding claims, wherein it is a woven clothing.
11. The machine clothing as claimed in any one of the preceding claims, wherein it is a dryer fabric.

12. The machine clothing as claimed in claim 10, wherein it is a base fabric in a press felt.

13. The machine clothing as claimed in any one of the preceding claims, wherein both spirals (20) of the spiral seam of the clothing are preformed with securing portions (24) of the above-mentioned type.

14. A preformed yarn spiral (20), which is adapted to be secured along a seam edge on a paper or cellulose machine clothing to form a row of seam loops (22), which, for forming a seam on the clothing, are adapted to be fitted between seam loops (22) of an opposite seam edge on said clothing and then be joined onto these by insertion of a pintle wire into the seam loops (22), wherein the spiral (20), between each pair of seam loops (22) formed by the spiral, is preformed with special securing portions (24) for attaching the spiral (20) to the seam edge, said securing portions (24) holding the seam loops (22) spaced apart and being extended substantially in the longitudinal direction (X-X) of the spiral (20).

15. The preformed yarn spiral (20) as claimed in claim 14, wherein the securing portions (24) are substantially rectilinear.

16. The preformed yarn spiral (20) as claimed in claim 14 or 15, wherein the securing portions (24) are extended along a common geometric line (X-X) in parallel with the longitudinal direction of the spiral (20).

17. The preformed yarn spiral (20) as claimed in any one of claims 14-16, wherein most of the pitch of the spiral (20) is located in the securing portions (24).

Patentansprüche

1. Maschinenbespannung für eine Papier- oder Cellulosemaschine, die Garne (26) in Maschinenrichtung und eine Spiralnaht umfasst, die zwei vorgeformte Garnspiralen (20) aufweist, von denen jede durch Garne (26) in Maschinenrichtung mit einem Nahtrand der Bespannung so verbunden ist, dass jeweils eine Reihe von Nahtschlaufen (22) gebildet wird, die zur Bildung einer Naht ineinander eingreifbar und aneinander mittels eines Scharnierdrahts verbindbar sind, dadurch gekennzeichnet, dass zumindest eine der Spiralen (20) zwischen benachbarten Nahtschlaufen (22) in der Reihe mit besonderen Befestigungsbereichen (24) vorgeformt ist, mit denen die Spirale (20) an dem entsprechenden Nahtrand befestigt ist, wobei die Befestigungsbe-
11. Maschinenbespannung wie in irgendeinem der vorhergehenden Ansprüche beansprucht, wobei sie ein Trocknergewebe ist.

12. Maschinenbespannung wie in Anspruch 10 beansprucht, wobei sie ein Basisgewebe in einem Pressfilz ist.


14. Vorgeformte Gamspirale (20), die entlang einem Nahtrand einer Bespannung bei einer Papier- oder Cellulosemaschine befestigbar ist, um eine Reihe von Nahtschlüssen (22) zu bilden, die zur Bildung einer Naht an der Bespannung zwischen Nahtschlüssen (22) eines gegenüberliegenden Nahrstranges an der Bespannung einpassbar sind und dann an diesen durch Einführen eines Schamierdrahts in die Nahtschlüssen (22) verbindbar sind, wobei die Spirale (20) zwischen jedem Paar von Nahtschlüssen (22), die von der Spirale gebildet sind, mit besonderen Befestigungsbereichen (24) zur Befestigung der Spirale (20) an dem Nahtrand vorgeformt ist und die Befestigungsbereiche (24) die Nahtschlüssen (22) befestigen beaufschlagen die Spirale (20) leichter an der Bespannung und sich im Wesentlichen in Längsrichtung (X-X) der Spirale (20) erstrecken.

15. Vorgeformte Gamspirale (20) wie in Anspruch 14 beansprucht, wobei die Befestigungsbereiche (24) im Wesentlichen geradlinig sind.

16. Vorgeformte Gamspirale (20) wie in Anspruch 14 oder 15 beansprucht, wobei sich die Befestigungsbereiche (24) entlang einer gemeinsamen, geometrischen Linie (X-X) parallel zu der Längsrichtung der Spirale (20) erstrecken.

17. Vorgeformte Gamspirale (20) wie in irgendeinem der Ansprüche 14-16 beansprucht, wobei sich der größte Teil der Schrittweite der Spirale (20) in den Befestigungsbereichen (24) befindet.

Revendications

1. Habillage de machine pour une machine à papier ou à cellulose, comportant des fils dans le sens de la machine (26) et une couture en spirale ayant deux spirales de fils prêformées (20), liées chacune par les fils dans le sens de la machine (26) à un bord de couture de l’habillage de façon à former chacune une rangée de boucles de couture (22), qui, afin de former une couture, peuvent être engagées l’une avec l’autre et reliées l’une à l’autre au moyen d’un fil de pivot, caractérisé en ce qu’au moins une desdites spirales (20), entre des boucles de couture avoisinantes (22) dans la rangée, est préformée avec des parties de fixation spéciales (24), sur lesquelles la spirale (20) est fixée au niveau du bord de couture correspondant, lesdites parties de fixation (24) maintenant les boucles de couture (22) espacées et s’étendant sensiblement dans la direction longitudinale (X-X) de la spirale (20).

2. Habillage de machine selon la revendication 1, dans lequel les fils dans le sens de la machine (26) qui se lient à la spirale de fil (20) sont des fils continus plats d’une section ayant une petite et une grande (B) dimension en coupe, lesdits fils continus plats (26) s’étendant avec leur grande dimension en coupe (B) parallèlement au plan principal de l’habillage.

3. Habillage de machine selon la revendication 2, dans lequel les parties de fixation (24) de la spirale de fil (20) sont préformées en fonction du fil continu plat (26).

4. Habillage de machine selon la revendication 2 ou 3, dans lequel le fil continu plat (26) est d’une section sensiblement rectangulaire.

5. Habillage de machine selon l’une quelconque des revendications 2 à 4, dans lequel chaque partie de fixation (24) de ladite spirale (20) est d’une longueur (L) qui est sensiblement égale à la grande dimension en coupe (B) du fil continu plat (26).

6. Habillage de machine selon l’une quelconque des revendications 2 à 4, dans lequel chaque partie de fixation (24) de la spirale est d’une longueur (L) qui est légèrement plus grande que la grande dimension en coupe (B) du fil continu plat (26).

7. Habillage de machine selon l’une quelconque des revendications précédentes, dans lequel chaque partie de fixation (24) s’étend pratiquement essentiellement parallèlement (X-X) au bord de couture.

8. Habillage de machine selon l’une quelconque des revendications 1 à 6, dans lequel chaque partie de fixation (24) est légèrement inclinée par rapport au bord de couture.

9. Habillage de machine selon l’une quelconque des revendications précédentes, dans lequel les parties de fixation (24) sont disposées successivement le long d’une ligne géométrique commune (X-X) qui s’étend parallèlement à et positionnée de façon adjacente au bord de couture.
10. Habillage de machine selon l'une quelconque des revendications précédentes, dans lequel il s'agit d'une toile tissée.

11. Habillage de machine selon l'une quelconque des revendications précédentes, dans lequel il s'agit d'une toile de séchoir.

12. Habillage de machine selon la revendication 10, dans lequel il s'agit d'une toile de base dans un feutre de presse.

13. Habillage de machine selon l'une quelconque des revendications précédentes, dans lequel les deux spirales (20) de la couture à spirale de l'habillage sont préformées avec des parties de fixation (24) du type mentionné ci-dessus.

14. Spirale de fil préformée (20), qui est prévue pour être fixée le long d'un bord de couture sur un habillage de machine à papier ou à cellulose afin de former une rangée de boucles de couture (22), qui, afin de former une couture sur l'habillage, sont prévues pour être logées entre des boucles de couture (22) d'un bord de couture opposé sur ledit habillage et ensuite être reliées à celles-ci par l'insertion d'un fil de pivot dans les boucles de couture (22), la spirale (20), entre chaque paire de boucles de couture (22) formées par la spirale, étant préformée avec des parties de fixation spéciales (24) destinées à fixer la spirale (20) sur le bord de couture, lesdites parties de fixation (24) maintenant les boucles de couture (22) espacées et s'étendant sensiblement dans la direction longitudinale (X-X) de la spirale (20).

15. Spirale de fil préformée (20) selon la revendication 14, dans laquelle les parties de fixation (24) sont sensiblement rectilignes.

16. Spirale de fil préformée (20) selon la revendication 14 ou 15, dans laquelle les parties de fixation (24) s'étendent le long d'une ligne géométrique commune (X-X) parallèlement à la direction longitudinale de la spirale (20).

17. Spirale de fil préformée (20) selon l'une quelconque des revendications 14 à 16, dans laquelle la majeure partie du pas de la spirale (20) se trouve dans les parties de fixation (24).