EUROPEAN PATENT SPECIFICATION

PROCESS FOR THE SYNTHESIS OF NUCLEOSIDE ANALOGUES
VERFAHREN ZUR HERSTELLUNG VON NUKLEOSID-ANALOGEN
PROCEDES DE SYNTHESE D’ANALOGUES DE NUCLEOSIDES

Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:
AL LT LV SI

Priorities:
31.03.1995 GB 9506644

Inventors:
• SAMANO, Mirna, C. Glaxo Wellcome Inc.
 Research Triangle Park, NC 27709 (US)
• SAMANO, Vicente Glaxo Wellcome Inc.
 Research Triangle Park, NC 27709 (US)
• GOODYEAR, Michael, David
 Stevenage Hertfordshire SG1 2NY (GB)

Representative: Quillin, Helen Kaye et al
GlaxoSmithKline
Corporate Intellectual Property (CN9.25.1)
980 Great West Road
Brentford, Middlesex TW8 9GS (GB)

References cited:
WO-A-91/11186
WO-A-95/29174

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention is concerned with a process for the preparation of anti-viral 1,3-oxathiolane nucleosides, which employs an intramolecular glycosylation to produce exclusively the \(\beta \)-diastereomer. The invention also relates to novel intermediates obtained by the process.

1,3-Oxathiolane nucleosides possess two chiral centres (at the C1'- and C4'-positions according to the furanose numbering system) and typically exist as diastereomeric pairs of the \(\alpha \)- and \(\beta \)-forms, each form comprising two enantiomers. The \(\alpha \)- and \(\beta \)-diastereoisomers tend to have different anti-viral activities, the \(\beta \)-form typically being the more potent. Similarly, the enantiomeric pairs of each diastereomer tend to have different properties.

\(\beta \)-Diastereomers have traditionally been obtained by preparation of the diastereomeric mixture followed by laborious separation of the \(\beta \)-form by physical means such as differential solubility or chromatography. It follows that the overall yield of \(\beta \)-isomer is typically less than 50%.

International Patent Application No. WO91/11186 describes a process whereby 1,3-oxathiolane nucleosides may be obtained with high \(\beta \)-diastereoselectivity by condensing a carbohydrate or carbohydrate-like moiety with a heterocyclic base in the presence of a specific Lewis acid, typically stannic chloride. The process is further exemplified in International Patent Application No. WO92/14743.

Further diastereoselective processes for the preparation of nucleoside analogues involving condensation of a carbohydrate or like moiety with a purine or pyrimidine base are described in WO92/20669 and WO95/29174.

We have now developed an efficient new process which provides exclusively the \(\beta \)-diastereomer of a 1,3-oxathiolane pyrimidine nucleoside with no \(\alpha \)-contamination. The critical steps involved in the synthesis are cyclisation of an appropriate heterocyclic acetaldehyde with 1,4-dithiane-2,5-diol to give a "5'-tethered" 1,3-oxathiolane nucleoside analogue which then undergoes an intramolecular glycosylation on the same face of the carbohydrate ring to give exclusively the (1'-tethered) \(\beta \)-diastereomer. The intramolecular glycosylation of 5'-tethered furanose nucleosides is known from, \textit{inter alia}, Japanese Patent No. 06263792-A, but the prior art comprises no reports of applying such methodology to the preparation of anti-viral 1,3-oxathiolane nucleosides. The resulting \(\beta \)-diastereomer may be hydrolysed to the corresponding cytidine analogue or may be resolved by any suitable technique known to a skilled person, for example, by esterification followed by selective enzymatic hydrolysis, removal of the 'unwanted' enantiomer and hydrolysis of the ester of desired enantiomeric configuration. Alternatively, it may be possible, for example, by use of a chiral auxiliary, to obtain intermediates substantially enantiomerically pure which intermediates can be carried forward to yield the desired enantiomerically pure product.

According to one aspect of the present invention, there is provided a process for the preparation of compounds of formula (I)

$$\text{(I)}$$

wherein R is hydrogen, C\(_{1-6}\) alkyl, or halogen and Y is hydroxy, amino, C\(_{1-6}\) alkoxy or OR\(^1\), where R\(^1\) is a chiral auxiliary, which process comprises treating a compound of formula (II)
wherein R and Y are as hereinbefore defined and R² represents hydrogen, C₁₋₆ acyl, C₁₋₆ alkyl or halogen with a suitable Lewis acid or a reagent apt to convert the group OR² to a leaving group.

[0008] Suitable Lewis acids include, for example, stannic chloride or trimethylsilyl triflate. Reaction with a Lewis acid is suitably conducted at reduced temperature (e.g. 0°C to -20°C) in a polar aprotic solvent followed by treatment with base.

[0009] Where R² is H, the group OR² may conveniently be converted to a leaving group by reaction with a halogenating agent such as a thionyl halide or an oxalyl halide, or a tosyl or mesyl halide. Other methods for converting OR² to a leaving group (i.e. a group which can be readily displaced by the ring nitrogen atom) will be apparent to those skilled in the art.

[0010] It is to be understood that where the variable R occurs more than once in a general formula, it may represent the same group at each position, or different groups.

[0011] As used herein halogen means bromine, chlorine, fluorine or iodine, especially chlorine or fluorine, more especially fluorine.

[0012] The term “chiral auxiliary” describes an asymmetric molecule that is used to effect the chemical resolution of a racemic mixture. Such chiral auxiliaries may possess one chiral centre such as α-methylbenzylamine or several chiral centres such as menthol. The purpose of the chiral auxiliary, once built into the starting material, is to allow simple separation of the resulting diastereomeric mixture. See, for example, J Jacques et al., Enantiomers, Racemates and Resolutions, pp. 251-369, John Wiley & Sons, New York (1981).

[0013] Where R¹ represents a chiral auxiliary it will preferably be selected from (d)-menthyl, (l)-menthyl, (d)-8-phenylmenthyl, (l)-8-phenylmenthyl, (+)-norephedrine and (-)-norephedrine. More preferably R¹ is (l)-menthyl, or (d)-menthyl, most preferably (l)-menthyl.

[0014] According to a further aspect, the present invention provides a process for the preparation of a compound of formula (Ia)

wherein R and Y are as previously defined, which process comprises treating a compound of formula (IIa)
wherein R, Y and R² are as previously defined with a suitable Lewis acid or a reagent apt to convert the group OR² to a leaving group.

[0015] According to another aspect of the invention, there is provided a process for the preparation of compounds of formula (II) which comprises reacting a compound of formula (III)

wherein R and Y are as hereinbefore defined, with 1,4-dithiane-2,5-diol at elevated temperature (e.g. 100°C) in a non-polar aprotic solvent to give a compound of formula (II) wherein R² is H. Compounds of formula (II) wherein R² is other than H may be prepared from the corresponding hydroxy compound by derivatisation using any standard procedure, for example, treatment with alkanoyl halide/base or carboxylic anhydride/base.

[0016] Reaction of a compound of formula (III) with 1,4-dithiane-2,5-diol results in a mixture of isomers of the compounds of formula (II) wherein R² is H. Where Y is OR¹, the compounds of formula (IIa) may be selectively crystallized from the diastereomeric mixture. In a further or alternative aspect, the present invention accordingly provides a method for obtaining the compound of formula (IIa) wherein R is H and Y is OR¹ from a mixture of isomers by treatment of the mixture of isomers, at least partially in solution, with an agent capable of effecting interconversion of the isomers without complete suppression of the crystallisation of the desired single enantiomer (IIa), said agent being an alcohol or an organic base. Other compounds of formula (IIa) may be prepared from compounds of formula (IIa) wherein R is H and Y is OR¹ by conventional methods.

[0017] Agents capable of effecting interconversion of the isomers without complete suppression of the crystallisation of the trans isomers are alcohols, such as, for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, and organic bases, in particular tertiary amines, for example, pyridine and triethylamine and Hunig's base. A preferred agent is triethylamine.

[0018] The interconversion of isomers may be effected in any suitable solvent or mixture of solvents which does not otherwise react with the alcohols of formula (II), under conditions of concentration and temperature which permit crystallisation of the desired isomer or isomers and which do not cause significant degradation of the desired isomer or isomers. Suitable solvents may include for example, aliphatic or aromatic hydrocarbons, ethers, esters and chlorinated hydrocarbons. The interconversion will preferably be effected at a temperature of about -10°C to 120°C, more preferably in the range of about -10°C to 80°C, such as about 0°C to 50°C.

[0019] It will be appreciated by those skilled in the art that selection of solvent, temperature, interconversion agent and, particularly, the quantity of the interconversion agent is best conducted as an integrated exercise dependent on the nature of the groups R, R¹ and R² present in the isomers. However, when an organic base is used as the interconversion agent, the preferred quantity is generally less than two mole-equivalents based on the total of all isomers of (II) present.

[0020] The interconversion of isomers may be conducted separately from the preparation of the isomeric mixture; however, it is conveniently conducted concomitantly with that preparation.

[0021] The interconversion procedure may also be used to increase the isomeric purity of isolated (IIa).

[0022] By means of the interconversion process, the isolated yield of the desired isomer (IIa) may be enhanced to
greater than 50% of theory (based on formation of all stereoisomers), typically to between about 60% and about 90% of theory; but it is not ruled out that yields approaching 100% of theory may be obtained.

[0023] Compounds of formula (III) may be prepared by reacting a compound of formula (IV)

\[
\begin{align*}
\text{(III)} & \quad \text{Compounds of formula (III) may be prepared by reacting a compound of formula (IV)} \\
\text{(IV)} & \quad \text{Compounds of formula (IV) may be prepared by reacting a compound of formula (V)}
\end{align*}
\]

wherein \(R \) (which may be the same or different) and \(Y \) are as hereinbefore defined, with aqueous trifluoroacetic acid (90%) at elevated temperature.

[0024] Compounds of formula (IV) may be prepared by reacting a compound of formula (V)

\[
\begin{align*}
\text{(V)} & \quad \text{Compounds of formula (V) may be prepared by reacting a compound of formula (VI)} \\
\text{(VI)} & \quad \text{Compounds of formula (VI) and (VII) may be obtained commercially or prepared from commercially available starting materials by methods known to a skilled person, for example, in the case where R in the compound of formula (VII) is to be fluorine and Z chlorine, by treating 5-fluorouracil with phosphorus oxychloride at elevated temperature in the presence of base.}
\end{align*}
\]

wherein \(R \) and \(Y \) are as hereinbefore defined and \(Z \) is a suitable leaving group, for example, chlorine, with a compound of formula (VI)

[0025] Compounds of formula (V) may be prepared by reacting a compound of formula (VII)

\[
\begin{align*}
\text{(VII)} & \quad \text{Compounds of formulae (VI) and (VII) may be obtained commercially or prepared from commercially available starting materials by methods known to a skilled person, for example, in the case where R in the compound of formula (VII) is to be fluorine and Z chlorine, by treating 5-fluorouracil with phosphorus oxychloride at elevated temperature in the presence of base.}
\end{align*}
\]

wherein \(R \) and \(Z \) (which may be the same or different) are as hereinbefore defined, with a suitable nucleophile, for example, in the case where \(Y \) is cytidine analogue (\(\text{Y=NH}_2 \)) by heating with ammoniacal methanol or, where racemic, may be resolved by any
suitable technique known to a skilled person, for example, by one of the enzyme procedures described in International Patent No. WO92/14743.

According to such a procedure, the racemic β-diastereomer (I) is esterified at the C5'-position using, for example, butyric anhydride, and the racemic ester (VIII) is treated with a suitable enzyme, typically pig liver esterase, to preferentially hydrolyse the 'unwanted' enantiomer back to the 5'-OH compound (IX) which is water-soluble and can be separated from the desired (unhydrolysed) enantiomer (X). The latter is converted to the 4-NH₂, 5'-OH compound of desired enantiomeric configuration by heating with ammoniacal methanol.

The process of the invention finds particular application in the preparation of (2R,5S)-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine, (2R,5S)-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine, (±)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine and (±)-cis-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine.

According to a further aspect of the invention, there are provided novel compounds of formula (IV), (III), (II) and (I) (which latter includes the racemate, the (2S,5R)-enantiomer (IX), the esterified racemate (VIII) and the esterified (2R,5S)-enantiomer (X)). Specific intermediate compounds arising from the preparation of (2R,5S)-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine, (2R,5S)-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine, (±)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine and (±)-cis-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine include:

- 2-(2,2-Dimethoxyethoxy)-4-ethoxy-5-fluoropyrimidine
- 2-(2,2-Dimethoxyethoxy)-4-ethoxypyrimidine
- 2-[(4-Ethoxy-5-fluoro-2-pyrimidinyl)oxy]acetaldehyde
- 2-[(4-Ethoxy-2-pyrimidinyl)oxy]acetaldehyde
- 2-[(4-Ethoxy-5-fluoro-2-pyrimidinyl)oxy][methyl]-1,3-oxathiolan-5-ol
- 2-[(4-Ethoxy-2-pyrimidinyl)oxy][methyl]-1,3-oxathiolan-5-ol
- 2-[(4-Ethoxy-5-fluoro-2-pyrimidinyl)oxy][methyl]-1,3-oxathiolan-5-yl acetate
- 2-[(4-Ethoxy-2-pyrimidinyl)oxy][methyl]-1,3-oxathiolan-5-yl acetate
- (2S*, 5R*)-4-Ethoxy-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one
- (2S*, 5R*)-4-Ethoxy-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one
- (2S*, 5R*)-4-Ethoxy-5-fluoro-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one
- (2S*, 5R*)-4-Ethoxy-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one
- (2S, 5R)-4-Ethoxy-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one
- (2S, 5R)-4-Ethoxy-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one
- (2R, 5S)-4-Ethoxy-5-fluoro-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one
- (2R, 5S)-4-Ethoxy-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one

The following examples of the process of the invention are for illustration. In all cases, ¹H NMR and C,H,N elemental analysis were consistent with the proposed structure.
Example 1

Preparation of (2R,5S)-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine

(a) 2,4-Dichloro-5-fluoropyrimidine

[0032] To a suspension of 5-fluorouracil (Aldrich, 8.00 g, 61.5 mmol) in phosphorus oxychloride (25.0 mL, 41.12 g, 268 mmol) was added N,N-diethylaniline (12.6 mL, 11.81 g, 80 mmol) and the mixture was heated at 100°C for 1.5 hours. Solvent was evaporated in vacuo and the residue poured into cold H₂O/Et₂O (400 mL, 1:1). The aqueous phase was extracted with Et₂O and the combined organic phase was dried (Na₂SO₄) and evaporated (water aspirator pump, 35°C) to give the desired product (10.2 g, 99%) as a yellowish solid: mp 34-36°C (lit. 35-36°C).

(b) 2-Chloro-4-ethoxy-5-fluoropyrimidine

[0033] To a solution of the product from step (a) (10.0 g, 59.9 mmol) in abs. EtOH (40 mL) at 0°C under nitrogen atmosphere was added 1M NaOEt/EtOH (61 mL, 61 mmol) and the mixture was stirred for 1 hour. Solvent was evaporated in vacuo and the residue partitioned between H₂O and Et₂O. The aqueous phase was extracted with Et₂O and the combined organic phase was washed with brine, dried (Na₂SO₄) and evaporated (water aspirator pump, 35°C) to provide the desired product (8.74 g, 83%) as a yellowish solid: mp 30-32°C (lit. 31-32°C); 1 H NMR (CDCl₃): δ 1.46 (t, J = 7.0 Hz, 3H), 4.53 (quartet, J = 7 Hz, 2H), 8.17 (d, J = 2.1 Hz, 1H); MS m/z 179 (M + 3, 17%), 177 (M + 1, 50%), 149 (100%). Anal. Calcd. for C₆H₆ClFN₂O: C, 40.81; H, 3.42; N, 15.86. Found, C, 40.90; H, 3.45; N, 15.81.

(c) 2-((2,2-Dimethoxyethoxy)-4-ethoxy-5-fluoropyrimidine

[0034] To a suspension of 60% NaH/mineral oil (2.88 g, 72.2 mmol) in anhydrous DMF (70 mL) at 0°C under nitrogen atmosphere was slowly added glycolaldehyde dimethyl acetal (Lancaster, 6.13 g, 57.7 mmol). The mixture was stirred at ambient temperature for 1 hour and then transferred to a solution of the product from step (b) (8.5 g, 48.1 mmol) in anhydrous DMF (70 mL) at -55°C over 15 minutes. The mixture was allowed to warm to -20°C over 2 hours and then neutralized with AcOH. Solvent was evaporated in vacuo and the residue partitioned between H₂O and CH₂Cl₂. The aqueous phase was extracted with CH₂Cl₂ and the combined organic phase was dried (Na₂SO₄) and evaporated. The residue was flash chromatographed (EtOAc/hexanes, 1:5) to give the desired product (9.75 g, 82%) as an oil: 1 H NMR (CDCl₃): δ 1.42 (t, J = 7.0 Hz, 3H), 3.43 (s, 6H), 4.32 (d, J = 5.2 Hz, 2H), 4.50 (quartet, J = 7.0 Hz, 2H), 4.75 (t, J = 5.2 Hz, 1H), 8.03 (d, J = 2.4 Hz, 1H); MS m/z 215 (M - OCH₃, 100%). Anal. Calcd. for C₁₀H₁₅FN₂O₄: C, 48.78; H, 6.14; N, 11.38. Found: C, 48.84; H, 6.06; N, 11.36.

(d) 2-[(4-Ethoxy-5-fluoro-2-pyrimidinyl)oxy]acetaldehyde

[0035] A mixture of the product from step (c) (6.0 g, 24.4 mmol) and 90% TFA/H₂O (50 ml) was heated at 50°C for 2.5 hours. Solvent was evaporated in vacuo and the residue partitioned between CHCl₃ and saturated NaHCO₃/H₂O. The aqueous phase was extracted with CHCl₃ (x2) and the combined extracts dried (Na₂SO₄) and evaporated to give the desired product (4.82 g, 99%) as a colourless oil which was used in the next step without further purification. Flash chromatography (EtOAc/hexanes, 1:2) gave analytically pure material as a colourless oil: 1 H NMR (CDCl₃): δ 1.43 (t, J = 7.0 Hz, 3H), 4.40 (quartet, J = 7.0 Hz, 2H), 4.81 (s, 2H), 8.03 (d, J = 1.8 Hz, 1H), 9.74 (s, 1H); MS m/z 201 (M + 1, 100%). Anal. Calcd. for C₈H₉FN₂O₃•0.25H₂O: C, 46.95; H, 4.68; N, 13.69. Found: C, 46.81; H, 4.61; N, 13.64.

(e) 2-[(4-Ethoxy-5-fluoro-2-pyrimidinyl)oxy]methyl]-1,3-oxathiolan-5-ol
(f) 2-[(4-Ethoxy-5-fluoro-2-pyrimidinyl)oxy]methyl]-1,3-oxathiolan-5-yl acetate

[0037] To a solution of the product from step (e) (1.0 g, 3.62 mmol) and pyridine (0.8 mL, 0.78 g, 9.88 mmol) in CH$_2$Cl$_2$ (12 mL) at 0°C was added AcCl (0.35 mL, 0.37 g, 4.7 mmol). After 1 hour at ambient temperature, saturated NaHCO$_3$/H$_2$O was added and the aqueous phase was extracted with CHCl$_3$. The combined organic phase was washed with brine, dried (Na$_2$SO$_4$), evaporated and dried in vacuo to give the desired product (1.13 g, 99%) as a yellow oil which was used in the next step without further purification (2:1 diastereomeric ratio by 1H NMR spectroscopy). Flash chromatography (acetone/CH$_2$Cl$_2$, 1:24) gave analytically pure material as a colourless oil: 1H NMR (CDCl$_3$): δ 1.42 (t, J = 7.0 Hz, 3H), 2.07 (s, 3H), 3.15 (d, J = 11.5 Hz, 1 H), 3.38 (dd, J = 11.5, 4.0 Hz, 1 H), 4.40-4.60 (m, 4H), 5.73 (m, 1 H), 6.70 (d, J = 4.0 Hz, 1 H), 8.03 (d, J = 2.5 Hz, 1 H); a similar set of signals appeared for the minor diastereomer; MS m/z 259 (M - OAc, 9%), 159 (100%). Anal. Calcd. for C$_{12}$H$_{15}$FN$_2$O$_5$S: C, 45.28; H, 4.75; N, 8.80; S, 10.07. Found: C, 45.35; H, 4.76; N, 8.83; S, 10.11.

(g) (2S*,5R*)-4-Ethoxy-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one

[0038] To a mixture of the product from step (f) (0.21 g, 0.66 mmol) and 4Å molecular sieves (0.3 g) in anhydrous CH$_3$CN (20 mL) at -20°C under nitrogen atmosphere was slowly added trimethylsilyl triflate (Aldrich, 0.14 mL, 0.16 g, 0.73 mmol). After stirring the mixture for 2 hours at -20°C, 1M NaOH/H$_2$O (2.0 mL, 2.0 mmol) was added. After 2 hours at 0°C, the mixture was neutralized with AcOH. Solvent was evaporated in vacuo and the residue flash chromatographed (EtOAc/hexanes, 9:1) to give the desired product (0.11 g, 60%) as a white solid: mp 162-164°C; 1H NMR (DMSO-d$_6$): δ 1.39 (t, J = 7.0 Hz, 3H), 3.29 (dd, J = 12.0, 2.7 Hz, 1H), 3.60 (dd, J = 12.0, 5.4 Hz, 1H), 3.82 (ddd, J = 12.5, 5.4, 3.5 Hz, 1H), 3.95 (ddd, J = 12.5, 5.4, 3.5 Hz, 1H), 4.45 (quartet, J = 7.0 Hz, 2H), 5.31 (t, J = 3.5 Hz, 1H), 5.63 (t, J = 5.4 Hz, 1H), 6.20 (m, 1H), 8.74 (d, J = 6.7 Hz, 1H); MS m/z 277 (M + 1, 4%), 159 (100%). Anal. Calcd. for C$_{10}$H$_{13}$FN$_2$O$_4$S: C, 43.47; H, 4.74; N, 10.14; S, 11.61. Found: C, 43.54; H, 4.76; N, 10.18; S, 11.52.

(h) (2S*,5R*)-4-Ethoxy-5-fluoro-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one

[0039] To a solution of the product from step (g) (90 mg) in pyridine (0.2 mL) was added butyric anhydride (1.0 mL) and the resulting mixture was stirred at ambient temperature for 18 hours. Ice-water was added and the aqueous solution was adjusted to pH 2 with 1N HC1/H$_2$O and extracted with CHCl$_3$ (x3). The combined organic phase was washed with saturated NaHCO$_3$/H$_2$O and brine, dried (Na$_2$SO$_4$) and concentrated in vacuo. The resulting oil was dried in vacuo at 50°C for 18 hours under a stream of nitrogen to obtain the desired product (100 mg) as a colourless solid: 1H NMR (CDCl$_3$): δ 0.99 (t, 3H), 1.42 (t, J = 7.0 Hz, 3H), 1.70 (sextuplet, J = 7.4 Hz, 2H), 2.40 (t, J = 7.4 Hz, 2H), 3.23 (m, 1H), 3.60 (m, 1H), 4.50 (quartet, J = 7.0 Hz, 2H), 4.65 (dd, 1H), 5.40 (m, 1H), 6.30 (m, 1H), 8.15 (d, J = 6 Hz, 1H); MS m/z 347 (M + 1, 25%), 159 (100%).

(i) (2R,5S)-4-Ethoxy-5-fluoro-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one

[0040] To a solution of the product from step (h) (10 mg) in 20% CH$_3$CN/buffer (3.0 mL, 0.05 M, pH 8.0, phosphate) was added PLE (pig liver esterase, 1.5 µL, Sigma) and the mixture was stirred at ambient temperature for 24 hours. The aqueous solution was extracted with hexane (x2) and the combined extracts were dried (Na$_2$SO$_4$) and concentrated in vacuo. HPLC analysis (Chiral Pack AS; EtOH; 1.5 ml/min) of the organic extracts indicated the presence of a single enantiomeric butyrate ester (4 mg). The enantiomeric alcohol was detected in the aqueous phase. Ester: 1H NMR (CDCl$_3$): δ 0.97 (t, J = 7.4 Hz, 3H), 1.42 (t, J = 7.0 Hz, 3H), 1.67 (sextuplet, J = 7.4 Hz, 2H), 2.40 (t, J = 7.4 Hz, 2H), 3.23 (d, J = 12.8 Hz, 1H), 3.60 (dd, J = 12.8, 5.3 Hz, 1H), 4.46 (dd, J = 12.6, 2.5 Hz, 1H), 4.52 (quartet, J = 7.0 Hz, 2H), 4.65 (dd, J = 12.6, 4.0 Hz, 1H), 5.37 (m, 1H), 6.29 (m, 1H), 8.12 (d, J = 6 Hz, 1H).

(j) (2R,5S)-5-Fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine

[0041] A solution of the ester from step (i) (4 mg) in NH$_3$/MeOH (2 mL) was placed in a steel bomb with a Teflon™ liner, sealed and heated at 70°C for 18 hours. Solvent was evaporated in vacuo to provide the desired product (2 mg) with HPLC, 1H NMR and MS properties identical to those of an authentic sample.
Example 2

Preparation of (2R,5S)-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine

(a) 2-Chloro-4-ethoxypyrimidine

[0042] To a solution of 2,4-dichloropyrimidine (Aldrich, 10.0 g, 67.12 mmol) in abs. EtOH (120 mL) at -3°C under nitrogen atmosphere was slowly added (over 2 hours) 1M NaOEt/EtOH (68 mL, 68 mmol) and the resulting mixture stirred for 1 hour. Solvent was evaporated in vacuo and the residue partitioned between H₂O and Et₂O. The aqueous phase was extracted with Et₂O and the combined organic phase was washed with brine, dried (Na₂SO₄) and evaporated (water aspirator pump, 35°C). The resulting residue was filtered and washed with petroleum ether to provide the desired product (8.05 g, 75%) as a yellowish solid; mp 30-31°C (lit. 35°C); ¹H NMR (CDCl₃): δ 1.37 (t, J = 7.0 Hz, 3H), 3.44 (s, 6H), 4.36-4.43 (m, 4H), 4.78 (t, J = 5.0 Hz, 1H), 6.34 (d, J = 6.0 Hz, 1H), 8.15 (d, J = 6.0 Hz, 1H); MS m/z 229 (M + 1, 100%). Anal. Calcd. for C₁₀H₁₆N₂O₄: C, 52.62; H, 7.07; N, 12.27. Found: C, 52.45; H, 7.01; N, 12.26.

(b) 2-(2,2-Dimethoxyethoxy)-4-ethoxypyrimidine

[0043] To a suspension of 60% NaH/mineral oil (2.55 g, 63.96 mmol) in anhydrous DMF (70 mL) at 0°C under nitrogen atmosphere was slowly added glycolaldehyde dimethyl acetal (Aldrich, 5.65 g, 53.3 mmol). The mixture was stirred at ambient temperature for 1 hour and then transferred to a solution of the product from step (a) (8.05 g, 50.76 mmol) in anhydrous DMF (70 mL) at -55°C over 15 minutes. The mixture was allowed to warm to -20°C over 2 hours and then neutralized with AcOH. Solvent was evaporated in vacuo and the residue partitioned between H₂O and CH₂Cl₂. The aqueous phase was extracted with CH₂Cl₂ and the combined organic phase was dried (Na₂SO₄) and evaporated in vacuo. The residue was flash chromatographed (EtOAc/hexanes, 1:4) to give the desired product (7.92 g, 69%) as a colourless oil: ¹H NMR (CDCl₃): δ 4.65 (quartet, J = 7.2 Hz, 2H), 4.80 (s, 2H), 6.40 (d, J = 6.0 Hz, 1H), 8.15 (d, J = 6.0 Hz, 1H); MS m/z 454 (M + 3, 41%), 197 (100%). Anal. Calcd. for C₆H₇ClN₂O: C, 46.40; H, 5.46; N, 10.85; S, 12.41. Found: C, 46.40; H, 5.44; N, 10.79; S, 12.49.

(c) 2-[(4-Ethoxy-2-pyrimidinyl)oxy]acetaldehyde

[0044] A mixture of the product from step (b) (6.0 g, 24.4 mmol) and 90% TFA/H₂O (45 ml) was heated at 50°C for 2 hours. Solvent was evaporated in vacuo and the residue partitioned between CHCl₃ and saturated NaHCO₃/H₂O. The aqueous phase was extracted with CHCl₃ and the combined extracts were dried (Na₂SO₄) and evaporated in vacuo to give the desired product (4.61 g, 69%) as an oil which was used in the next step without further purification (1 H NMR spectroscopy). ¹H NMR (CDCl₃): δ 1.37 (t, J = 7.0 Hz, 3H), 3.44 (s, 6H), 4.36-4.43 (m, 4H), 4.78 (t, J = 5.0 Hz, 1H), 6.33 (d, J = 6.0 Hz, 1H), 8.15 (d, J = 6.0 Hz, 1H); MS m/z 229 (M + 1, 13%), 197 (100%). Anal Calcd. for C₄H₇ClN₂O₂: C, 51.47; H, 5.67; N, 15.01. Found: C, 51.38; H, 5.69; N, 14.76.

(d) 2-[(4-Ethoxy-2-pyrimidinyl)oxy]methyl]-1,3-oxathiolan-5-ol

[0045] A mixture of the product from step (c) (4.0 g, 22.0 mmol) and 1,4-dithiane-2,5-diol (Aldrich, 1.67 g, 11.0 mmol) in anhydrous toluene (80 mL) was heated at 100°C for 2 hours. The mixture was filtered and the filtrate concentrated and dried in vacuo to give the desired product (6.27 g, 99%) as a waxy pale yellow oil which was used in the next step without further purification (~1:1 diastereomeric ratio). Flash chromatography (EtOAc/hexanes, 1:1) gave the following fractions: (R)-enantiomer (3.37 g, 55%) as a colourless solid: mp 30-31°C; ¹H NMR (CDCl₃): δ 1.37 (t, J = 7.0 Hz, 3H), 3.44 (s, 6H), 4.36-4.43 (m, 4H), 4.78 (t, J = 5.0 Hz, 1H), 6.34 (d, J = 6.0 Hz, 1H), 8.15 (d, J = 6.0 Hz, 1H); MS m/z 241 (M - OAc, 4%), 197 (100%). Anal. Calcd. for C₁₀H₁₆N₂O₄S: C, 52.62; H, 7.07; N, 12.27. Found: C, 52.45; H, 7.01; N, 12.26.

(e) 2-[(4-Ethoxy-2-pyrimidinyl)oxy]methyl]-1,3-oxathiolan-5-yl acetate

[0046] A mixture of the product from step (d) (1.0 g, 3.9 mmol), pyridine (0.7 mL, 6.86 g, 86.55 mmol) and Ac₂O (2.0 mL, 2.26 g, 21.2 mmol) was stirred at ambient temperature for 1.5 hours. Ice-water was added and the resulting mixture stirred for 15 minutes. The mixture was extracted with EtOAc and the combined extracts washed with saturated NaHCO₃/H₂O, dried (Na₂SO₄), evaporated and dried in vacuo to give the desired product (1.15 g, 99%) as an orange oil which was used in the next step without further purification (~2:1 diastereomeric ratio by ¹H NMR spectroscopy). ¹H NMR (CDCl₃): δ 1.40 (t, 3H), 2.05 (s, 3H), 3.08 (d, 1H), 3.27 (dd, 1H), 4.40-4.70 (m, 4H), 5.79 (m, 1H), 6.38 (d, 1H), 6.75 (d, 1H), 8.18 (d, 1H); a similar set of signals appeared for the minor diastereomer; MS m/z 241 (M - OAc, 4%).
101 (100%). Anal. Calcd. for C_{12}H_{16}N_{2}O_{5}S: C, 47.99; H, 5.37; N, 9.33; S, 10.68. Found: C, 47.88; H, 5.43; N, 9.22; S, 10.60.

(f) (2S*,5R*)-4-Ethoxy-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one

[0047] To a solution of the product from step (e) (0.20 g, 0.66 mmol) in anhydrous CH_{3}CN (12 mL) at 0°C under nitrogen atmosphere was slowly added stannic chloride (Aldrich, 0.12 mL, 0.27 g, 1.05 mmol). After stirring for 2 hours at 0°C, I M NaOH/H_{2}O (5.5 ml, 5.5 mmol) was added. After 1 hour at 0°C, the mixture was neutralized with AcOH. Solvent was evaporated in vacuo and the residue partitioned between CHCl_{3} and water. The aqueous phase was extracted with CHCl_{3} (x2) and the combined extracts were dried (Na_{2}SO_{4}) and concentrated in vacuo. The residue was flash chromatographed (EtOAc/hexanes, 2:1, then EtOAc) to give the desired product (0.10 g, 60%) as a white solid: mp 117-118°C; 1H NMR (DMSO-d_{6}): δ 1.26 (t, J = 7.0 Hz, 3H), 3.15 (dd, J = 12.0, 3.5 Hz, 1H), 3.51 (dd, J = 12.0, 5.5 Hz, 1H), 3.71-3.84 (m, 2H), 4.26 (quartet, J = 7.0 Hz, 2H), 5.22 (t, J = 4.0 Hz, 1 H), 5.40 (t, J = 6.0 Hz, 1 H), 6.0 (d, J = 7.4 Hz, 1 H), 6.18 (dd, J = 5.5, 3.5 Hz, 1H), 8.25 (d, J = 7.4 Hz, 1H); MS m/z 259 (M+1, 4%), 141 (100%). Anal. Calcd. for C_{10}H_{14}N_{2}O_{4}S: C, 46.50; H, 5.46; N, 10.85; S, 12.41. Found: C, 46.58; H, 5.49; N, 10.84; S, 12.34.

(g) (2S*,5R*)-4-Ethoxy-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one

[0048] To a solution of the product from step (f) (0.30 g, 1.16 mmol) in pyridine (0.19 mL, 0.18 g, 2.32 mmol) was added butyric anhydride (0.37 mL, 0.36 g, 2.32 mmol) and the resulting mixture was stirred at ambient temperature for 2 hours. Saturated NaHCO_{3}/H_{2}O was added and, after 1 hour, the mixture was extracted with EtOAc (x2) and the combined extracts were dried (Na_{2}SO_{4}), concentrated in vacuo and flash chromatographed (EtOAc/hexanes, 1:1) to give the desired product (0.21 g, 55%) as a yellowish solid: mp 59-61°C; 1H NMR (CDCl_{3}): 8 0.96 (t, J = 7.4 Hz, 3H), 1.36 (t, J = 7.1 Hz, 3H), 1.68 (sextuplet, J = 7.4 Hz, 2H), 1.80 (br s, 1H), 2.36 (t, J = 7.4 Hz, 2H), 3.14 (dd, J = 12.3, 3.5 Hz, 1H), 3.59 (dd, J = 12.3, 5.2 Hz, 1H), 4.40 (m, 3H), 4.59 (dd, J = 12.3, 5.2 Hz, 1H), 5.36 (dd, J = 5.2, 3.4 Hz, 1H), 6.89 (d, J = 7.3 Hz, 1H), 6.34 (dd, J = 5.2, 3.9 Hz, 1H), 7.91 (d, J = 7.3 Hz, 1H); MS m/z 329 (M = 1, 11%), 141 (100%). Anal. Calcd. for C_{14}H_{20}N_{2}O_{5}S: C, 51.21; H, 6.14; N, 8.53; S, 9.76. Found: C, 51.08; H, 6.15; N, 8.39; S, 9.69.

(h) (2R,5S)-4-Ethoxy-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one

[0049] To a solution of the product from step (g) (10 mg) in 20% CH_{3}CN/buffer (3.0 mL, 0.05 M. pH 8.0, phosphate) is added PLE (pig liver esterase, 1.5 µL, Sigma) and the mixture is stirred at ambient temperature for 24 hours. The aqueous solution is extracted with hexane (x2) and the combined extracts were dried (Na_{2}SO_{4}) and concentrated in vacuo to give the desired product. HPLC analysis of the organic phase indicates the presence of a single enantiomeric butyrate ester. The enantiomeric alcohol is detected in the aqueous phase.

(i) (2R,5S)-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine

[0050] A solution of the ester from step (h) (4 mg) in NH_{3}/MeOH (2 mL) is placed in a steel bomb with a Teflon™ liner, sealed and heated at 70°C for 18 hours. Solvent was evaporated in vacuo to give the desired product with HPLC, 1H NMR and MS properties identical to those of an authentic sample.

Example 3

(2S*,5R*)-5-Fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine

[0051] A solution of the product from step (g) (10 mg) in NH_{3}/MeOH (2 mL of MeOH saturated with NH_{3} gas at 0°C for 45 minutes) was placed in a steel bomb with a teflon liner, sealed and heated at 70°C for 18 hours. Solvent was evaporated in vacuo and acetone added to give the desired product (8.8 mg, 99%) as a white solid: mp 195-196°C; 1H NMR (DMSO-d_{6}): δ 3.10 (dd, J = 12.0, 4.2 Hz, 1H), 3.40 (dd, J = 12.0, 5.3 Hz, 1H), 3.70 (ddd, J = 12.0, 5.5, 3.5 Hz, 1H), 3.77 (ddd, J = 12.0, 5.5, 3.5 Hz, 1H), 5.16 (t, J = 3.5 Hz, 1H), 5.39 (t, J = 5.5 Hz, 1H), 6.11 (m, 1H), 7.56 (br s, 1H), 7.80 (br s, 1H), 8.17 (d, J = 7.4 Hz, 1H); MS m/z 248 (M + 1, 34%), 130 (100%). Anal. Calcd. for C_{8}H_{10}FN_{3}O_{3}S: C, 38.86; H, 4.08; N, 17.00; S, 12.97. Found: C, 38.97; H, 4.05; N, 16.96; S, 12.95.
Example 4
(2S*,5R*)-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine

[0052] A solution of (2S*, 5R*)-4-ethoxy-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one (0.21g) in ammonia/methanol (8 mL of methanol saturated with ammonia gas at 0°C for 45 minutes) was placed in a steel bomb with a Teflon™ liner, sealed and heated at 70°C for 18 hours. Solvent was evaporated in vacuo and the residue subjected to flash chromatography to give the desired product (0.16g, 89%) as a white solid: mp 184-185°C; 1H NMR (DMSO-d6): δ 3.00 (dd, J = 11.8, 5.0 Hz, 1H), 3.38 (dd, J = 11.8, 5.5 Hz, 1H), 3.63-3.80 (m, 2H), 5.15 (t, J = 4.5 Hz, 1H), 5.30 (t, J=6.0 Hz, 1H), 5.70 (d, J = 7.3 Hz, 1H); 6.18 (t, J=5.0 Hz, 1H), 7.20 (brd, 2H, NH2), 7.79 (d, J=7.3 Hz, 1H); MS m/z 229.8 (M + 1, 4%), 112 (100%). Anal. Calcd. for C8H11N3O3S: C, 41.91; H, 4.84; N, 18.33; S, 13.99. Found: C, 41.97; H, 4.83; N, 18.24; S, 13.93

Claims

1. A process for the preparation of compounds of formula (I)

![Diagram of formula (I)]

wherein R is hydrogen, C1-6 alkyl, or halogen and Y is hydroxy, amino, C1-6 alkoxy or OR1, where R1 is a chiral auxiliary;

which process comprises treating a compound of formula (II)

![Diagram of formula (II)]

wherein R and Y are as hereinbefore defined and R2 represents hydrogen, C1-6acyl, C1-6alkyl or halogen with a suitable Lewis acid or a reagent apt to convert the group OR2 to a leaving group.

2. A process according to Claim 1 for the preparation of a compound of formula (Ia)
wherein R is hydrogen, C₁₋₆ alkyl, or halogen, and Y is hydroxy, amino, C₁₋₆ alkoxy or OR¹, where R¹ is a chiral auxiliary, which process comprises treating a compound of formula (Iia)

wherein R, Y and R² are as previously defined with a suitable Lewis acid or a reagent apt to convert the group OR² to a leaving group.

3. A process according to Claim 1 or Claim 2 wherein the Lewis acid is stannic chloride or trimethylsilyl triflate.

4. A process according to Claim 3 wherein the Lewis acid is stannic chloride and the treatment is carried out at reduced temperature in a polar aprotic solvent.

5. A process according to any of Claims 1 to 4 wherein the compound of formula (II) is prepared by reacting a compound of formula (III)

wherein R is hydrogen, C₁₋₆ alkyl, or halogen, and Y is hydroxy, amino, C₁₋₆ alkoxy, or OR¹ where R¹ is a chiral auxiliary, with 1,4-dithiane-2,5-diol at elevated temperature in a non-polar aprotic solvent, to give a compound of formula (II) wherein R² is H, followed if necessary or desired by derivatisation to produce a compound of formula (II) wherein R² is other than H.

6. A process according to Claim 5 wherein the reaction with 1,4-dithiane-2,5-diol is carried out at about 100°C in anhydrous toluene.

7. A method for obtaining a compound of formula (IIa) wherein R is H and Y is OR¹ from a mixture of isomers by
treatment of the mixture of isomers, at least partially in solution, with an agent capable of effecting interconversion of the isomers without complete suppression of the crystallisation of the desired single enantiomer (Ila), said agent being an alcohol or an organic base.

8. A compound selected from 2-(2,2-dimethoxyethoxy)-4-ethoxy-5-fluoropyrimidine and 2-(2,2-dimethoxyethoxy)-4-ethoxy-5-pyrimidine.

11. A compound of formula (Ila)

wherein R represents hydrogen, C₁₋₆ alkyl or halogen, R² represents hydrogen, C₁₋₆ acyl, C₁₋₆ alkyl or halogen and Y represents OR¹ wherein R¹ represents (d)-menthyl, (l)-menthyl, (d)-8-phenylmenthyl, (l)-8-phenylmenthyl, (+)-norephedrine or (-)-nophedrine.

12. A compound as claimed in Claim 11 wherein R¹ represents (l)-menthyl.

13. A compound selected from (2S*, 5R*)-4-ethoxy-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one and (2S*, 5R*)-4-ethoxy-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one.

14. A compound selected from (2S*, 5R*)-4-ethoxy-5-fluoro-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one and (2S*, 5R*)-4-ethoxy-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one.

15. A compound selected from (2S, 5R)-4-ethoxy-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one and (2S, 5R)-4-ethoxy-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one.

Patentansprüche

1. Verfahren zur Herstellung von Verbindungen der Formel (I) :
worin R Wasserstoff, C\textsubscript{1-6}-Alkyl oder Halogen ist und Y Hydroxy, Amino, C\textsubscript{1-6}-Alkoxy oder OR\textsubscript{1} ist, worin R\textsubscript{1} ein chiraler Hilfsstoff ist; wobei das Verfahren das Behandeln einer Verbindung der Formel (II):

\begin{equation}
\text{(II)}
\end{equation}

worin R und Y wie hier zuvor definiert sind und R\textsubscript{2} Wasserstoff, C\textsubscript{1-6}-Acyl, C\textsubscript{1-6}-Alkyl oder Halogen darstellt, mit einer geeigneten Lewis-Säure oder einem Reagens umfaßt, das dazu geeignet ist, die Gruppe OR\textsubscript{2} zu einer Abgangsgruppe umzuwandeln.

2. Verfahren gemäß Anspruch 1 zur Herstellung einer Verbindung der Formel (Ia):

\begin{equation}
\text{(Ia)}
\end{equation}

worin R Wasserstoff, C\textsubscript{1-6}-Alkyl oder Halogen ist und Y Hydroxy, Amino, C\textsubscript{1-6}-Alkoxy oder OR\textsubscript{1} ist, worin R\textsubscript{1} ein chiraler Hilfsstoff ist, wobei das Verfahren das Behandeln einer Verbindung der Formel (IIa):
worin R, Y und R2 wie zuvor definiert sind, mit einer geeigneten Lewis-Säure oder einem Reagens umfaßt, das dazu geeignet ist, die Gruppe OR2 zu einer Abgangsgruppe umzuwandeln.

3. Verfahren gemäß Anspruch 1 oder 2, worin die Lewis-Säure Zinn(IV)-chlorid oder Trimethylsilyltriflat ist.

4. Verfahren gemäß Anspruch 3, worin die Lewis-Säure Zinn(IV)-chlorid ist und die Behandlung bei reduzierter Temperatur in einem polaren aprotischen Lösungsmittel durchgeführt wird.

5. Verfahren gemäß einem der Ansprüche 1 bis 4, worin die Verbindung der Formel (II) durch Umsetzen einer Verbindung der Formel (III):

6. Verfahren gemäß Anspruch 5, worin die Reaktion mit 1,4-Dithian-2,5-diol bei ca. 100°C in wasserfreiem Toluol durchgeführt wird.

7. Verfahren zum Erhalt einer Verbindung der Formel (IIa), worin R H ist und Y OR1 ist, aus einer Mischung von Isomeren durch Behandlung der Mischung von Isomeren, wenigstens teilweise in Lösung, mit einem Mittel, das die gegenseitige Umwandlung der Isomere ohne vollständige Unterdrückung der Kristallisation des gewünschten einzelnen Enantiomers (IIa) bewirken kann, wobei das Mittel ein Alkohol oder eine organische Base ist.

8. Verbindung, die aus 2-(2,2-Dimethoxyethoxy)-4-ethoxy-5-fluorpyrimidin und 2-(2,2-Dimethoxyethoxy)-4-ethoxy-5-pyrimidin ausgewählt ist.

11. Verbindung der Formel (IIa):

\[
\begin{array}{c}
\text{Y} \\
\text{R}
\end{array}
\]

worin R Wasserstoff, C\textsubscript{1-6}-Alkyl oder Halogen darstellt, R2 Wasserstoff, C\textsubscript{1-6}-Acyl, C\textsubscript{1-6}-Alkyl oder Halogen darstellt und Y OR1 darstellt, worin R1 (d)-Menthyl, (l)-Menthyl, (d)-8-Phenylmenthyl, (l)-8-Phenylmenthyl, (+)-Norephedrin oder (-)-Norephedrin darstellt.

12. Verbindung gemäß Anspruch 11, worin R1 (1)-Menthyl darstellt.

13. Verbindung, die aus (2S*,5R*)-4-Ethoxy-5-fluor-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-on und (2S*,5R*)-4-Ethoxy-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-on ausgewählt ist.

14. Verbindung, die aus (2S*,5R*)-4-Ethoxy-5-fluor-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-on und (2S*,5R*)-4-Ethoxy-1-[2-(butanoyloxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-on ausgewählt ist.

15. Verbindung, die aus (2S,5R)-4-Ethoxy-5-fluor-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-on und (2S,5R)-4-Ethoxy-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-on ausgewählt ist.

Revendications

1. Procédé pour la préparation de composés de formule (I)

\[
\begin{array}{c}
\text{Y} \\
\text{R}
\end{array}
\]

dans laquelle R représente l'hydrogène, un groupe alkyle C\textsubscript{1-6} ou un halogène, et Y représente un groupe hydroxy, amino, alcoxy C\textsubscript{1-6}, ou OR1 dans lequel R1 est un auxiliaire chiral ; lequel procédé comprend le traitement d'un composé de formule (II)
dans laquelle R et Y sont tels que définis plus haut et R² représente l'hydrogène, un groupe acyle C₁₋₆, alkyle C₁₋₆ ou un halogène, avec un acide de Lewis approprié ou un réactif apte à convertir le groupe OR² en un groupe partant.

2. Procédé selon la revendication 1, pour la préparation d'un composé de formule (Ia)

dans laquelle R représente l'hydrogène, un groupe alkyle C₁₋₆ ou un halogène, et Y représente un groupe hydroxy, amino, alcoxy C₁₋₆ ou OR¹ dans lequel R¹ est un auxiliaire chiral, lequel procédé comprend le traitement d'un composé de formule (IIa)

3. Procédé selon la revendication 1 ou la revendication 2, dans lequel l'acide de Lewis est le chlorure stannique ou le triflate de triméthylsilyle.

4. Procédé selon la revendication 3, dans lequel l'acide de Lewis est le chlorure stannique et le traitement est effectué à température réduite dans un solvant aprotique polaire.

5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le composé de formule (II) est préparé en faisant réagir un composé de formule (III)
dans laquelle R représente l'hydrogène, un groupe alkyle C\textsubscript{1-6} ou un halogène, et Y représente un groupe hydroxy, amino, alcoxy C\textsubscript{1-6} ou OR1 dans lequel R1 est un auxiliaire chiral, avec le 1,4-dithiane-2,5-diol à température élevée dans un solvant aprotique non-polaire, pour donner un composé de formule (II) dans laquelle R2 représente l'hydrogène, opération suivie si cela est nécessaire ou souhaité, de la préparation d'un dérivé pour produire un composé de formule (II) dans laquelle R2 est autre chose que l'hydrogène.

6. Procédé selon la revendication 5, dans lequel la réaction avec le 1,4-dithiane-2,5-diol est effectuée à environ 100°C dans le toluène anhydre.

7. Procédé pour obtenir un composé de formule (IIa) dans lequel R représente l'hydrogène et Y représente OR1, à partir d'un mélange d'isomères par traitement du mélange d'isomères, au moins partiellement en solution, avec un agent capable d'effectuer l'interconversion des isomères sans suppression complète de la cristallisation de l'énantiomère unique désiré (IIa), ledit agent étant un alcool ou une base organique.

8. Composé choisi parmi la 2-(2,2-diméthoxyéthoxy)-4-éthoxy-5-fluoropyrimidine et la 2-(2,2-diméthoxyéthoxy)-4-éthoxy-5-pyrimidine

10. Composé choisi parmi le 2-[[4-éthoxy-5-fluoro-2-pyrimidinyl]oxy[méthyl]-1,3-oxathiolan-5-ol et le 2-[[4-éthoxy-2-pyrimidinyl]oxy[méthyl]-1,3-oxathiolan-5-ol, l'acétate de 2-[[4-éthoxy-5-fluoro-2-pyrimidinyl]oxy[méthyl]-1,3-oxathiolan-5-yle et l'acétate de 2-[[4-éthoxy-2-pyrimidinyl]oxy[méthyl]-1,3-oxathiolan-5-yle.

11. Composé de formule (IIa)

dans laquelle R représente l'hydrogène, un groupe alkyle C\textsubscript{1-6} ou un halogène, R2 représente l'hydrogène, un groupe acyle C\textsubscript{1-6}, alkyle C\textsubscript{1-6} ou un halo-gène, et Y représente OR1 dans lequel R1 représente le groupe (d)-menthyle, (1)-menthyle, (d)-8-phénylmenthyle, (1)-8-phénylmenthyle, (+)-noréphédrine ou (-)-noréphédrine.

12. Composé selon la revendication 11, dans lequel R1 représente le groupe (1)-menthyle.

13. Composé choisi parmi la (2S*, 5R*)-4-éthoxy-5-fluoro-1-[2-(hydroxyméthyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one et la (2S*, 5R*)-4-éthoxy-1-[2-(hydroxyméthyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one.

14. Composé choisi parmi la (2S*, 5R*)-4-éthoxy-5-fluoro-1-[2-(butanoyloxyméthyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one et la (2S*, 5R*)-4-éthoxy-1-[2-(butanoyloxyméthyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one.
15. Composé choisi parmi la (2S, 5R)-4-éthoxy-5-fluoro-1-[2-(hydroxyméthyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one et la (2S, 5R)-4-éthoxy-1-[2-(hydroxyméthyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one.