EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 09.06.1999 Bulletin 1999/23
(51) Int Cl.: H04B 10/158
(86) International application number: PCT/GB96/00480
(21) Application number: 96904825.3
(22) Date of filing: 04.03.1996

(54) METHOD AND APPARATUS FOR CONDITIONING OPTICAL SOLITONS
VERFAHREN UND VORRICHTUNG ZUM KONDITIONIEREN VON OPTISCHEN SOLITONS
PROCEDE PERMETTANT LE CONDITIONNEMENT DE SOLITONS OPTIQUES ET APPAREIL CORRESPONDANT

(84) Designated Contracting States:
DE FR GB NL SE

(30) Priority: 04.03.1995 GB 9504370
(73) Proprietor: NORTHERN TELECOM LIMITED
Montreal, Quebec H2Y 3Y4 (CA)

(72) Inventors:
• KING, Jonathan, Paul
 Epping, Essex CM16 5AU (GB)
• HARDCASTLE, Ian
 Harlow, Essex CM17 0SB (GB)
• HARVEY, Henry, John
 Bishop’s Stortford, Herts CM23 5HU (GB)

(74) Representative: Laurence, Simon French et al
Nortel Networks
Intellectual Property Law Group
London Road
Harlow, Essex CM17 9NA (GB)

(56) References cited:
• IEICE TRANSACTIONS ON ELECTRONICS, vol. 78, no. 1, January 1995, TOKYO JP, pages 12-20,
 XP000495078 SUZUKI ET AL: "Long distance solition transmission up to 20 Gbit/s using
 alternating amplitude solitions and optical TDM"

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.
Description

Background of the Invention

[0001] This invention relates to the conditioning of optical soliton bit streams, and finds particular, but not necessarily exclusive, application in the conditioning of such bit streams preparatory for data detection at a receiver.

[0002] One of the factors complicating the detection of data in a soliton bit stream at a receiver is that, on the one hand the mark/space ratio of soliton bits is relatively small in order to avoid soliton/soliton interactions, while on the other hand the timing of the solitons is liable to become contaminated by jitter in their transmission from transmitter to receiver.

[0003] EP 0 555 063A discloses that the jitter can be removed by the use of a modulator to gate the solitons. For this gating operation, a portion of the incoming signal power is tapped off and used for clock extraction, the extracted clock signal being used to drive the modulator. Jitter is removed from the bit stream by making the period over which the modulator is transmissive short compared with the spread in time-of-arrival (jitter) of the solitons, and accordingly the bits transmitted by the modulator have the timing of the extracted clock signal. In the case of removing jitter from a time division multiplexed soliton bit stream, EP 0 555 063A discloses demultiplexing the bit stream, and employing a separate modulator for each of the separated channels.

Summary Of The Invention

[0004] The present invention is directed to an alternative way of ameliorating the problem of jitter and which additionally can have the effect of producing pulse spreading that facilitates the operation of a decision process for determining the presence or absence of a bit within any given bit period.

[0005] According to the present invention there is provided a method of conditioning an optical soliton principal bit stream in which method the solitons are divided into a plurality of interleaved subsidiary bit streams using a plurality of optical amplitude modulators, characterised in that the modulators impart chirp to the solitons of the subsidiary bit streams, in that each subsidiary bit stream is launched into an associated length of optical waveguide exhibiting chromatic dispersion, and in that the sign of the chirp imparted by the modulators is the opposite of the sign of the chromatic dispersion of the lengths of optical waveguide.

[0006] Chirp is a measure of the rate of change of phase with change of light intensity. For the purpose of this specification, positive chirp is defined to mean the condition in which increasing light intensity produces a positive frequency shift (i.e. a decrease of refractive index), and positive dispersion is defined to mean anomalous dispersion.

[0007] The invention also provides a conditioner of optical solitons that includes a clock extraction circuit and an optical input optically coupled by means of an n-way optical power splitter with a set of n amplitude modulators, wherein the clock extraction circuit has an output connected to a divide-by-n circuit that is adapted to provide, for the n modulators, a set of n drives interleaved in time, each at a reciprocal-n times the clock output of the clock extraction circuit, which conditioner is characterised in that the modulators exhibit chirp, in that a set of n lengths of optical waveguide exhibiting chromatic dispersion are optically coupled with the n-way splitter via the n modulators, and in that the sign of the chirp of the modulators is the opposite of the sign of the chromatic dispersion of the lengths of optical waveguide.

Brief Description of The Drawing

[0008] There follows a description of the conditioning of soliton pulses at the receiver end of an optical soliton transmission system. This conditioning is effected by means of a conditioner which will be described with reference to the accompanying drawing, which is a schematic representation of the conditioner and also depicts waveforms appearing at different locations in the conditioner.

Detailed Description of the Embodiment

[0009] Referring to the drawing, at the receiver end of an optical soliton transmission system, the signal is applied to the conditioner on a single mode optical fibre 1. A coupler 2 is employed to extract a small proportion of the optical signal power for clock extraction purposes. This is fed to a detector 3 to provide an electrical signal fed to a clock extraction circuit 4 via a filter 5.

[0010] The remainder of the optical signal on fibre 1 is transmitted to a 1 x n optical power splitter 6, in this particular instance the power is split two ways. Each optical output of the splitter is applied to an associated detector 7 via an associated series combination of optical amplitude modulator 8 and length of optical fibre 9 that is normally dispersive to the optical solitons. In the illustrated instance of a 2-way optical power splitter 6, these detectors, modulators and lengths of normally dispersive fibre are respectively designated 7a, 7b, 8a, 8b, 9a and 9b. For a reason explained later, the modulators 8 are preferably modulators exhibiting positive chirp.

[0011] The electrical output of the clock extraction circuit 4 is fed to a divide-by-n circuit 10 that provides a set of n electrical outputs 11, one for each modulator 8, that are interleaved in time with 2π/n phase separation, each at a rate reciprocal-n times the clock rate provided by the clock extraction circuit 6. In this instance the optical power splitter 6 is a 2-way splitter and so the divide circuit 10 is a divide-by-2 circuit having two outputs 11a and 11b.
[0012] The particular conditioner described above with reference to the accompanying drawings is designed for a 20 Gbit/s stream of soliton pulses. The electronic timing circuits (not shown) that are employed to perform timing and threshold decisions on the received pulses (i.e., decide between ‘1’s and ‘0’s in each bit period) have narrow usable time windows at 20 Gbit/s (significantly less than a bit period). This makes the error rate particularly sensitive to pulse jitter. The clock extraction circuit 4, n-way splitter 6, modulators 8 and divide-by-n circuit 10, cooperate to form a fast switching optical demultiplexer, and serve to provide a wider timing window (closer to the full width of a bit period).

[0013] Optical soliton propagation occurs when intensity-dependent refractive index effects are balanced by dispersion effects, and such a balance requires the dispersion to be anomalous dispersion. The lengths 9 of optical fibre are lengths of fibre exhibiting normal dispersion, and so the solitonic shape of pulses is not preserved in the propagation of such pulses along this fibre, and accordingly there is significant pulse spreading. This is advantageous because solitons are a small fraction (typically about 20%) of the bit period wide, and pulse arrival may be anywhere within the bit period. To ensure detection of the data, the solitonic pulses first need to be stretched in time to ensure that the stretched pulses will overlap the timing window of the decision circuit. Optical pulse spreading is useful because it makes fast electrical detection less critical. There is an advantage in keeping the receiver chain as simple as possible in order to avoid electrical reflections which can lead to patterning problems.

[0014] The use of modulators 8 that exhibit positive chirp is beneficial in reducing timing jitter. Provided that the modulators are driven with generally sinusoidal waveforms, a soliton that arrives early is arriving at a time in which the optical intensity is rising, and therefore that soliton is subject to a positive frequency shift. The pulse then propagates in fibre exhibiting normal dispersion, and so its propagation velocity is smaller than it would have been in the absence of the frequency shift. It is accordingly delayed. Conversely, a soliton that arrives late is subject to a negative frequency shift which serves to increase the propagation velocity, thereby causing the pulse to do some catching up.

[0015] Waveform 20 depicts four solitons arriving in four consecutive bit periods at a bit rate of 20 Gbit/s. The clock extract circuit 6 produces a 20 GHz output which the divide-by-2 circuit 10 converts into two 10 GHz waveforms 21a and 21b separated in phase by π. Their application to the modulators 8 causes each modulator to gate alternate solitons so as to produce the solitonic pulse waveforms 22a and 22b at the outputs of the two modulators respectively. These pulses are stretched on their propagation through the lengths of fibre 9a and 9b, and arrive at the detectors 7c and 7b with the waveforms 23a and 23b that have a mark/space ratio much closer to 1:1 than that of waveforms 22a and 22b. (No attempt has been made with these waveforms to illustrate the reduction of jitter consequent upon using modulators 8a and 8b exhibiting positive chirp).

[0016] Since there are generally liable to be uncertainties regarding the polarisation state of solitons arriving at the receiver, it is generally preferred to employ amplitude modulators 8 that are polarisation insensitive. Amplitude modulators that are substantially polarisation insensitive can be constructed that exploit the Franz-Keldysh effect in a p-i-n ridge waveguide structure in InGaAsP with ridge width and active waveguide layer thicknesses tailored to minimise polarisation dependent loss. As a result of the Franz-Keldysh effect, the optical absorption edge of the device is shifted to longer wavelengths by applying an electric field across the waveguide. In operation, the absorption edge is generally on the short wavelength side of the signal. As the electric field is applied, the signal experiences increasing attenuation, and also an associated refractive index change, such a change being described by the Kramers-Kronig relations between real and imaginary components of refractive index. Accordingly, in the general case, the application of the electric field produces a mix of amplitude and phase modulation. If the InGaAsP composition is such as to provide an absorption edge typically 500nm or more to the short wavelength side of the signal, polarisation independent modulation is predominantly phase modulation with low residual amplitude modulation and low insertion loss. On the other hand, if the InGaAsP composition is such as to provide an absorption edge not more than about 50 nm to the short wavelength side of the signal the insertion loss is significantly greater and the device functions as an amplitude modulator exhibiting negative chirp. Between these extremes the value of the insertion loss is reduced from the high value associated with the small wavelength separation, and, more particularly, the sign of the chirp changes from negative to positive to provide the type of modulator particularly suitable for the present application.

Claims

1. A method of conditioning an optical soliton principal bit stream in which method the solitons are divided into a plurality of interleaved subsidiary bit streams (22a, 22b) using a plurality of optical amplitude modulators (8a, 8b), characterised in that the modulators impart chirp to the solitons of the subsidiary bit streams, in that each subsidiary bit stream is launched into an associated length (9a, 9b) of optical waveguide exhibiting chromatic dispersion, and in that the sign of the chirp imparted by the modulator is the opposite of the sign of the chromatic dispersion of the lengths of optical waveguide.

2. A method of conditioning as claimed in claim 1,
wherein the modulators impart positive chirp to the solitons of the subsidiary bit streams.

3. A method as claimed in claim 1 or 2, wherein said principal bit stream is divided into two interleaved subsidiary bit streams.

4. A conditioner of optical solitons that includes a clock extraction circuit (4) and an optical input optically coupled by means of an n-way optical power splitter (6) with a set of n amplitude modulators (8a, 8b), wherein the clock extraction circuit has an output connected to a divide-by-n circuit (10) that is adapted to provide, for the n modulators, a set of n drives interleaved in time, each at a reciprocal-n times the clock output of the clock extraction circuit, which conditioner is characterised in that the modulators exhibit chirp, in that a set of n lengths (9a, 9b) of optical waveguide exhibiting chromatic dispersion are optically coupled with the n-way splitter via the n modulators, and in that the sign of the chirp of the modulators is the opposite of the sign of the chromatic dispersion of the lengths of optical waveguide.

5. A soliton conditioner as claimed in claim 4, wherein the modulators exhibit positive chirp.

6. A soliton conditioner as claimed in claim 4 or 5, wherein the n-way optical power splitter is a 2-way power splitter.

Patentansprüche

2. Verfahren zur Konditionierung nach Anspruch 1, bei dem die Modulatoren einen positiven Chirpeffekt auf die Solitonen der Teilbitströme aufprägen.

3. Verfahren nach Anspruch 1 oder 2, bei dem der Hauptbitstrom in zwei ineinander verschachtelte Teilbitströme unterteilt wird.

4. Konditioniereinrichtung für optische Solitonen, die eine Taktleitungsschaltung (4) und einen optischen Eingang einschließt, der optisch über einen optischen n-Weg-Leistungsteiler (6) mit einem Satz von n Amplitudenmodulatoren (8a, 8b) gekoppelt ist, wobei die Taktleitungsschaltung einen Ausgang aufweist, der mit einer durch n teilenden Schaltung (10) verbunden ist, die für die n Modulatoren einen Satz von n Ansteuerungen liefern kann, die zeitlich verschachtelt sind, jeweils zu dem reziproken Fachen des Taktausganges der Taktleitungsschaltung, und wobei ein Satz von n Längenabschnitten eines Lichtwellenleiters, der eine chromatische Dispersion aufweist, optisch mit dem n-Weg-Teiler über die n Modulatoren gekoppelt ist, wobei die Konditioniereinrichtung dadurch gekennzeichnet ist, daß die Modulatoren einen Chirpeffekt aufweisen, und daß das Vorzeichen des Chirpeffektes der Modulatoren entgegengesetzt zu dem Vorzeichen der chromatischen Dispersion der Längenabschnitte des Lichtwellenleiters ist.

5. Soliton-Konditioniereinrichtung nach Anspruch 4, bei der die Modulatoren einen positiven Chirpeffekt aufweisen.

Revindicaciones

1. Procedimiento de condicionamiento de un corriente principal de bits a solitones opticas dans lequel les solitons son dividen en plusieurs courants auxiliaires de bits imbricados a l'aide de plusieurs modulateurs d'amplitude optique, chaque courant auxiliaire de bits étant lancé dans un tronçon associé de guide d'onde optique présentant une dispersion chromatique, caractérisé en ce que les modulateurs appliquent une fluctuation d'oscillation aux solitons des courants auxiliaires de bits, et en que le signe de la fluctuation d'oscillation donné par les modulateurs est opposé au signe de la dispersion chromatique des tronçons de guide d'onde optique.

2. Procedimiento de condicionamiento según la revindicación 1, dans lequel les modulateurs appliquent une fluctuation positive d'oscillation aux solitons des courants auxiliaires de bits.

3. Procedimiento según la revindicación 1 o 2, dans lequel le courant principal de bits est divisé en deux courants auxiliaires de bits imbricados.
4. Organe de conditionnement de solitons optiques, qui comprend un circuit (4) d'extraction d'horloge et une entrée optique qui est couplée optiquement, par un répartiteur (6) de puissance optique à n voies, à un ensemble de n modulateurs d'amplitude (8a, 8b), dans lequel le circuit d'extraction d'horloge a une sortie connectée à un circuit (10) de division par n qui est destiné à donner, pour les n modulateurs, un ensemble de n signaux de pilotage imbriqués dans le temps, chacun correspondant au produit du signal de sortie d'horloge du circuit d'extraction d'horloge multiplié par l'inverse de n, et un ensemble de N tronçons de guide d'onde optique présentant une dispersion chromatique et couplés optiquement au répartiteur à n voies par les n modulateurs, l'organe de conditionnement étant caractérisé en ce que les modulateurs présentent une fluctuation d'oscillation, et en ce que le signe de la fluctuation d'oscillation des modulateurs est opposé au signe de la dispersion chromatique des tronçons de guide d'onde optique.

5. Organe de conditionnement de solitons selon la revendication 4, dans lequel les modulateurs présentent une fluctuation positive d'oscillation.

6. Organe de conditionnement de solitons selon la revendication 4 ou 5, dans lequel le répartiteur de puissance optique à n voies est un répartiteur de puissance à deux voies.