EUROPEAN PATENT SPECIFICATION

(12) EUROPEAN P ATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 12.12.2001 Bulletin 2001/50

(21) Application number: 97109147.5

(22) Date of filing: 05.06.1997

(54) Safety apparatus for elevator
 Sicherheitsvorrichtung für Aufzug
 Appareil de sécurité pour ascenseur

(84) Designated Contracting States: DE FR GB NL

(30) Priority: 11.06.1996 JP 14962296

(43) Date of publication of application: 17.12.1997 Bulletin 1997/51

(73) Proprietor: MITSUBISHI DENKI KABUSHIKI KAISHA
 Tokyo 100 (JP)

(72) Inventor: Yumura, Takashi
 Chiyoda-ku, Tokyo 100 (JP)

(74) Representative: Füchsle, Klaus, Dipl.-Ing. et al
 Hoffmann Eitle,
 Patent- und Rechtsanwälte,
 Arabellastrasse 4
 81925 München (DE)

(56) References cited:
 US-A- 2 326 046
 US-A- 5 301 773
 US-A- 5 467 850

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] This invention relates to a safety apparatus for an elevator which brakes the elevator when the speed of movement of the elevator reaches a prescribed critical speed according to the preamble of claim 1. Such an apparatus is already known from US-A-5,628,385.

2. Description of the Prior Art

[0002] FIGS. 24(a) and 24(b) are a front elevational view and a plan view, respectively, of a governor which is a conventional safety apparatus for an elevator. Referring to FIGS. 24(a) and 24(b), reference numeral 12 denotes a cage of the elevator, 13 a base of the elevator governor provided on the cage 12, and 14 an arm composed of two pairs of parallel links supported pivotally around fulcra 15 on the base 13. Reference numeral 16 denotes a pickup connected at two points to an end of the arm 14 for detecting a rapid speed of the elevator. The pickup 16 has a magnetic circuit composed of a pair of magnets 16a disposed in an opposing relationship to a fixed conductor 18 on the opposite sides of the fixed conductor 18, and a back yoke 16b for assuring a path for magnetic fluxes of the magnets 16a. Reference numeral 17 denotes a balance weight provided at the other end of the arm 14 in a balanced relationship with the pickup 16. It is to be noted that the governor is composed of the arm 14, fulcra 15 of the base, pickup 16 and balance weight 17. Reference numeral 19 denotes a spring which holds the arm 14 and converts a force (drag) acting upon the balance weight 17 into a displacement of the pickup 16 and this cage stopping switch 20a disconnects, by a displacement of the balance weight 17, a power supply for a winding machine or the like (not shown) for moving the elevator up and down. Reference numeral 21 denotes an emergency stopping operation bar, and this emergency stopping operation bar 21 activates an emergency stopping apparatus (brake apparatus (not shown)).

[0003] Operation of the governor which is a conventional safety apparatus for an elevator is described below.

[0004] The pickup 16 has a magnetic circuit composed of the magnets 16a and the back yoke 16b and produces a magnetic field perpendicular to the plane of the fixed conductor 18 located between the two magnets 16a. When the cage 12 moves up or down and the magnetic field moves in the fixed conductor 18, such eddy current as cancels a variation of the magnetic field is generated in the fixed conductor 18, and a force (magnetic drag) having a magnitude corresponding to the speed of the cage 12 and acting in a direction to resist the movement of the cage 12 is generated on the magnets 16a. It is to be noted that a relationship between the speed V of the cage 12 and the generated magnetic drag F1 is illustrated in FIG. 26. This magnetic drag F1 is converted into a displacement of the pickup 16 and the balance weight 17 in the upward or downward direction by the arm 14 and the springs 19 as seen in FIG. 25. It is to be noted that a relationship between the pickup displacement (balance weight displacement) Z and the spring force F2 is illustrated in FIG. 27, and a relationship between the speed V of the cage 12 and the pickup displacement (balance weight displacement) Z is illustrated in FIG. 28.

[0005] When the speed of downward movement of the cage 12 reaches a first over-speed (normally set to approximately 1.3 times a rated speed) higher than a predetermined value, the magnets 16a are acted upon by an upward magnetic drag corresponding to the speed and displaces the balance weight 17 downwardly. Then, as a result of the displacement, the cage stopping switch 20a operates to disconnect the power supply to the elevator driving apparatus and the cage 12 stops. On the other hand, also when the speed of downward movement of the cage 12 reaches a second over-speed (normally set to approximately 1.4 times the rated speed) by some cause, the balance weight 17 is further displaced downwardly corresponding to the speed, and as a result of the displacement, the emergency stopping operation bar 21 moves to operate the emergency stopping apparatus (not shown) provided for the cage 12 so that the cage 12 is stopped suddenly.

[0006] It is to be noted that, in addition to the prior art described above, a technique similar to the present invention is disclosed in JP-A-5-147852 or JP-A-6-321454.

[0007] Since the conventional safety apparatus for an elevator is constructed in such a manner as described above, it has the following subjects.

(a) In the conventional safety apparatus for an elevator, since the magnetic drag generated by eddy current is low comparing with a force necessary to activate the emergency stop and, even when the speed of downward movement of the cage reaches the second over-speed, the displacement of the pickup is small, there is a subject in that it is difficult only for the magnetic drag to activate the emergency stop and the stability of operation is low.

(b) In the conventional safety apparatus for an elevator, while a balance weight is provided such that it may be balanced with the pickup, since the balance weight is connected to the emergency stopping apparatus (brake apparatus) by the emergency stopping operation bar or a like member, the entire connected apparatus is not in a well-balanced state, and consequently, there is another subject in that the pickup is liable to be displaced by a force applied to the case such as vibrations of the case...
passengers get in or out or when passengers move vi-
coltely in the cage.

(c) In the conventional safety apparatus for an ele-
vator, since the pickup is mounted at an end of the
arm and the balance weight is mounted at the other
end of the arm to establish a well-balanced rela-
tionship, there is a further subject in that a downward
force for canceling the emergency stop cannot be
applied in an ordinary operation and, even if it is
tried to cancel a situation that the emergency stop-
ning apparatus bites in the guide rail after the emer-
gency stopping apparatus operates, the emergency
stopping apparatus does not restore its initial state
readily.

(d) In the conventional safety apparatus for an ele-
vator, if the speed of the cage temporarily fluctuates
oscillatorily to a large extent when passengers get
in or out or when passengers in the cage move vi-
coltely, then the displacement of the pickup exhibits
a large amount, and there is a still further subject in
that the safety apparatus is liable to malfunction.

(e) In the conventional safety apparatus for an ele-
vator, since the governor and the emergency stop-
ing apparatus are disposed separately above and
below the cage, there is a yet further subject in that
the safety apparatus has a large size as a whole.

(f) In the conventional safety apparatus for an ele-
vator, upon operation inspection or checking when
it is installed at the site or maintenance of it is per-
formed, the cage must actually be moved to check
the operation, and there is a yet further subject in
that an inspection or checking is difficult and dan-
gerous.

SUMMARY OF THE INVENTION

[0008] The present invention has been made to solve
such subjects as described above, and it is an object of
this invention to provide a safety apparatus for an ele-
vator wherein an emergency stopping apparatus can be operated with certainty even if the magnetic drag
of a governor which is generated when the speed of the
elevator reaches a second over-speed is not sufficiently
high.

[0009] It is another object of the present invention to
provide a safety apparatus for an elevator which mal-
fuctions less likely even if oscillations are produced
with a cage.

[0010] It is a further object of the present invention to
provide a safety apparatus for an elevator wherein, after
an emergency stop operates, the emergency stop can
be canceled readily and an initial state can be restored
readily.

[0011] It is a still further object of the present invention
to provide a safety apparatus for an elevator which mal-
fuctions less likely even if the speed of a cage tempo-
rarily fluctuates oscillatorily by a large amount when
passengers get in or out or when passengers move vi-
coltely in the cage.

[0012] It is a yet further object of the present invention
to provide a safety apparatus for an elevator which is
small in size and simple in structure.

[0013] It is a yet further object of the present invention
to provide a safety apparatus for an elevator for which
an inspection or maintenance can be performed readily.

[0014] The objects are solved by the features of the
characterizing clause of claim 1.

[0015] According to a second aspect of the present
invention, there is provided a safety apparatus for an
elevator, comprising a guide rail of a conductor securely
disposed along a path of upward and downward move-
ment of the elevator, an emergency stopping mecha-
nism mounted on a movable section of the elevator for
gripping the guide rail to generate a frictional force to
brake the movable section, a driving apparatus for op-
erating the emergency stopping mechanism, a cam
latch mechanism mounted on the movable section for
releasing, when a speed of the movable section reaches
a critical speed, a driving force of the driving apparatus
which has been restricted till then, and a governor
mounted on the movable section for being displaced
when the speed of the movable section reaches the crit-
ical speed to activate the cam latch mechanism.

[0016] According to a third aspect of the present in-
vention, the safety apparatus for an elevator is con-
structed such that the governor includes a pickup includ-
ing a magnet and a back yoke which form a magnetic
circuit together with the guide rail, a pivotal arm having
the pickup mounted at an end thereof and having a bal-
ance weight mounted at the other end thereof for trans-
mitting a displacement of the pickup, a main shaft se-
curely mounted at a fulcrum of the arm so as to be ro-
tated in response to a displacement of the arm, and a
base for supporting the main shaft thereon.

[0017] According to a fourth aspect of the present in-
vention, the safety apparatus for an elevator is con-
structed such that the governor includes a cam mounted
on a main shaft of the governor which is rotated in ac-
cordance with a speed of the movable section, and a
latch arm mounted on the governor by a latch pin for
pivotal motion around an axis of the latch pin and having
an end held in contact with the cam and the other end
connected to the driving apparatus, and when the speed
of the movable section reaches the critical speed, the
cam is rotated to release the driving force of the driving
apparatus.

[0018] According to a fifth aspect of the present in-
vention, the safety apparatus for an elevator is constructed
such that the driving apparatus includes a pulling up bar
connected at an end thereof to the cam latch mecha-
nism and at the other end thereof to the emergency stop-
ing mechanism, and a spring element for lifting the pull-
ning up bar when the speed of the movable section reach-
es the critical speed.

[0019] According to a sixth aspect of the present in-
vention, there is provided a safety apparatus for an el-

evator, comprising a guide rail of a conductor securely disposed along a path of upward and downward movement of the elevator, an emergency stopping mechanism mounted on a movable section of the elevator for gripping the guide rail to generate a frictional force to brake the movable section, a pulling up wedge mechanism disposed for wedging engagement with the guide rail to generate a driving force for the emergency stopping mechanism, a cam latch mechanism mounted on the movable section for cooperating, when a speed of the movable section reaches a critical speed, with the pulling up wedge mechanism to activate the pulling up wedge mechanism, a governor mounted on the movable section for being displaced when the speed of the movable section reaches a critical speed, a pulling up wedge mechanism mounted on the governor for wedging engagement with the guide rail to generate a driving force for the emergency stopping mechanism to transmit the driving force generated by the pulling up wedge mechanism to the emergency stopping mechanism.

[0020] According to a seventh aspect of the present invention, there is provided a safety apparatus for an elevator, comprising a guide rail of a conductor securely disposed along a path of upward and downward movement of the elevator, an emergency stopping mechanism mounted on a movable section of the elevator for gripping the guide rail to generate a frictional force to brake the movable section, a governor for being displaced when a speed of the movable section reaches a critical speed, a pulling up wedge mechanism mounted on the governor for wedging engagement with the guide rail to generate a driving force for the emergency stopping mechanism, and a link apparatus for connecting the governor to the emergency stopping mechanism to transmit a driving force generated by the pulling up wedge mechanism to the emergency stopping mechanism.

[0021] According to an eighth aspect of the present invention, the safety apparatus for an elevator is constructed such that it further comprises an auxiliary weight provided on any of the governor, emergency stopping operation mechanism and emergency stopping mechanism which is moved by the displacement of the governor.

[0022] According to a ninth aspect of the present invention, the safety apparatus for an elevator is constructed such that the auxiliary weight is provided on an emergency stopping arm.

[0023] According to a tenth aspect of the present invention, the safety apparatus for an elevator is constructed such that it further comprises an emergency stop cancellation mechanism including a holding down bar connected at an end thereof to the cam latch mechanism and at the other end thereof to the emergency stopping mechanism and a hook apparatus for being engaged with and restricting the driving apparatus when the holding down bar moves upwardly but releasing the engagement and restriction of the driving apparatus when the holding down bar moves downwardly.

[0024] According to an eleventh aspect of the present invention, the safety apparatus for an elevator is constructed such that the hook apparatus includes a hook mounted on the holding down bar, and an unhooking pin mounted on the governor for releasing a pulling up bar when the holding down bar moves downwardly.

[0025] According to a twelfth aspect of the present invention, the safety apparatus for an elevator is constructed such that the emergency stopping mechanism includes an emergency stopping arm mounted for pivotal motion on the movable section, an emergency stopping shoe mounted at an end portion of the emergency stopping arm, and an emergency stopping biting metal member disposed for wedging engagement with the emergency stopping shoe and the guide rail, that the driving apparatus includes a pulling up bar having an end connected to the cam latch mechanism and the other end connected for sliding movement to a portion of the emergency stopping arm in the proximity of a pivot shaft of the emergency stopping arm via an elongated hole, and a spring element for lifting the pulling up bar when the speed of the movable section reaches the critical speed, that the emergency stop cancellation mechanism includes a holding down bar having an end connected for sliding movement to the cam latch mechanism via an elongated hole and the other end connected to an end portion of the emergency stopping arm, and a hook apparatus mounted on the holding down bar for being engaged with and restricting the pulling up bar when the holding down bar moves upwardly but releasing the engagement and restriction of the pulling up bar when the holding down bar moves downwardly, and that the holding down bar is moved, upon emergency stopping operation, upwardly over an extent larger by an amount corresponding to a length of the elongated hole than the pulling up bar due to a difference between displacements of locations of the emergency stopping arm different from the center of pivotal motion so that the hook apparatus is engaged with and restricts the pulling up bar, but upon emergency stopping cancellation operation, when the movable section is moved upwardly, while the emergency stopping biting metal member remains in wedging engagement with the guide rail, the emergency stopping arm is moved downwardly so that the holding down bar connected to the emergency stopping arm is moved downwardly and the pulling up bar which has been engaged with and restricted by the hook apparatus is moved downwardly by a displacement amount equal to that of the holding down bar until the engagement and restriction is cancelled at a position at which the driving apparatus restores an initial state.

[0026] According to a thirteenth aspect of the present invention, the safety apparatus for an elevator is constructed such that it further comprises an oscillation absorption apparatus provided on any of the governor, emergency stopping operation mechanism and emergency stopping mechanism for absorbing oscillations.
According to a sixteenth aspect of the present invention, there is provided a safety apparatus for an elevator, comprising a guide rail of a conductor securely disposed along a path of upward and downward movement of the elevator, a governor for being displaced when a speed of a movable section reached a critical speed, and an emergency stopping mechanism provided on the governor for operating directly in response to a displacement of the governor to grasp the guide rail to generate a frictional force to brake the movable section.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view showing a general construction of a safety apparatus for an elevator according to Embodiment 1 of the present invention; FIG. 2 is a perspective view showing a construction of a governor (and part of an emergency stop cancellation mechanism) (an enlarged view of a portion of FIG. 1 surrounded by a circle A); FIG. 3 is a view showing a friction reduction mechanism such as a bearing roller or a ball mechanism for reducing the friction at a contact between a latch arm and a cam; FIGS. 4(a) and 4(b) are schematic views showing details of a pickup apparatus of the governor; FIG. 5 is an enlarged schematic view showing details of a hook apparatus; FIG. 6 is a perspective view showing a construction of an emergency stopping mechanism (and part of the emergency stop cancellation mechanism) (an enlarged view of a portion of FIG. 1 surrounded by another circle B); FIG. 7 is a perspective view showing a construction of a spring apparatus; FIG. 8 is a schematic view showing a spring apparatus having a different construction from that of the spring apparatus of FIG. 7; FIGS. 9(a) and 9(b) are views illustrating operation of a cam latch mechanism; FIGS. 10(a) to 10(c) are schematic views illustrating an engaging operation of the hook; FIGS. 11(a) to 11(c) are schematic views illustrating a disengaging operation of the hook; FIGS. 12(a) and 12(b) are views showing a construction of a safety apparatus for an elevator according to Embodiment 2 of the present invention; FIG. 13 is a view illustrating an emergency stop cancellation operation of the safety apparatus for an elevator according to Embodiment 2 of the present invention; FIGS. 14(a) to 14(d) are schematic views illustrating an emergency stop cancellation operation different from the emergency stop cancellation operation illustrated in FIG. 13; FIGS. 15(a) to 15(d) are views illustrating a construction and operation of a safety apparatus for an elevator according to Embodiment 3 of the present invention; FIGS. 16(a) to 16(d) are schematic views of a safety apparatus for an elevator which employs an emergency stop cancellation mechanism different from that shown in FIGS. 15(a) to 15(d); FIGS. 17(a) to 17(e) are views illustrating a construction and operation of a safety apparatus for an elevator according to Embodiment 4 of the present invention; FIGS. 18(a) to 18(e) are schematic views illustrating an emergency stopping operation of an emergency stop cancellation mechanism of the safety apparatus for an elevator of FIGS. 17(a) to 17(e) which is performed by a hook apparatus; FIGS. 19(a) to 19(e) are schematic views illustrating an emergency stop cancellation operation of the emergency stop cancellation mechanism of the safety apparatus for an elevator of FIGS. 17(a) to 17(e) which is performed by the hook apparatus; FIGS. 20(a) and 20(b) are views illustrating an emergency stopping operation of a safety apparatus for an elevator according to Embodiment 5 of the present invention; FIG. 21 is a view showing a construction of a safety apparatus for an elevator wherein emergency stopping mechanism are provided above and below a pickup; FIG. 22 is a view showing a construction of a safety apparatus for an elevator according to Embodiment 6 of the present invention; FIGS. 23(a) and 23(b) are views illustrating a construction and operation of a safety apparatus for an elevator according to Embodiment 7 of the present invention; FIGS. 24(a) and 24(b) are a front elevational view and a plan view, respectively, of a governor which is a conventional safety apparatus for an elevator; FIG. 25 is a front elevational view of the governor, which is a conventional safety apparatus for an elevator, after an operation; FIG. 26 is a diagram illustrating a relationship between the speed V of a cage and the generated magnetic drag F1; FIG. 27 is a diagram illustrating a relationship between the pickup displacement (balance weight displacement) Z and the spring force F2; and FIG. 28 is a diagram illustrating a relationship between the speed V of a cage frame and the pickup displacement (balance weight displacement) Z.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following, preferred embodiments of the present invention are described.
Embodiment 1.

[0030] In the conventional safety apparatus for an elevator, the magnetic drag by eddy current is so low that it is difficult only for the magnetic drag by eddy current to lift the pulling up bar to activate the emergency stopping apparatus. Further, also a cancellation method after the emergency stopping apparatus operates is not available. In Embodiment 1, triggering of an emergency stopping operation at a second over-speed is performed by a governor and a cam latch mechanism and a driving force for performing the emergency stopping operation is generated by a spring apparatus such as a spring while an emergency stop cancellation operation is realized by a hook apparatus.

[0031] FIG. 1 is a perspective view showing a general construction of a safety apparatus for an elevator according to Embodiment 1 of the present invention. Referring to FIG. 1, reference numeral 12 denotes a cage frame (movable section) mounted on a cage of an elevator, 21 a pulling up bar (driving apparatus, link apparatus, emergency stopping operation mechanism), 35 a holding down bar (emergency stop cancellation mechanism), and 51 a pulling up spring (spring apparatus, driving apparatus, emergency stopping operation mechanism). A portion surrounded by a circle A is a portion which constructs a governor of the safety apparatus for an elevator, and another portion surrounded by another circle B is a portion which constructs an emergency stopping apparatus of the safety apparatus for an elevator.

[0032] It is to be noted that, in FIG. 1, the guide rail (fixed conductor) 18 shown in FIGS. 24(a) and 24(b) are omitted.

[0033] FIG. 2 is a perspective view showing a construction of the governor and a cam latch mechanism (an enlarged view of a portion of FIG. 1 surrounded by the circle A). Referring to FIG. 2, reference numeral 13 denotes a base (governor) of the governor provided on the cage frame 12, and this base 13 is formed in a channel-shape. Reference numeral 30 denotes a main shaft (governor) supported at the opposite ends thereof for rotation on the channel-shaped base 13, and 14 a governor arm (arm, governor) securely connected to the main shaft 30 and pivotally supported around an axis of the main shaft 30 such that, when the governor arm 14 is pivoted, the main shaft 30 is rotated. Reference numeral 16 denotes a pickup (governor) connected at two points to one end of the governor arm 14, and the pickup 16 includes a pair of magnets 16a (pickup, governor) disposed on the opposite sides of the guide rail 18 (omitted in FIG. 2) in an opposing relationship to the guide rail 18, and a pair of back yokes 16b and 16c for assuring a passage for magnetic fluxes of the magnets 16a. The back yoke 16c is connected to the governor arm 14. Reference numeral 17 denotes a balance weight (governor) provided at the other end of the governor arm 14 in a balanced relationship with the pickup 16.

[0034] Reference numeral 32 denotes a cam (cam latch mechanism, emergency stopping operation mechanism) mounted at one end of the main shaft 30. The cam 32 is rotated when the main shaft 30 rotates. Reference numeral 33 denotes a latch shaft mounted on the channel-shaped base 13 (on the side on which the cam 32 is mounted), and 34 a latch arm (cam latch mechanism, emergency stopping operation mechanism) connected for pivotal motion to the latch shaft 33 around an axis of the latch shaft 33. The latch arm 34 is held in contact at an end thereof with the cam 32, and the pulling up bar 21 and the holding down bar 35 are connected for pivotal motion to the other end portion of the latch arm 34 by a latch pin 36 (cam latch mechanism, emergency stopping operation mechanism). An elongated hole 35a (holding down bar) is provided in the holding down bar 35, and the latch pin 36 is received for movement in the upward and downward directions in the elongated hole 35a.

[0035] It is to be noted that, in order to reduce the friction at a contact between the one end of the latch arm 34 and the cam 32, a friction reduction mechanism 38 (cam latch mechanism) such as a bearing roller or a ball mechanism may be provided as shown in FIG. 3.

[0036] Reference numeral 55 denotes a hook (hook apparatus, emergency stop cancellation mechanism), and this hook 55 is connected to the holding down bar 35 via a hook pin 56. Reference numeral 57 denotes an unhooking pin (hook apparatus, emergency stop cancellation mechanism) mounted on the base 13.

[0037] It is to be noted that, in FIG. 2, a switch for disconnecting a power supply for a winding machine or the like, which moves the elevator upwardly and downwardly, when the speed of downward movement of the cage reaches a first over-speed (a switch corresponding to the cage stopping switch 20a described in the prior art (FIG. 24)) is omitted.

[0038] FIGS. 4(a) and 4(b) are schematic views showing details of the pickup of the governor. In the pickup 16, a magnetic circuit is composed of the magnets 16a, the back yokes 16b and 16c and the guide rail 18. While the magnets 16a and the guide rail 18 are located closely to each other, they do not contact with each other.

[0039] As an example of a construction of the magnetic circuit, for example, as shown in FIG. 4(a), a magnet 16a1 of the S pole is disposed on one side of the guide rail 18 while another magnet 16a2 of the N pole is disposed on the opposite side of the guide rail 18 to form a magnetic path along which magnetic fluxes return via the back yokes 16b and 16c.

[0040] As another example of a construction of the magnetic circuit, for example, as shown in FIG. 4(b), a magnet 16a1 of the S pole is disposed at an upper portion of the back yoke 16b on one side of the guide rail 18 while another magnet 16a2 of the N pole is disposed below the back yoke 16b such that a magnetic path is formed from the upper and lower magnets 16a1 and 16a2 on the back yoke 16b on the one side (only from...
stopping metal member 45 and the guide rail 18. When the other end portion of the emergency stopping arm 40, and 45 an emergency stopping biting metal member 45 and the guide rail 18 by a wedging effect. As a result, a high braking force is generated by an effect of friction between them so that an emergency stopping operation may be performed. Reference numeral 45a denotes a joining portion of the emergency stopping biting metal member 45 to the emergency stopping shoe 44, 45b a frame of the emergency stopping biting metal member 45, and 45c an emergency stopping holding down spring interposed between the joining portion 45a and the frame 45b.

FIG. 5 is an enlarge schematic view showing details of the hook apparatus. Referring to FIG. 5, reference numeral 55 denotes a hook, and this hook 55 is connected for pivotal motion in one direction (in the counterclockwise direction in FIG. 5, that is, toward the guide rail 18 side) to the holding down bar 35 via the hook pin 56. Reference numeral 55a denotes a tapered portion which is an upper portion of the hook 55 and has a tapering configuration, and 55b a cutaway portion provided below the tapered portion 55a (intermediately of the hook 55). Reference numeral 55c denotes a projecting portion provided at a lower portion of the hook 55, and this projecting portion 55c is locked in one direction (upward direction) but can be pivoted in the opposite direction (downward direction). Reference numeral 57 denotes an unhooking pin (hook apparatus, emergency stop cancellation mechanism) securely mounted on the base 13. It is to be noted that overlapping description of common components denoted in FIG. 5 by common reference numerals to those of FIG. 2 is omitted here.

FIG. 6 is a perspective view showing a construction of the emergency stopping mechanism and part of the emergency stop cancellation mechanism (an enlarged view of a portion of FIG. 1 surrounded by the circle B). Referring to FIG. 6, reference numeral 40 denotes an emergency stopping arm (emergency stopping mechanism), and the emergency stopping arm 40 is pivotally mounted at one end portion thereof on a support shaft 41 (rotary shaft, emergency stopping mechanism) secured to the cage frame 12 (or cage). Further, a pulling up pin 42 which is received in an elongated hole (pulleing up bar) 21a provided at an end portion of the pulling up bar 21 is provided on the emergency stopping arm 40 in the proximity of the support shaft 41, and the holding down bar 35 is pivotally connected to the other end portion of the emergency stopping arm 40 (the end portion remote from the support shaft) by a holding down pin 43. Reference numeral 44 denotes an emergency stopping shoe (emergency stopping mechanism) provided at the other end portion of the emergency stopping arm 40, and 45 an emergency stopping biting metal member provided above the emergency stopping shoe 44. When the other end portion of the emergency stopping arm 40 is pivoted upwardly, the emergency stopping shoe 44 is brought into contact with the emergency stopping biting metal member 45 and the guide rail 18 and bites between the emergency stopping biting metal member 45 and the guide rail 18 by a wedging effect.

Subsequently, operation is described.

(1) First, operation of the governor and the cam latch mechanism is described with reference to FIGS. 2 and 4.

The pickup 16 has a magnetic circuit composed of the magnets 16a and the back yokes 16b and 16c (FIG. 4) and produces a magnetic field through the plane of the guide rail 18 located between the two magnets 16a1 and 16a2. When the cage frame 12 moves upwardly or downwardly and the magnetic field moves with respect to the guide rail 18, such eddy current as...
tends to cancel the variation of the magnetic field is generated in the guide rail 18 and a force (magnetic drag) having a magnitude corresponding to the speed of the cage frame 12 and acting in a direction to resist the movement of the cage frame 12 is generated with respect to the magnets 16a. This magnetic drag is transmitted to the governor arm 14, and this force is converted into a displacement in the upward or downward direction of the pickup 16 and the balance weight 17. By the displacement of the pickup 16 and balance weight 17, the main shaft 30 is rotated and the cam 32 attached to the one end of the main shaft 30 is rotated.

[0050] It is to be noted that, if the speed of downward movement of the cage frame 12 exceeds a predetermined value (first over-speed), then a cage stopping switch (not shown) operates in response to the downward displacement of the balance weight 17 so that the power supply to the elevator driving apparatus is interrupted and the cage frame 12 stops similarly as in the conventional safety apparatus for an elevator.

[0051] (2) Subsequently, an emergency stopping operation is described.

[0052] If the speed of downward movement of the cage frame 12 reaches a certain speed (second over-speed) by some cause, then the balance weight 17 is further displaced in response to this speed, and the main shaft 30 is rotated in response to the displacement of the balance weight 17. When the cam 32 attached to the one end of the main shaft 30 is rotated by the rotation of the main shaft 30, the latch arm 34 comes to the cut-away portion of the cam 32.

[0053] Here, since the upward biasing force of the pulling up spring 51 acts upon the other end portion of the latch arm 34 (at which the pulling up bar 21 is attached) via the pulling up bar 21 as seen in FIG. 9(a), a downward force (in a direction to hold down the cam 32) acts upon the one end portion of the latch arm 34 (at which the latch arm 34 contacts with the cam 32) around the fulcrum provided by the latch pin 36. Accordingly, when the main shaft 30 rotates until the latch arm 34 comes to the cutaway portion of the cam 32 as seen in FIG. 9(a), the downward force of the latch arm 34 which has been restrained till then is released, and the pulling up bar 21 is moved upwardly by the biasing force of the pulling up spring 51. As a result, also the emergency stopping arm 40 connected to the pulling up bar 21 is pushed upwardly (FIG. 6) so that the emergency stopping shoe 44 attached to the end portion of the emergency stopping arm 40 bites between the emergency stopping biting metal member 45 and the guide rail 18, whereupon a high braking force is generated by a frictional effect by them. Consequently, an emergency stopping operation is performed.

[0054] While also the emergency stopping arm 40 is pushed upwardly when the pulling up bar 21 moves upwardly as described above, also the holding down bar 35 attached to the end portion of the emergency stopping arm 40 is pushed upwardly simultaneously. While the pulling up bar 21 is provided in the proximity of the support shaft 41 of the emergency stopping arm 40, since the holding down bar 35 is provided at the end portion of the emergency stopping arm 40, the holding down bar 35 is displaced upwardly by a large amount by a small upward displacement of the pulling up bar 21. For example, where the distance between the pulling up bar 21 and the support shaft 41 is represented by a and the distance between the holding down bar 35 and the support shaft 41 is represented by b as seen in FIGS. 9(a) and 9(b), the holding down bar 35 is displaced upwardly by b/a times the distance over which the pulling up bar 21 moves upwardly.

[0055] On the other hand, the pulling up bar 21 and the holding down bar 35 are mounted substantially at the same positions on the latch arm 34 by means of the latch pins 36. Here, since the holding down bar 35 is coupled at the elongated hole 35a thereof to the latch pin 36, it can move upwardly by an amount equal to the length of the elongated hole 35a. Accordingly, after the emergency stopping operation, since the displacement of the holding down bar 35 is larger than that of the pulling up bar 21 as described above, the holding down bar 35 projects upwardly by a large amount as seen in FIG. 9(b).

[0056] Subsequently, a coupling operation of the hook is described.

[0057] When the emergency stop operates and the holding down bar 35 is pushed upwardly by the displacement by b/a times that of the pulling up bar 21 as described above, also the hook 55 connected to the holding down bar 35 by the hook pin 56 is pushed upwardly (FIG. 5).

[0058] FIGS. 10(a) to 10(c) are schematic views illustrating an engaging operation of the hook 55. In an initial state, that is, prior to an emergency stopping operation (FIG. 10(a)), both of the pulling up bar 21 and the holding down bar 35 are positioned at a substantially same position. However, in an emergency stopping operation, the holding down bar 35 is pushed up by a displacement of b/a times that of the pulling up bar 21, and the holding down bar 35 projects upwardly from the pulling up bar 21. Here, although also the hook 55 connected to the holding down bar 35 is pushed up together with the holding down bar 35, since the tapered portion 55a of the tapering configuration is provided at the upper portion of the hook 55, the hook 55 does not catch the latch pin 36 positioned above the hook 55. Further, since the projecting portion 55c provided at the lower portion of the hook 55 is adapted to be pivotable in the downward direction, it can pass by the unhooking pin 57 located above the projecting portion 55c. Then, when the hook 55 is further pushed up, the cutaway portion 55b of the hook 55 is engaged with the latch pin 36, thereby completing the coupling operation of the hook (FIG. 10(c)).

[0059] The emergency stopping operation is completed thereby.

[0060] (3) Subsequently, an emergency stop cancel-
operation is described.

[0061] If the cage of the elevator is lifted upwardly by
the winding machine or the like in order to cancel
the emergency stop, then also the emergency stopping bit-
ing metal member 45 securely mounted on the cage (or
cage frame) of the elevator is lifted simultaneously.
When the emergency stopping biting metal member 45
is lifted, the biting state between the emergency stop-
ing biting metal member 45 and the emergency stop-
ing shoe 44 is cancelled by the restoring force of the
emergency stopping holding down spring 45c in a com-
pressed state and the frictional force between the guide
rail 18 and the emergency stopping shoe 44. However,
only if the biting state between the emergency stopping
biting metal member 45 and the emergency stopping
shoe 44 is cancelled, the pulling up bar 21 does not re-
turn to its initial state (in a state wherein the pulling up
spring 51 is compressed and the latch arm 34 is lifted).
Therefore, the emergency stop cancellation mechanism
acts to return the pulling up bar 21 to the initial state.

[0062] Operation of the emergency stop cancellation
mechanism is described.

[0063] In a state wherein the emergency stopping
shoe 44 bites between the emergency stopping biting
metal member 45 and the guide rail 18, the frictional
force acts, and accordingly, the emergency stopping
shoe 44 tends to stop itself but moves relatively down-
wardly. As a result, the emergency stopping arm 40 is
pivoted in the downward direction. When the emergency
stopping arm 40 is pivoted in the downward direction,
also the holding down bar 35 is pulled downwardly.
Here, since the hook 55 connected to the holding down
bar 35 is held in engagement with the latch pin 36 as
shown in FIG. 10(c) (engaged state of the hook 55),
the pulling up bar 21 is pulled downwardly by a displace-
ment amount equal to that of the holding down bar 35
under the restriction of the holding down bar 35 (it is to
be noted that the reason why the pulling up bar 21 and
the holding down bar 35 can be moved by an equal dis-
placement amount is that the elongated hole 21a is pro-
vided at the end portion of the pulling up bar 21). Ac-
cordingly, the pulling up bar 21 moves by a displacement
equal to b/a times that when it is pushed up (emergency
stopping operation) and returns to its initial position after
movement thereof over a distance shorter than the dis-
tance of the movement when it is pushed up, that is,
over a short distance within which the frictional force be-
tween the emergency stopping shoe 44 and the guide
rail 18 is maintained (the emergency stopping shoe 44
is maintained in a state wherein it bites between the
emergency stopping biting metal member 45 and the
guide rail 18). After the pulling up bar 21 returns to the
position of the initial state, also the latch arm 34 moves
upwardly. Thereupon, since the frictional force between
the emergency stopping shoe 44 and the guide rail 18
is maintained, the cage frame 12 is operating at a low
speed, and consequently, the governor arm 14 is being
acted by a force to return the governor arm 14 to a hor-
izontal position. Accordingly, when the latch arm 34 is
pushed upwardly, the cam 32 rotates back to its initial
position.

[0064] As the cage frame 12 further moves upwardly,
the holding down bar 35 moves downwardly until the
hook 55 reaches the position of the unhooking pin 57
and the unhooking pin 57 pivots the hook 55 (FIG. 11
(b)). Consequently, the engagement between the hook
55 and the latch pin 36 is cancelled, and also the restric-
tion of the pulling up bar 21 by the holding down bar 35
is cancelled. In this instance, since the latch arm 34 has
already returned to its initial position, even if the restric-
tion of the pulling up bar 21 is cancelled, the latch arm
34 is not pushed up by the biasing force of the pulling
up spring 51.

[0065] As the cage frame 12 further moves upwardly
until the emergency stopping shoe 44 and the guide rail
18 are disengaged from each other, the frictional force
is removed, and the holding down bar 35 is pulled down
to the last by the returning force of the emergency stop-
ning holding down spring 45c. Consequently, all of the
elements return to the initial positions (FIG. 11(c)).

[0066] In this manner, an emergency stopping opera-
tion and an emergency stop cancellation operation are
performed by a difference in displacement between the
locations on the emergency stopping arm 40 upon piv-
otal motion of the emergency stopping arm 40 and an
operation of the hook 55. In particular, in an emergency
stopping operation, the pulling up bar 21 pushes up the
emergency stopping arm 40, and thereupon, the holding
down bar 35 is pushed up by a stroke equal to b/a times
the stroke of the pulling up bar 21. On the contrary, in
an emergency stop cancellation operation, the holding
down bar 35 is pushed down together with the emerg-
cency stopping arm 40, and thereupon, also the pulling
up bar 21 is pulled down by a stroke equal to that of the
holding down bar 35 (action of the hook 55).

[0067] It is to be noted that, while this Embodiment 1
employs the cam 32, it is characterized in that a dis-
placement of the pickup 16 triggers an emergency stop-
ning operation, and any other mechanism may be em-
ployed only if it releases a pulling-up pre-pressure.

[0068] It is to be noted that, while, in the safety appa-
ratus for an elevator of Embodiment 1 described above,
the governor, cam latch mechanism, emergency stop-
ning mechanism, driving apparatus, emergency stop
cancellation mechanism and so forth are provided on
the cage frame 12, they need not be provided on the
component of the elevator such as the cage or weight.
This similarly applies to the other embodiments which
are hereinafter described.

[0069] As described above, according to this Embod-
iment 1, since an emergency stopping operation is trig-
gered by a governor and a cam latch mechanism while
a driving force for performing the emergency stopping
operation is generated from a resilient member such as
a spring and an emergency stop cancellation operation
is performed by a hook apparatus, even if the magnetic drag generated by eddy current is low and the pulling up force of the governor when an over-speed is detected is low, the emergency stopping operation can be performed using the pulling up force of the governor as a trigger. Consequently, malfunctions can be reduced, and the emergency stopping mechanism can be returned to its initial state readily only by raising the cage.

Embodiment 2.

FIGS. 12(a) and 12(b) are views showing a construction of a safety apparatus for an elevator according to Embodiment 2 of the present invention. Referring to FIGS. 12(a) and 12(b), reference numeral 37 denotes a latch arm, and one end portion of the latch arm 37 contacts with a cam 32 while the other end portion of the latch arm 37 is directly connected for pivotal motion to an emergency stopping arm 40. Reference numeral 59 denotes a pulling up spring (spring apparatus, driving apparatus, emergency stopping operation mechanism) disposed below the emergency stopping arm 40 for biasing the emergency stopping governor arm 40 upwardly.

FIG. 13 is a schematic view illustrating an emergency stop cancellation operation of the safety apparatus for an elevator shown in FIGS. 12(a) and 12(b). Referring to FIG. 13, reference numeral 60 denotes a cancellation arm (emergency stop cancellation mechanism) provided on an arm 14, the cam 32, the latch arm 37 and (or) the emergency stopping arm 40.

It is to be noted that, in FIGS. 12(a), 12(b) and 13, those elements denoted by the same reference numerals as those of Embodiment 1 (FIGS. 2 and 6) described above are same or corresponding elements as or to those of Embodiment 1 described above, and therefore, overlapping description of them is omitted here.

Incidentally, in FIGS. 12(a), 12(b) and 13, in order to facilitate understanding of operation, the front face (direction of the latch arm 37) and the emergency stopping face (direction of the emergency stopping arm 40) of the cam 32 which originally extend perpendicularly to each other as shown in FIG. 1 are shown on the same plane. Also, in FIGS. 14 to 24 which are hereinafter described, the front face and the emergency stopping face of the cam 32 are shown in the same plane in order to facilitate understanding of operation.

Subsequently, operation is described.

An emergency stopping operation is described.

While, in Embodiment 1 described above, the latch arm 34 and the emergency stopping arm 40 are operatively associated with each other by the pulling up bar 21 and the holding down bar 35, in this Embodiment 2, the latch arm 37 and the emergency stopping arm 40 are directly connected for pivotal motion to each other.

As shown in FIGS. 12(a) and 12(b), the latch arm 37 is, in an ordinary state, biased in an emergency stopping operation direction (upward direction) by the pulling up spring 59 (FIGS. 12(a)). If the latch arm 37 which is in contact with the cam 32 is released as a result of rotation of the cam 32, then the latch arm 37 is pivoted so that the emergency stopping arm 40 connected to the latch arm 37 is pivoted upwardly. Consequently, the emergency stopping shoe 44 provided at the end portion of the emergency stopping arm 40 bites between the emergency stopping biting metal member 45 and the guide rail 18 so that an emergency stopping operation is performed.
the emergency stopping arm 40, the overall construction of the safety apparatus for an elevator is simplified. While an emergency stop cancellation operation is performed manually, also this operation can be performed readily. Further, if the cancellation arm 60 and the cancellation cam 61 are provided, then it is also possible to automatically perform emergency stop cancellation.

Embodiment 3.

[0084] While, in Embodiment 1 described hereinabove, while, in Embodiment 1 described above, an emergency stopping operation at a second over-speed is triggered by a governor and a cam latch mechanism while a driving force for performing the emergency stopping operation is generated from a spring apparatus and an emergency stop cancellation operation is performed by a hook apparatus, in this Embodiment 3, an emergency stopping operation at a second over-speed is triggered by a governor and a cam latch mechanism while a driving force for performing the emergency stopping operation is generated by a pulling up wedge mechanism provided on a pickup and an emergency stop cancellation operation is realized by a pulling down spring.

[0085] FIGS. 15(a) to 15(d) are views illustrating a construction and operation of the safety apparatus for an elevator according to Embodiment 3 of the present invention. Referring to FIGS. 15(a) to 15(d), reference numeral 65 denotes a pulling up shoe (pulling up wedge mechanism) provided at an end portion of a latch arm 34 (at an end portion remote from the end portion at which the latch arm 34 contacts with a cam 32), and 66 a pulling up biting metal member (pulling up wedge mechanism) provided above the pulling up shoe 65. When the latch arm 34 is pivoted to move the end portion thereof upwardly, the pulling up shoe 65 is contacted with the pulling up biting metal member 66 and a guide rail 18 and bites between the pulling up biting metal member 66 and the guide rail 18 by a wedging effect. As a result, a high braking force is generated by a frictional effect between them so that an emergency stopping operation is performed. Reference numeral 64 denotes a pulling down spring (emergency stop cancellation mechanism) for pulling the emergency stopping arm 40 downwardly. Reference numeral 21 denotes a pulling up bar (link apparatus) for connecting the latch arm 34 and the emergency stopping arm 40 to each other.

[0086] It is to be noted that those elements denoted by same reference numerals to those of Embodiment 1 or 2 (FIGS. 2 and 6 or 12) described above are same or corresponding elements, and overlapping description of them is omitted here.

Subsequently, operation is described.

First, an emergency stopping operation is described.

When the cage frame 12 is moving at an ordinary operation speed, the governor arm 14 is in a horizontal position, but when the speed of downward movement of the cage frame 12 drops, then the governor arm 14 is tilted and the cam 32 is rotated (FIG. 15(b)). Further, when the cage frame 12 reaches the second over-speed (or exceeds the second over-speed), the cam 32 is further rotated and the end portion of the latch arm 34 (end portion at which the latch arm 34 contacts with the cam 32) reaches the cutaway portion of the cam 32. Thereupon, the latch arm 34 is inclined, and the pulling up shoe 65 provided at the other end portion of the latch arm 34 is pulled up and bites into the pulling up biting metal member 66 (FIG. 15(c)). Thereupon, a high braking force is generated by a frictional effect between them. Consequently, the latch arm 34 and the pulling up bar 21 are pulled up by a strong force to activate the emergency stopping mechanism (FIG. 15(d)). It is to be noted that the pin engaging portion of the pulling up bar 21 is in the form of the elongated hole 21a so that, upon operation, the downward force of the emergency stopping mechanism may not have an influence until the second over-speed is reached, and when the second over-speed is reached, the pulling up shoe 65 bites into the pulling up biting metal member 66 more readily.

[0090] Subsequently, an emergency stop cancellation operation is described.

If the cage frame 12 is lifted, then the emergency stopping arm 40 is pulled down in a direction (downward direction) to release the emergency stopping mechanism by the pulling down spring 64, the frictional force between the emergency stopping shoe 44 and the emergency stopping biting metal member 45 is lost and an emergency stop cancellation operation is performed. Also the pulling up wedge mechanism is released similarly. Here, since the cam 32 tends to return to its horizontal position if the cage frame 12 is moving at a low speed, also the cam 32 returns to its initial position.

FIGS. 16(a) to 16(d) are schematic views of a safety device for an elevator which employs an emergency stop cancellation mechanism different from that of FIG. 15. Referring to FIGS. 16(a) and 16(b), reference numeral 67 denotes a hook (hook apparatus, emergency stop cancellation mechanism) provided at a lower end of the pulling up bar 21. Reference numeral 68 denotes an unhooking pin (emergency stop cancellation mechanism).

It is to be noted that elements denoted by same reference numerals to those of FIG. 15 are same or corresponding elements, and overlapping description of them is omitted here.

Subsequently, operation is described.

An emergency stopping operation is described.

First, when the cage frame 12 is moving in an ordinary operation speed, the governor arm 14 is in a horizontal position (FIG. 16(a)). However, if the speed of downward movement of the cage frame 12 drops, then the pickup 16 is displaced in the upward direction and the pulling up shoe 65 provided on the pickup 16
approaches the pulling up biting metal member 66. When the cage frame 12 reaches (or exceeds) the second over-speed, the pulling up shoe 65 is brought into contact with the pulling up biting metal member 66 and bites between the pulling up biting metal member 66 and the guide rail 18 by friction (FIG. 16(b)). Thereupon, also the pulling up bar 21 mounted on the governor arm 14 is lifted, and the hook 67 provided at the lower end of the pulling up bar 21 is engaged with the pulling up pin 42 (FIG. 16(b)). After the pulling up bar 21 moves until the pulling up pin 42 comes to an end of the elongated hole 21a, it pulls up the emergency stopping arm 40 by a strong pulling up force caused by a wedging action to establish an emergency stopping operation state (FIG. 16(c)), and the emergency stopping operation is completed by the wedging action of the emergency stop (FIG. 16(d)).

It is to be noted that, since the emergency stop cancellation operation is similar to the emergency stop cancellation operation described above in connection with Embodiment 1 in which the hook 55 is used, operation thereof is omitted here.

As described above, according to this Embodiment 3, the force which is applied to the cam 32 upon ordinary operation can be reduced, and also the force of the emergency stopping operation is high. Further, also the emergency stop cancellation operation can be performed simply. In particular, since, in Embodiment 1 described hereinabove, the pulling up force is derived from a biasing force of the pulling up spring 51, a strong force from the latch arm 34 is always applied to the cam 32. However, according to Embodiment 2, since the pulling up force is derived from a wedging action of the pulling up wedge mechanism, only a spring force which converts the magnetic drag to the pulling up 16 into a displacement in the direction of pivotal motion is applied only to the cam 32, and the friction between the cam 32 and the latch arm 34 is reduced and also the stability of the cam latch mechanism is improved.

Further, since an over-speed is detected from the displacement of the pickup 16 and the pulling up wedge mechanism is activated using the cam latch mechanism as a trigger, only if the pickup 16 is precise, accurate detection of an over-speed can be achieved. Consequently, the accuracy of the mechanism can be moderated and also the safety is improved.

Furthermore, since the emergency stop cancellation mechanism is formed from the pulling down spring 64 or the hook 67, an emergency stop cancellation operation can be performed readily and with certainty only by lifting the cage.

Embodiment 4

In this Embodiment 4, a safety apparatus for an elevator is realized by providing a pulling up wedge mechanism on a pickup 16.

FIGS. 17(a) to 17(e) are views illustrating a construction and operation of the safety apparatus for an elevator according to this Embodiment 4 of the present invention. In FIGS. 17(a) to 17(e), those elements denoted by same reference numerals to those of Embodiments 1 to 3 described above are same or corresponding elements, and overlapping description of them is omitted here.

While, in Embodiment 3 described above, the pulling up shoe 65 is provided at an end portion of the latch arm 34, in this Embodiment 4, the pulling up shoe 65 for extracting a pulling up force by a wedging action is provided on the pickup 16, and the pulling up biting metal member 66 secured to the cage frame 12 side by a biting metal member base (not shown) is disposed above the pulling up shoe 65. Further, the pickup 16 is connected to the emergency stopping mechanism via the pulling up bar 21. Furthermore, the emergency stopping arm 40 undergoes a pulling down force at a position of an initial state by the pulling down spring 64.

Subsequently, operation is described.

First, when the cage frame 12 is moving at an ordinary operation speed, the governor arm 14 is in a horizontal position (FIG. 17(a)). However, if the speed of downward movement of the cage frame 12 drops, then the pickup 16 is displaced upwardly and the pulling up shoe 65 provided on the pickup 16 approaches the pulling up biting metal member 66 (FIG. 17(b)). Further, when the speed of the cage frame 12 reaches the second over-speed (or exceeds the second over-speed), then the pulling up shoe 65 is brought into contact with the pulling up biting metal member 66 and bites between the pulling up biting metal member 66 and the guide rail 18 by friction (FIG. 17(c)). A contacting face of the pulling up biting metal member 66 with the pulling up shoe 65 is acted upon by a substantially fixed force, for example, spring force in a direction to widen the wedge, and consequently, a strong pulling up force by the wedging action can be held to a substantially fixed force. After the pulling up bar 21 moves until the pulling up pin 42 comes to an end of the elongated hole 21a, the emergency stopping arm 40 is pulled up by the strong pulling up force arising from the wedging action to enter an emergency stopping operation state (FIG. 17(d)), and the emergency stopping operation is completed by the wedging action of the emergency stop (FIG. 17(e)).

It is to be noted that description of the emergency stop cancellation operation is omitted here because it is similar to that in Embodiment 3 described above.

While the safety apparatus for an elevator apparatus shown in FIGS. 17(a) to 17(e) performs an emergency stop cancellation operation by means of the pulling down spring 64, this can be performed by a hook apparatus.

FIGS. 18(a) to 18(e) and 19(a) to 19(e) are schematic views of a safety apparatus for an elevator
wherein an emergency stop cancellation operation is performed by a hook apparatus. FIGS. 18(a) to 18(e) illustrate an emergency stopping operation, and FIGS. 19(a) to 19(e) illustrate an emergency stop cancellation operation.

It is to be noted that the description of the emergency stopping operation and the emergency stop cancellation operation is omitted here since they are similar to the emergency stopping operation illustrated in FIG. 17 and the emergency stop cancellation operation in Embodiment 3 described above, respectively.

As described above, according to this Embodiment 4, since a pulling up wedge mechanism is provided on the pickup 16, the overall construction of the safety apparatus for an elevator is simplified and the emergency stopping operation can be activated by a high pulling up force due to a wedging action of the pulling up wedge mechanism. Further, an emergency stop cancellation operation can be performed readily only by lifting the cage.

Embodiment 5.

FIGS. 20(a) and 20(b) are views showing a construction of a safety apparatus for an elevator according to Embodiment 5 of the present invention. Referring to FIGS. 20(a) and 20(b), reference numeral 47 denotes an emergency stop base (emergency stopping mechanism) on which an emergency stopping biting metal member 45 is mounted. The emergency stop base 47 is constructed so that the emergency stopping biting metal member 45 is disposed above an emergency stopping shoe 44 provided on a pickup 16. It is to be noted that those elements denoted by the same reference numerals as those of Embodiments 1 to 4 and the prior art described hereinabove are same or corresponding elements and overlapping description thereof is omitted here.

Subsequently, an emergency stopping operation is described.

If the speed of the cage frame 12 reaches the second over-speed, then the pickup 16 moves upwardly, and also the pickup 16 provided on the pickup 16 moves upwardly. Then, the emergency stopping shoe 44 bites between the emergency stopping biting metal member 45 and the guide rail 18 disposed above the pickup 16 with the emergency stop base 47 interposed therebetween, whereby a high frictional force is generated to effect emergency stopping of the elevator.

FIG. 21 is a view showing a construction of a safety apparatus for an elevator wherein emergency stopping mechanisms are provided above and below the pickup 16. Referring to FIG. 21, reference numeral 48 denotes an emergency stopping biting metal member (emergency stopping mechanism), and the emergency stopping biting metal member 48 is constructed such that it covers above and below the pickup 16 so that the emergency stopping shoes 44 provided above and below the pickup 16 may bite into the emergency stopping shoe 44.

By providing the emergency stopping mechanisms above and below the pickup 16 in this manner, emergency stopping of the elevator can be performed in whichever of the upward and downward directions the elevator is moving.

As described above, according to this Embodiment 5, since the emergency stopping shoe 44 is provided on the pickup 16 and the emergency stopping biting metal member 45 is disposed above (and below) the pickup 16 with the emergency stop base 47 interposed therebetween, the pulling down bar 21, the holding down bar 35, the pulling up wedge mechanism and so forth become unnecessary and an emergency stopping operation can be performed directly by a displacement of the pickup 16, and the safety apparatus for an elevator can be constructed readily in a further reduced size. Further, since the emergency stopping mechanism is disposed on the cage frame 12, installation adjustment can be performed readily and also inspection and maintenance are facilitated.

Embodiment 6.

FIG. 22 is a view showing a construction of a safety apparatus for an elevator according to Embodiment 6 of the present invention. Referring to FIG. 22, reference numeral 70 denotes an oscillation absorption element provided between a pickup 16 and a governor arm 14, immediately of a pulling up bar 21 or (and) on an emergency stopping arm 40. It is to be noted that, in FIG. 22, those elements denoted by the same reference numerals as those of Embodiment 4 (FIG. 17) described above are same or corresponding elements and overlapping description of the same is omitted here.

If the cage is oscillated upwardly and downwardly by oscillations of the cage when the cage moves or by passengers getting into or out of the cage or moving violently in the cage, then also the speed of the cage oscillatorily varies by a large amount and there is the possibility that the emergency stop may operate in error. Therefore, by providing the oscillation absorption element 70 as shown in FIG. 22, oscillations of the cage can be absorbed to reduce the possibility that an operation in error may take place. The oscillation absorption element 70 is formed from a resilient member such as a spring or rubber, and the mounted position of the oscillation absorption element 70 may be a location other than that shown in FIG. 22 and the oscillation absorption element 70 may be provided at any location of the governor, the emergency stopping operation mechanism or the emergency stopping mechanism.

It is to be noted that, if the oscillation absorption element 70 is set so as to have an oscillation frequency lower than an oscillation frequency to be absorbed (for example, if it is assumed that the oscillation frequency of the cage when passengers move violently in the elevator is, for example, 5 Hz, then the primary...
resonance frequency by the resilient member of the safety apparatus where the resilient member (oscillation absorption element 70) is added is the oscillation frequency of 5 Hz to be absorbed) (for example, the oscillation frequency of the oscillation absorption element 70 is set to approximately 2 Hz), then the oscillation absorption element 70 acts as a physically hard solid member within a range of the frequency up to the primary resonance frequency. Accordingly, since, in such an abnormal state that a critical speed is reached as a result of dropping of the cage or because the cage becomes uncontrollable, the cage varies but not oscillatorily, that is, in a low frequency, in such a state that the critical speed is reached, the resilient member exhibits a characteristic near to that of a rigid member and the elevator can be emergency stopped with certainty without a time delay. On the other hand, an oscillatory input which arises in such a case that passengers move violently in the cage can be absorbed because it is low in frequency.

Embodiment 7.

[0121] While, in the conventional safety apparatus for an elevator, a counterweight is provided in order to establish a balanced state with the pickup 16 which forms a magnetic circuit, there is the possibility that an over-speed may not be detected accurately by mere provision of the counterweight because, if the emergency stopping mechanism (pulling up bar 21, emergency stopping arm 40, emergency stopping shoe 44 and so forth) is mounted, then the force is biased in one direction and the balance of the pulling up force by eddy current is lost. Further, since the overall operation mechanism section (governor, cam latch mechanism, emergency stopping mechanism, emergency stop cancellation mechanism and so forth) is not in a well-balanced state, there is the possibility that the governor may be displaced by an influence of oscillations applied to the cage frame 12 or the like to cause the emergency stopping mechanism to malfunction.

[0122] Thus, in this Embodiment 7, the overall operation mechanism section is put into a well-balanced state to achieve stabilized operation.

[0123] FIGS. 23(a) and 23(b) are views illustrating a construction and operation of a safety apparatus for an elevator according to Embodiment 7 of the present invention. Referring to FIGS. 23(a) and 23(b), reference 49 denotes an auxiliary weight provided in the rear of a support shaft 41 for an emergency stopping arm 40. The auxiliary weight 49 is adjusted so that the overall operation mechanism section in an initial position may be in a well-balanced state (state prior to an emergency stopping operation). For example, in the safety apparatus for an elevator shown in FIG. 22, principal components provided so as to be balanced with the balance weight 17 are the pickup 16, governor arm 14, pulling up bar 21, emergency stopping arm 40 and emergency stopping shoe 44, and the weight of the auxiliary weight 49 is adjusted so that a well-balanced condition may be provided between those elements.

[0124] It is to be noted that, in FIGS. 23(a) and 23(b), those elements denoted by same reference numerals as those of Embodiments 1 to 6 described above are same or corresponding elements and overlapping description of them is omitted here.

[0125] Subsequently, operation is described.

[0126] First, when the cage frame 12 is moving at an ordinary operation speed, the governor arm 14 is in a horizontal position (FIG. 23(a)). However, if the speed of downward movement of the cage frame 12 rises, the pickup 16 is displaced upwardly and the emergency stopping arm 40 is pulled up. Here, since the balance of the overall operation mechanism section is adjusted using the auxiliary weight 49 as described above, when the second over-speed is reached, the safety apparatus for an elevator operates accurately. If the speed of the cage frame 12 reaches the second over-speed (or exceeds the second over-speed), then the emergency stopping shoe 44 is brought into contact with the emergency stopping biting metal member 45 and bites between the emergency stopping biting metal member 45 and the guide rail 18 by friction (FIG. 23(b)). It is to be noted that a contacting face of the emergency stopping biting metal member 45 with the emergency stopping shoe 44 is acted upon by a substantially fixed, for example, spring force in a direction in which the wedge is widened, and a strong pulling up force by a wedging action can be kept to a substantially fixed force. Then, the emergency stopping arm 40 is pulled up by the strong pulling up force arising from the wedging action and an emergency stopping operation state is entered, and the emergency stopping operation is completed by the wedging action of the emergency stop.

[0127] It is to be noted that description of the emergency stop cancellation operation is omitted here because it is similar to that of Embodiment 1 described hereinabove.

[0128] As described above, according to this Embodiment 7, since the auxiliary weight 49 is mounted at an end portion of the emergency stopping arm 40, the overall operation mechanism section can be adjusted so as to be in a well-balanced state, and such a situation that the governor is displaced by an influence of oscillations applied to the cage frame 12 or the like and the emergency stop operates in error is reduced.

[0129] As described above, according to the first aspect of the present invention, since a safety apparatus for an elevator comprises a guide rail of a conductor securely disposed along a path of upward and downward movement of the elevator, an emergency stopping mechanism mounted on a movable section of the elevator for gripping the guide rail to generate a frictional force to brake the movable section, a governor mounted on the movable section for being displaced when a speed of the movable section reaches a critical speed to activate the emergency stopping mechanism, and an
emergency stopping operation mechanism for transmitting the displacement of the governor to said emergency stopping mechanism, the cage (movable section) of the elevator can be stopped with certainty.

[0130] According to the second aspect of the present invention, since a safety apparatus for an elevator comprises a guide rail of a conductor securely disposed along a path of upward and downward movement of the elevator, an emergency stopping mechanism mounted on a movable section of the elevator for gripping the guide rail to generate a frictional force to brake the movable section, a driving apparatus for operating the emergency stopping mechanism, a cam latch mechanism mounted on the movable section for releasing, when a speed of the movable section reaches a critical speed, a driving force of the driving apparatus which has been restricted till then, and a governor mounted on the movable section for being displaced when the speed of the movable section reaches the critical speed to activate the cam latch mechanism, even if the magnetic drag generated by eddy current is low and the pulling up force mechanism can be held, and even if the magnetic drag of the movable section reaches the critical speed, the connected to the driving apparatus, and when the speed an end held in contact with the cam and the other end pivotal motion around an axis of the latch pin and having a latch arm mounted on the governor by a latch pin for

[0131] According to the third aspect of the present invention, since a safety apparatus for an elevator is constructed such that the governor includes a pickup including a magnet and a back yoke which form a magnetic circuit together with the guide rail, a pivotal arm having the pickup mounted at an end thereof and having a balance weight mounted at the other end thereof for transmitting a displacement of the pickup, a main shaft securely mounted at a fulcrum of the arm so as to be rotated in response to a displacement of the arm, and a base for supporting the main shaft thereon, the speed of the cage (movable section) can be detected directly, and the accuracy in detection of the speed is improved. Since an emergency stopping operation is started in response to the speed detected in this manner, the emergency stopping operation can be performed with certainty.

[0132] According to the fourth aspect of the present invention, since the safety apparatus for an elevator is constructed such that the governor includes a cam mounted on a main shaft of the governor which is rotated in accordance with a speed of the movable section, and a latch arm mounted on the governor by a latch pin for pivotal motion around an axis of the latch pin and having an end held in contact with the cam and the other end connected to the driving apparatus, and when the speed of the movable section reaches the critical speed, the cam is rotated to release the driving force of the driving apparatus, the driving force of the emergency stopping mechanism can be held, and even if the magnetic drag generated by eddy current is low and the pulling up force of the governor is low, an emergency stopping operation can be performed with certainty using the pulling up force of the governor as a trigger.

[0133] According to the fifth aspect of the present invention, since the safety apparatus for an elevator is constructed such that the driving apparatus includes a pulling up bar connected at an end thereof to the cam latch mechanism and at the other end thereof to the emergency stopping mechanism, and a spring element for lifting the pulling up bar when the speed of the movable section reaches the critical speed, a high driving force can act upon the emergency stopping mechanism, and an emergency stopping operation can be performed with certainty.

[0134] According to the sixth aspect of the present invention, since a safety apparatus for an elevator comprises a guide rail of a conductor securely disposed along a path of upward and downward movement of the elevator, an emergency stopping mechanism mounted on a movable section of the elevator for gripping the guide rail to generate a frictional force to brake the movable section, a pulling up wedge mechanism disposed for wedging engagement with the guide rail to generate a driving force for the emergency stopping mechanism, a cam latch mechanism mounted on the movable section for cooperating, when a speed of the movable section reaches a critical speed, with the pulling up wedge mechanism to activate the pulling up wedge mechanism, a governor mounted on the movable section for being displaced when the speed of the movable section reaches the critical speed to activate the cam latch mechanism, and a link apparatus for connecting the cam latch mechanism to the emergency stopping mechanism to transmit the driving force generated by the pulling up wedge mechanism to the emergency stopping mechanism, the force applied to the cam upon ordinary operation can be reduced, and also the force for an emergency stopping operation can be increased. Furthermore, also an emergency stop cancellation operation can be performed readily.

[0135] According to the seventh aspect of the present invention, since a safety apparatus for an elevator comprises a guide rail of a conductor securely disposed along a path of upward and downward movement of the elevator, an emergency stopping mechanism mounted on a movable section of the elevator for gripping the guide rail to generate a frictional force to brake the movable section, a governor for being displaced when a speed of the movable section reaches a critical speed, a pulling up wedge mechanism mounted on the movable section for the emergency stopping mechanism, the force applied to the cam latch mechanism and at the other end thereof to the emergency stopping mechanism, and a link apparatus for connecting the governor to the emergency stopping mechanism to transmit a driving force generated by the pulling up wedge mechanism to the emergency stopping mechanism, also the force for an emergency stopping operation is high, and also an emergency stop cancellation operation can be
performed readily. Besides, since no cam latch mechanism is provided, also the construction is simplified.

[0136] According to the eighth aspect of the present invention, since the safety apparatus for an elevator is constructed such that it further comprises an auxiliary weight provided on any of the governor, emergency stopping operation mechanism and emergency stopping mechanism which is moved by the displacement of the governor, the overall operation mechanism section can be held in a well-balanced state, and also the accuracy in detection of the speed of the governor is improved advantageously.

[0137] According to the ninth aspect of the present invention, since the safety apparatus for an elevator is constructed such that the auxiliary weight is provided on an emergency stopping arm, the overall operation mechanism section can be held in a well-balanced state readily.

[0138] According to the tenth aspect of the present invention, since the safety apparatus for an elevator is constructed such that it further comprises a cancellation arm provided on any of the governor, emergency stopping operation mechanism and emergency stopping mechanism which is moved by the displacement of the governor, an emergency stop cancellation operation can be performed manually, and accordingly, a simple construction can be achieved without provision of an emergency stop cancellation mechanism.

[0139] According to the eleventh aspect of the present invention, since the safety apparatus for an elevator is constructed such that it further comprises a cancellation cam provided along the path of upward and downward movement of the elevator for engaging with the cancellation arm, an emergency stop cancellation operation can be performed automatically only by moving the elevator upwardly and downwardly.

[0140] According to the twelfth aspect of the present invention, since the safety apparatus for an elevator is constructed such that it further comprises an emergency stop cancellation mechanism including a holding down bar connected at an end thereof to the cam latch mechanism and at the other end thereof to the emergency stopping mechanism and a hook apparatus for being engaged with and restricting the driving apparatus when the holding down bar moves upwardly but releasing the engagement and restriction of the driving apparatus when the holding down bar moves downwardly, the emergency stopping mechanism can be returned to its initial state readily only by lifting the cage (movable section) upwardly.

[0141] According to the thirteenth aspect of the present invention, since the safety apparatus for an elevator is constructed such that the hook apparatus includes a hook mounted on the holding down bar, and an unhooking pin mounted on the governor for releasing a pulling up bar when the holding down bar moves downwardly, an emergency stop cancellation operation can be performed with a simple construction.

[0142] According to the fourteenth aspect of the present invention, since the safety apparatus for an elevator is constructed such that the emergency stopping mechanism includes an emergency stopping arm mounted for pivotal motion on the movable section, an emergency stopping shoe mounted at an end portion of the emergency stopping arm, and an emergency stopping biting metal member disposed for wedging engagement with the emergency stopping shoe and the guide rail, that the driving apparatus includes a pulling up bar having an end connected to the cam latch mechanism and the other end connected for sliding movement to a portion of the emergency stopping arm in the proximity of a pivot shaft of the emergency stopping arm via an elongated hole, and a spring element for lifting the pulling up bar when the speed of the movable section reaches the critical speed, that the emergency stop cancellation mechanism includes a holding down bar having an end connected for sliding movement to the cam latch mechanism via an elongated hole and the other end connected to an end portion of the emergency stopping arm, and a hook apparatus mounted on the holding down bar for being engaged with and restricting the pulling up bar when the holding down bar moves upwardly but releasing the engagement and restriction of the pulling up bar when the holding down bar moves downwardly, and that the holding down bar is moved, upon emergency stopping operation, upwardly over an extent larger by an amount corresponding to a length of the elongated hole than the pulling up bar due to a difference between displacements of locations of the emergency stopping arm different from the center of pivotal motion so that the hook apparatus is engaged with and restricts the pulling up bar, but upon emergency stopping cancellation operation, when the movable section is moved upwardly, while the emergency stopping biting metal member remains in wedging engagement with the guide rail, the emergency stopping arm is moved downwardly so that the holding down bar connected to the emergency stopping arm is moved downwardly and the pulling up bar which has been engaged with and restricted by the hook apparatus is moved downwardly by a displacement amount equal to that of the holding down bar until the engagement and restriction is cancelled at a position at which the driving apparatus restores an initial state, the emergency stopping mechanism can be returned to its initial position over a short distance over which the frictional force between the emergency stopping shoe and the guide rail is maintained.

[0143] According to the fifteenth aspect of the present invention, since the safety apparatus for an elevator is constructed such that it further comprises an oscillation absorption apparatus provided on any of the governor, emergency stopping operation mechanism and emergency stopping mechanism for absorbing oscillations, even if the cage is temporarily oscillated to a large extent and the speed of the cage is varied by passengers getting into or out of the elevator or moving violently in the
A safety apparatus for an elevator according to claim 1, wherein the emergency stopping operation mechanism (21, 32, 34, 36, 51) consists of a driving apparatus (21, 51) and a cam latch mechanism (32, 34, 36) mounted on said movable section for releasing, when a speed of said movable section reaches a critical speed, a driving force of said driving apparatus which has been restricted till then.

3. A safety apparatus for an elevator according to claim 2, wherein said governor includes a pickup (16) including a magnet (16a) and a back yoke (16b, 16c) which form a magnetic circuit together with said guide rail, a pivotal arm (14) having said pickup mounted at an end thereof and having a balance weight (17) mounted at the other end thereof for transmitting a displacement of said pickup, a main shaft (30) securely mounted at a fulcrum of said arm so as to be rotated in response to a displacement of said arm, and a base (13) for supporting said main shaft thereon.

4. A safety apparatus for an elevator according to claim 2, wherein said governor includes a cam (32) mounted on a main shaft of said governor which is rotated in accordance with a speed of said movable section, and a latch arm (34) mounted on said governor by a latch pin (36) for pivotal motion around an axis of said latch pin and having an end held in contact with said cam and the other end connected to said driving apparatus, and when the speed of said movable section reaches the critical speed, said cam is rotated to release the driving force of said driving apparatus.

5. A safety apparatus for an elevator according to claim 2, wherein said driving apparatus includes a pulling up bar connected at an end thereof to said cam latch mechanism and at the other end thereof to said emergency stopping mechanism, a spring element (51) for lifting said pulling up bar when the speed of said movable section reaches the critical speed.

6. A safety apparatus for an elevator according to claim 1, further comprising an auxiliary weight (49) provided on any of said governor, emergency stopping operation mechanism and emergency stopping mechanism which is moved by the displacement of said governor.

7. A safety apparatus for an elevator according to claim 6, wherein said auxiliary weight (49) is provided on an emergency stopping arm (40).

8. A safety apparatus for an elevator according to claim 2, further comprising an emergency stop cancellation mechanism (35, 55, 56, 57) including a holding down bar (35) connected at an end thereof

9. A safety apparatus for an elevator according to claim 2, wherein said governor includes a cam (32) mounted on a main shaft of said governor which is rotated in accordance with a speed of said movable section, and a latch arm (34) mounted on said governor by a latch pin (36).
to said cam latch mechanism and at the other end thereof to said emergency stopping mechanism and a hook apparatus (55, 56) for being engaged with and restricting said driving apparatus when said holding down bar moves upwardly but releasing the engagement and restriction of said driving apparatus when said holding down bar moves downwardly.

Patentansprüche

1. Sicherheitsvorrichtung für einen Fahrstuhl mit:

einer Führungsschiene (18) eines Leiters, welche sicher entlang eines Wegs der Aufwärts- und Abwärtsbewegung des Fahrstuhls angeordnet ist;

einem Nothaltmechanismus (40, 41, 44, 45), welcher an einem beweglichen Abschnitt (12) des Fahrstuhls angeordnet ist, um die Führungsschiene zu ergreifen, um eine Reibkraft zu erzeugen, um den beweglichen Abschnitt zu bremsen;

einem Fliehkraftregler (13, 14, 16, 17, 30), welcher an dem beweglichen Abschnitt angebracht ist, um ausgelenkt zu werden, wenn eine Geschwindigkeit des beweglichen Abschnitts eine kritische Geschwindigkeit erreicht, um den Nothaltmechanismus zu aktivieren; und

einem Nothaltbetätigungsmechanismus (21, 32, 34, 36, 51) zum Übertragen der Auslenkung des Fliehkraftreglers auf den Nothaltmechanismus,

dadurch gekennzeichnet, dass die Sicherheitsvorrichtung weiter Folgendes aufweist:

- einen Rückstellarm (60), welcher entweder an dem Fliekhkraftregler, an dem Nothaltmechanismus oder dem Nothaltbetätigungsmechanismus angebracht ist und durch die Auslenkung des Fliehkraftreglers bewegt wird, und

- eine Rückstellnocke (61), welche entlang des Wegs der Aufwärts- und Abwärtsbewegung des Fahrstuhls vorgesehen ist, um mit dem Rückstellarm (60) in Eingriff zu geraten.

2. Sicherheitsvorrichtung für einen Fahrstuhl nach Anspruch 1, wobei der Nothaltbetätigungsmechanismus (21, 32, 34, 36, 51) aus einer Antriebsvorrichtung (21, 51) und einem Nockenriegelmechanismus (32, 34, 36) besteht, welcher an dem beweglichen Abschnitt angebracht ist, um, wenn eine Geschwindigkeit des beweglichen Abschnitts eine kritische Geschwindigkeit erreicht, eine Antriebskraft der Antriebsvorrichtung freizugeben, die bis zu diesem Zeitpunkt begrenzt worden war.

3. Sicherheitsvorrichtung für einen Fahrstuhl nach Anspruch 2, wobei der Fliekhkraftregler einen Aufnehmer (16) beinhaltet, welcher seinerseits einen Magneten (16a) und ein rückwärtiges Joch (16b, 16c) beinhaltet, welche einen magnetischen Kreis zusammen mit der Führungsschiene bilden, einen schwenkbaren Arm (14), an dessen einem Ende der Aufnehmer angeordnet ist und der ein Ausgleichsgewicht (17) an seinem anderen Ende hat, um eine Auslenkung des Aufnehmers zu übertragen, eine Hauptwelle (30), welche sicher an einem Drehpunkt des Arms angebracht ist, um als Antwort auf eine Auslenkung des Arms gedreht zu werden, sowie eine Basis (13) zum Lagern der Hauptwelle.

7. Sicherheitsvorrichtung für einen Fahrstuhl nach Anspruch 6, wobei das zusätzliche Gewicht (49) an einem Nothaltarm (40) vorgesehen ist.
Dispositif de sécurité pour un ascenseur selon la revendication 2, dans lequel le mécanisme régulateur comprend un capteur (16) comprenant un aimant (16a) et un étirer arrière (16b, 16c) qui forment avec ledit rail de guidage un circuit magnétique, une arme de rotation (14) ayant ledit capteur monté au niveau d'une extrémité de celle-ci et ayant un contrepoids (17) monté au niveau de l'autre extrémité de celle-ci afin de transmettre un déplacement dudit capteur, un arbre principal (30) monté de manière fixe au niveau d'un point d'appui de ladite armature de manière à pivoter en réponse à un déplacement de ladite armature, ainsi qu'une embase (13) destinée à supporter ledit arbre principal.

4. Dispositif de sécurité pour un ascenseur selon la revendication 2, dans lequel le mécanisme régulateur comprend une came (32) qui est montée sur un arbre principal dudit mécanisme régulateur et pivotée en fonction de la vitesse de ladite partie mobile, et un bras de verrouillage (34) qui est monté sur ledit mécanisme régulateur au moyen d'un mentonnet (36) pour un mouvement de rotation autour d'un axe dudit mentonnet et qui présente une extrémité maintenue en contact avec ladite came et l'autre extrémité reliée audit dispositif d'entraînement, et lorsque la vitesse de ladite partie mobile atteint la vitesse critique, ladite came est pivotée de manière à libérer la force d'entraînement dudit dispositif d'entraînement.

5. Dispositif de sécurité pour un ascenseur selon la revendication 2, dans lequel ledit dispositif d'entraînement comprend une barre d'élévation reliée au niveau d'une extrémité de celle-ci audit mécanisme de verrouillage à came et au niveau de l'autre extrémité de celle-ci audit mécanisme d'arrêt d'urgence, et un élément de ressort (51) adapté pour soulever ladite barre d'élévation lorsque la vitesse de ladite partie mobile atteint la vitesse critique.

6. Dispositif de sécurité pour un ascenseur selon la revendication 1, comprenant en outre un poids auxiliaire (49) prévu sur n'importe lequel dudit mécanisme régulateur, dudit mécanisme de fonctionnement d'arrêt d'urgence et dudit mécanisme d'arrêt d'urgence, qui est déplacé par le déplacement dudit mécanisme régulateur.

7. Dispositif de sécurité pour un ascenseur selon la revendication 6, dans lequel ledit poids auxiliaire...
8. Dispositif de sécurité pour un ascenseur selon la revendication 2, comprenant en outre un mécanisme d'annulation d'arrêt d'urgence (35, 55, 56, 57) comprenant une barre de retenue vers le bas (35) reliée au niveau d'une extrémité de celle-ci audit mécanisme de verrouillage à came et au niveau de l'autre extrémité de celle-ci audit mécanisme d'arrêt d'urgence, ainsi qu'un appareil à crochet (55, 56) adapté à la fois pour venir en prise avec et pour limiter le dispositif d'entraînement lorsque ladite barre de retenue vers le bas se déplace vers le haut, et pour relâcher son emprise et pour ne plus limiter ledit dispositif d'entraînement lorsque ladite barre de retenue vers le bas se déplace vers le bas.
FIG. 9(b)

FIG. 9(a)

35 21 33 34 32

21 40

35

a

b
FIG.25 (PRIOR ART)
FIG. 28 (PRIOR ART)

SECOND OPERATING POINT

FIRST OPERATING POINT

dz/dv

RATED SPEED

FIRST OVER-SPEED

RATED SPEED

SECOND OVER-SPEED

MOVEMENT RANGE IN ORDINARY OPERATION

SPEED: v