EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 30.09.2009 Bulletin 2009/40

Application number: 97400664.5

Date of filing: 25.03.1997

Apparatus and method to provide security for a keypad processor of a transaction terminal
Sicherheitsanordnung und -verfahren für einen Tastaturprozessor eines Transaktionsterminals
Dispositif et méthode de sécurité pour un processeur de clavier d’un terminal de transactions

Designated Contracting States: DE ES FR GB IT NL

Priority: 25.03.1996 US 622521

Date of publication of application: 26.11.1997 Bulletin 1997/48

Proprietor: SCHLUMBERGER TECHNOLOGIES, INC.
Chesapeake, VA 23320 (US)

Inventors:
• de Jesus, Armando
Mount Laurel, NJ 08054 (US)
• Schertz, Eric
Mount Holly, NJ 08060 (US)

Representative: Cassagne, Philippe M.J. et al
Gemalto SA
Intellectual Property Department
6 Rue de la Verrière
92197 Meudon Cedex (FR)

References cited:
GB-A- 2 190 775

DE-A- 4 126 760
US-A- 4 926 173

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to an apparatus and method for use with a transaction terminal, and more specifically to an electronic circuit that detects data entry on the keypad of a transaction terminal and inhibits the fraudulent acquisition of the entered data.

Description of the Related Art

Transaction terminals such as automatic teller machines (ATMs), electronic funds transfer at point of sale (EFTPOS) terminals and retail transaction terminals (i.e., credit card and debit machines) are becoming increasingly common. Normally, a user inserts an identification card having a magnetic stripe into a card reader to identify the user and provide data such as account information. Thereafter, in order to effectuate a transaction, the user enters a personal identification number (PIN) via a keypad. The combination of the PIN and the account information authorizes the store or bank that issued the account to effectuate a charge against the account, or to transfer funds to or from the owner's account. The requirement of the PIN together with the account information ensures the owner that the acquisition of either item alone by a thief will not enable the thief to fraudulently transfer funds or charge the owner's account.

Transaction terminals have the disadvantage that it is possible for an electronic eavesdropper to attach electrical "tapping" connections to the card reader or keypad conductors in order to monitor when a card is inserted in the card reader and when a circuit connection is made by a key depression (e.g., when PIN data is entered). It is also possible for an electronic eavesdropper to monitor radiation emissions which are created when a card is inserted in the card reader and when a circuit connection is made by a key depression of the keypad (e.g., when PIN data is entered). It is therefore possible for the electronic eavesdropper to obtain account and PIN information from the transaction terminal and to use that data to execute a fraudulent transaction. The above-mentioned eavesdropping methods enable execution of the fraudulent transaction by an unauthorized person without physically acquiring the bank card and without visually observing the user inputting the PIN. This type of fraudulent transaction costs banks, credit card companies, retail merchants and consumers hundreds of millions of dollars each year.

DE 4 126 760, US 4 926 173 and GB 2 190 775 relate to a secured processor connected to a keypad. Each document discloses a particular variant of a secured processor preventing an electronic eavesdropper from a detection of the key(s) actuated. EP 0 248 712 is considered to be the closest Prior Art document and also relates to a secured processor connected to a keypad. This document discloses the use of polling signals which serve notably to sample the keypad, in order to detect key actuations ("actual polling") but also to mask the actual polling signals ("false polling").

OBJECTS AND SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide an apparatus and method which substantially reduces the likelihood of successful electronic eavesdropping by varying the duration of the actual and false polling pulses in a random manner. The invention is more particularly defined by the set of claims that is herewith attached.

A preferred form of the apparatus and method to provide security for a keypad processor of a transaction terminal, as well as other embodiments, objects, features and advantages of this invention, will be apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of the secured processor coupled to a keypad, an auxiliary processor, interface circuit and card reader in accordance with the present invention.

Figure 2A is a flow chart of steps performed to provide security for a keypad processor of a transaction terminal in accordance with the present invention.

Figure 2B is a flow chart of steps performed in the unsecured mode of obtaining PIN data from a keypad of a transaction terminal in accordance with the present invention.

Figure 2C is a flow chart of steps performed for providing actual polling of a transaction terminal in a secured mode in accordance with the present invention.

Figure 2D is a flow chart of steps performed for providing false polling and simulated data entry of a transaction terminal in a secured mode in accordance with the present invention.

Figure 2E is a flow chart of steps performed for encrypting data and providing the encrypted data from the secured processor to a processor in a secured mode in accordance with the present invention.

Figure 3A is a timing chart showing the generation of actual polling signals by the secured processor in
acCORDANCE WITH THE PRESENT INVENTION.

FIGURE 3B IS A TIMING CHART SHOWING THE GENERATION OF ACTUAL AND FALSE POLLING SIGNALS AND SIMULATED DATA ENTRY GENERATED BY THE SECURED PROCESSOR IN A SECURED MODE IN ACCORDANCE WITH THE PRESENT INVENTION.

FIGURE 4 IS A PARISTICALLY EXPLODED PERSPECTIVE VIEW OF THE SECURED PROCESSOR ENCAPSULATED WITHIN A MULTILAYER CIRCUIT BOARD IN ACCORDANCE WITH THE PRESENT INVENTION.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0008] Referring to Figures 1-4 of the drawings, a preferred form of the secured processor 2 constructed in accordance with the present invention will now be described. The secured processor 2 is preferably contained within a transaction terminal 4. The secured processor is preferably coupled to a keypad 7 via transmission line 3, and to an auxiliary processor 6 via data lines 5, 23. The keypad 7 is utilized for data entry and communication with another user (e.g., via an electronic ATM touch screen). The secured processor 2 is also operatively coupled to a card reader 8 via the auxiliary processor 6, interface circuits 9 and data line 5 as shown in Figure 1. Card reader 8 is adapted to accommodate insertion of a bank card, credit card or other suitable identification card. Interface circuit 9, as is known in the art, serves as the principal input/output interface between the card reader 8, auxiliary processor 6, central processor 21, and secured processor 2. Preferably, interface circuit 9 is an application specific integrated circuit (ASIC) particularly designed to interface with the aforementioned circuits.

[0009] The keypad 7 preferably includes a conventional keypad array having a plurality of keys. Each key preferably has a keyswitch 10 associated therewith. As is known in the art, the keyswitch provides an electrical connection between a specific row conductor and column conductor when a corresponding key is depressed. The keyswitches 10 of the keypad array are denoted in Figure 1 as S1-S12. Although twelve keyswitches arranged in three columns and four rows are shown, it is foreseen that alternate configurations of the keyswitches may be utilized.

[0010] As is known in the art, a keypad includes a plurality of horizontal conductors (H), each being associated with a specific row of keys, and a plurality of vertical conductors (V), each being associated with a specific column of keys. Whenever a particular key of the keypad is actuated, the corresponding keyswitch serves to electrically couple a row conductor (H) associated with the row in which the selected key is situated, with a column conductor (V) associated with the column in which the selected key is situated. As shown in Figure 1, the vertical conductors associated with the three columns are designated V1, V2 and V3 respectively. The horizontal conductors associated with the four rows are designated H1, H2, H3 and H4 respectively.

[0011] In order to determine which key of the keypad has been depressed, the secured processor 2 preferably includes a control circuit 12 and an actual polling circuit 14. Secured processor 2 also includes a false polling circuit 16. The control circuit 12 is electrically coupled to both the actual polling circuit 14 and false polling circuit 16. Actual polling circuit 14 samples (hereinafter, sampling and polling will be used interchangeably) the keypad conductors to identify an actual key depression, and false polling circuit 16 performs false sampling (i.e., masking) and simulated data entry (i.e., simulation) of the keypad, as will be described in detail below. The control circuit 12 monitors and regulates the keypad sampling performed by both actual polling circuit 14 and false polling circuit 16.

[0012] The control circuit 12 preferably includes timers 18a (TIMER 0) and 18b (TIMER 1). Timers 18a, 18b regulate the activation and deactivation of the sampling operations performed by the actual and false polling circuits, respectively. Timers 18a and 18b preferably operate at substantially different frequencies. In the preferred embodiment and as will be described in more detail below, timer 18b operates at a substantially higher frequency than timer 18a so that a substantially greater number of false sampling signals and false data entries are generated by the false polling circuit 16 than actual sampling signals generated by the actual polling circuit 14. The timers preferably operate concurrently and independently of each other. By having the false polling circuit 16 operate concurrently with and generating substantially more samples than the actual polling circuit 14, the sampling signals generated by the actual polling circuit and the actual PIN data entries provided by a user through the keypad are masked and not readily discernable to an electronic eavesdropper. As will be described in more detail, the control circuit 12 monitors overflows (i.e., interrupts) generated by the timers and instructs the actual or false sampling circuit to perform its respective sampling operations when a timer overflow is detected.

[0013] The actual polling circuit 14 employs an actual sampling operation (described below) which samples the columns and monitors the rows of the keypad to ascertain the identity of a specific key depressed by the user. In contrast, the false polling circuit 16 employs an alternate (false) sampling operation (described below) which both creates false samplings of the keypad (to simulate the actual sampling operation) and a random simulation of key depressions so as to confuse an electronic eavesdropper (to simulate the actual key depressions).

[0014] The false sampling conducted by the false polling circuit 16 is designed to be indistinguishable, to an electronic eavesdropper, from the actual sampling conducted by the actual polling circuit 14. In order to effecuate the sampling operations, the actual polling circuit 14 and the false polling circuit 16 include respective sig-
nal generators 13, 15. The signal generators 13, 15 respectively generate actual and false sampling signals of varying width (i.e., duration) and at varying time intervals (described below) so that an electronic eavesdropper will be unable to detect a sampling pattern based on a signal width or time of transmission. The false polling circuit 16 also preferably includes counter 17 and memory means 29 for effectuating simulation of data entries (described below).

In order to vary the duration that the sampling signal is applied (i.e., the duration of the pulse), the signal generators 13, 15 apply the sampling signal to a selected conductor for a time period dictated by a random number (S in Step 63; T in Step 100; U in Step 102) selected by a random number generator (not shown) coupled to the signal generator (described below). The larger the random number, the longer the signal is applied to the selected conductor. The varying time intervals between the sampling signals (i.e., time that each sampling signal is generated) that are provided by the signal generators 13, 15 to the conductors is also dictated by a random number (Y and Z in Steps 54-60 below) selected by a random number generator (not shown) and a timer (TIMER 0 and TIMER 1) coupled to the signal generator (described below).

As will be described in more detail, actual and false polling circuits 14, 16 concurrently operate and alternate sample the conductors of the keypad. However, because timer 18b is operating at a substantially higher frequency than timer 18a, a substantially greater number of false samples are generated than actual samples. For example, the actual polling circuit may sample the keypad once, then the false polling circuit will sample the keypad for ten (10) consecutive times, whereupon sampling is performed by the actual polling circuit once, then the false polling circuit will sample the keypad for seven (7) consecutive times. This random actual and false sampling scheme will be described in more detail below.

In a preferred embodiment of the invention, the secured processor 2 also preferably includes a memory circuit 20 which stores account information provided by the card reader 8 and processor 6. The memory circuit stores the account information with the PIN data until it is determined that all of the PIN data is received. Thereafter, the PIN data together with the account information is encrypted and sent via data line 5 to auxiliary processor 6 wherein the encrypted data is sent to central processor 21. It is advantageous to encrypt the account information before transmission from the secured processor 2 to the central processor 21 so that a potential electronic eavesdropper will not be able to identify any information included in the transmission.

In the preferred embodiment of the invention, the secured processor 2, which includes at least the control circuit 12, actual polling circuit 14, false polling circuit 16, memory circuit 20 and data encoding circuit 22, is a microprocessor. A suitable microprocessor which may be used is Part No. 87C51RA manufactured by the Intel Corporation, or Part No. 87C524 manufactured by the Phillips Corporation. Each microprocessor contains at least 8K bytes of ROM and 512 bytes of internal RAM. Other microprocessors may be suitable, but the aforementioned microprocessors are preferred because of their relatively low cost.

The auxiliary processor 6 may be any general system controller as known in the art. Preferably, auxiliary processor 6 is a CMOS microprocessor having a 16-bit internal architecture, 8 bit external data bus and 20 address lines. The CMOS microprocessor is capable of operating at 16 MHz, but preferably operates at 9MHz. The instruction set of the auxiliary processor 6 is a subset of the 8086/8088 processors. Other suitable processors may be utilized.

Having described the circuit configuration of the secured processor 2, the operation of the apparatus will now be described. Each step of the method of operation of the secured processor is controlled by a master clock (not shown) unless otherwise specified.

Referring now to Figure 2A, a flow chart of the steps performed to provide security for transmission of data from a keypad of a transaction terminal to a central processor 21 is shown. In a preferred embodiment of the invention and as known in the art, the transaction terminal 4 is activated by the insertion of a bank card, charge card, identification card or the like into the card reader 8 (Fig. 1). The activation of the transaction terminal is detected (Step 30) by the auxiliary processor 6 which receives an indication of insertion of the card from the card reader 8 via interface circuit 9 (Fig. 1).

Upon detection of the activation of the transaction terminal 4 (Step 30), the auxiliary processor 6 determines whether the secured processor 2 will poll (i.e., sample) the keypad in a secured or unsecured mode (Step 32). This determination is based upon the type of transaction to take place. Unsecured polling usually is selected when there is no threat of an electronic eavesdropper acquiring the PIN data or when secret information is not to be entered through the keypad. For example, if the user is only to receive information, such as stock quotations or current interest rates, there may be no need...
to enter a secured mode. However, if a withdrawal, transfer of funds or other charge against an account is to take place wherein a PIN is to be entered, then a secured mode may be preferred. Secured polling is typically selected when there is a risk of unauthorized electronic monitoring of the keypad or when secret information is to be entered. If the auxiliary processor 6 determines that unsecured polling will take place, the method continues as shown in Figure 2B. However, if secured polling is to occur, the method continues as shown in Figures 2A, 2C and 2D.

Referring now to Figures 2A and 2B, if unsecured polling is to occur (UNSECURED in STEP 32), the auxiliary processor 6 instructs the control circuit 12 to activate the actual polling circuit 14 (Step 34). The actual polling circuit 14 then begins sampling. Specifically, the TIMER 0 (18a) is loaded with an initial predetermined fixed value X (Step 36). The value X is used by the timer to determine how frequently the actual polling circuit will sample the keypad. In one embodiment of the invention, X is chosen such that the keypad is sampled by the actual polling circuit every 10 msec.

Referring again to Fig. 2A, if the secured processor 2 is to operate in a secured mode because secret information (e.g., PIN data) is to be entered or if there is a threat of electronic eavesdropping (SECURED in Step 32), the actual polling circuit 14 and the false polling circuit 16 are activated (Step 33), and TIMER 0 and TIMER 1 are loaded with randomly generated values Y, Z respectively (Step 54). Thereafter, TIMER 0 and TIMER 1 are activated and operating (Step 56). Preferably, random value Y is substantially larger than random value Z so that the TIMER 1 will overflow more often than TIMER 0. Therefore, even if TIMER 0 and TIMER 1 are operating at the same frequency, the false polling circuit 16 will sample the keypad substantially more times than the actual polling circuit 14.

Contemporaneously to transmitting the signal along the vertical conductor (for example V2) corresponding to the selected column, the actual polling circuit 14 simultaneously monitors the horizontal conductors (H1, H2, H3 and H4) associated with all of the rows (Step 46). Specifically, the actual polling circuit 14 monitors all of the horizontal conductors in parallel to determine the presence of an electrical signal coincident with the signal transmitted on the selected vertical conductor. If any of the horizontal conductors has a signal transmitted thereto which is coincident with the signal transmitted on the selected vertical conductor, then that particular conductor is identified (for example H2). The key defined by the row and column corresponding to conductors H2 and V2, respectively, is noted as having been selected by the user (Step 48). If none of the horizontal conductors are determined as being coupled to the selected vertical conductor, (NO in Step 48), then TIMER 0 is reloaded with the predetermined fixed sampling value X (Step 36) and at the same frequency, the false polling circuit 16 will sample the keypad. In one embodiment of the invention, X is chosen such that the keypad is sampled by the actual polling circuit every 10 msec.

If it is determined that a row is connected to the sampled column (YES in Step 48), then the selected column and detected row are noted and the row and column combination information is provided directly to auxiliary processor 6 (Step 50) via data line 23. Alternatively, the PIN data is stored in memory circuit 20 before being provided to auxiliary processor 6. The auxiliary processor 6 then determines whether all of the PIN data has been received (Step 52). If all of the PIN information has been received and/or detected (YES in Step 52), operation of the actual polling circuit 14 is temporarily suspended by the control circuit 12 until it is once again activated by insertion of an identification card in the card reader 8 (Step 53). If the processor 6 determines that all of the PIN data has not been received and/or detected (NO in Step 52), TIMER 0 is reloaded with the predetermined fixed sampling value X (Step 36) and TIMER 0 is once again activated (Step 38). Thereafter, the sampling process shown in Fig. 2B is repeated until the processor 6 determines that all PIN data has been received (YES in Step 52).

Once a column has been selected, the actual polling circuit 14 utilizes the signal generator 13 contained therein to generate a signal (i.e., a pulse) which is transmitted along the selected vertical conductor (Step 44). While in the preferred embodiment columns are selected for sampling, it is foreseen that rows may be sampled (i.e., polled) instead of columns.

Once a column has been selected, the horizontal conductors has a signal transmitted thereto which is coincident with the signal transmitted on the selected vertical conductor, then that particular conductor is identified (for example H2). The key defined by the row and column corresponding to conductors H2 and V2, respectively, is noted as having been selected by the user (Step 48). If none of the horizontal conductors are determined as being coupled to the selected vertical conductor, (NO in Step 48), then TIMER 0 is reloaded with the predetermined fixed sampling value X (Step 36) and the timer is once again activated (Step 38).

Once all of the columns have been sampled, the order of selection is repeated. While in the preferred embodiment columns are selected for sampling, it is foreseen that rows may be sampled (i.e., polled) instead of columns.

The secured processor 2 monitors TIMER 0 and TIMER 1 to determine when a timer has an overflow. Initially, TIMER 0 is checked to determine whether there has been an overflow, i.e., whether the value of TIMER 0 is greater than random value Y (Step 58). If TIMER 0 does not have an overflow (NO in Step 58), then TIMER 1 is checked to determine if there has been an overflow, i.e., whether the value of TIMER 1 is greater than random value Z (Step 60). If there has not been an overflow of TIMER 1 (NO to Step 60), the method returns to Step 56 wherein TIMER 0 and TIMER 1 are operating. This loop
is continued until either TIMER 0 or TIMER 1 has an overflow. In one embodiment of the invention, TIMER 0 overflows (i.e., a new random column is selected for sampling by the actual polling circuit) every 8-12 msec and TIMER 1 overflows (i.e., a new random column is selected for sampling by the false polling circuit) every .5-1.5 msec. However, it is foreseen that other sampling rates may be employed. [0033] If TIMER 0 has an overflow (YES in Step 58), then the method continues as shown in Figure 2C. However, if TIMER 1 is determined as having an overflow (YES in Step 60), then the method continues as shown in Figure 2D.

[0034] Referring now to Figure 2C, if an overflow of TIMER 0 is determined (YES is Step 58), the actual polling circuit 14 selects a random column for actual sampling (Step 62). Specifically, using a random number generation method such as that disclosed on page 199 of the book entitled "Digital Computing and Numerical Methods", by Brice Carnahan and James O. Wilkes, published by John Wiley and Sons, Inc. (1973), which is incorporated herein by reference, the actual polling circuit 14 selects a random column (i.e., vertical conductor V) for sampling. While a random number generation method is disclosed in the above reference, other methods of selecting a random column for sampling may be employed.

[0035] While in the preferred embodiment the column is randomly selected, it is foreseen that columns may be sampled sequentially (as explained above in connection with unsecured sampling) and that rows may be sampled (i.e., polled) instead of columns. However, when potential eavesdropping is a concern, it is preferable to use a random selection of columns (or rows) to ensure that an electronic eavesdropper will be unable to differentiate the actual sampling from false sampling as will be explained below.

[0036] Referring still to Figure 2C, the actual polling circuit 14 selects one of the first, second and third columns respectively designated by vertical conductors V1, V2 and V3 (Fig. 1) for sampling. Thereafter, a random number S is generated. The random number determines the duration of the sampling signal. The actual polling circuit 14 utilizing the signal generator 13 contained along the selected vertical conductor (Step 64) for the duration (i.e., clock cycles) indicated by the random number selected in Step 63. Referring to Figure 3A, if Column 2 (designated by vertical conductor V2) is selected as the random column during time frame t1, the pulsed signal will be transmitted by the signal generator of actual polling circuit 14 along conductor V2. While in the preferred embodiment pulsed signals are transmitted for sampling, the use of other types of waveforms is foreseen. In yet another embodiment of the invention, the pulsed signals generated by the signal generator and transmitted by the actual polling circuit during each sampling cycle randomly vary in width (i.e., duration) as will be explained in more detail below, so that an electronic eavesdropper will be unable to detect a sampling pattern.

[0037] Contemporaneous to transmitting the pulsed signal along conductor V2, the actual polling circuit 14 monitors the horizontal conductors (H1, H2, H3 and H4) associated with all of the rows (Step 66). Specifically, the actual polling circuit 14 monitors all of the horizontal conductors in parallel, to determine the presence of an electrical signal. If none of the horizontal conductors has an electrical signal (i.e., no row is electrically coupled to the selected column), then a key of the keypad has not been depressed (NO in Step 68). Therefore, TIMER 0 is re-loaded with a new random value Y (Step 70). The TIMER 0 is once again operating (Step 58), and is monitored for another overflow (Step 58). If a horizontal conductor (H) is detected as having a signal which is coincident with the signal transmitted on the selected vertical conductor (V) (YES in Step 68), then the key defined by the detected row and selected column is noted as having been activated by the user. The row/column combination is then stored in memory circuit 20 (Step 72). For example and referring to Fig. 3A wherein time periods t1-t15 are shown, if horizontal conductor H2 is detected as having the pulsed signal transmitted thereon, then row 2 is determined as being connected with column 2. This is shown during the time period t11. As shown in Figure 1, the determination of the connection of row 2 and column 2 is indicative of the actuation of keyswitch S5 of the keypad.

[0038] The keyswitch information (i.e., row and column combination) is preferably provided by the actual polling circuit 14 to the memory circuit 20 (Step 72) and is temporarily stored in the memory circuit 20 (Fig. 1). Thereafter, an internal timer (not shown in Fig. 1) or other means is activated to create a random time (Step 74) delay in the further operation of the actual polling circuit 14 and the execution of the method of Fig. 2C. Then, a signal is provided to the secured processor 6 via data line 5 (Step 76). The signal is designed to provide an indication to the processor 6 that a key has been actuated (i.e., that a row/column combination has been detected). Contrary to Step 50 in connection with unsecured polling shown in Fig. 2B, Step 76 does not send the actual row/column information to auxiliary processor 6. Instead, a signal is sent to inform auxiliary processor 6 that an actual row/column combination corresponding to key depression has been identified. Based upon the number of such signals received, the auxiliary processor 6 determines whether all of the PIN data has been received through the keypad (Step 78). If all of the PIN data has not been received (NO in Step 78), then the TIMER 0 is re-loaded with a new random value Y (Step 70), the TIMER 0 operates (Step 56), and is monitored for the next overflow (Step 58). However, if the processor determines that all of the PIN data has been received (YES in Step 78), the method continues as shown in Fig. 2E which will be described.

[0039] Referring to Figures 2A and 2D, if TIMER 1 (corresponding to the false polling circuit 16) is determined
as not having an overflow (NO in Step 60), the method returns to Step 56 wherein TIMER 0 and TIMER 1 continue to operate. However, if TIMER 1 is detected as having an overflow (YES in Step 60), a determination is made as to whether the false polling method is currently in a simulation mode (Step 82). Specifically, the secured processor determines whether a flag has been set (per Step 92, as discussed below) indicating that the simulation mode has been entered. The simulation mode is designed to provide a false indication that a data entry has been made on the keypad (i.e., simulating a key depression) to confuse an electronic eavesdropper. Specifically, coincident signals are sent to both a row conductor (H) and column conductor (V) of the keypad.

If the false polling circuit 16 is not currently in simulation mode, i.e., the simulation flag has not been set (NO in Step 82), then false sampling of the keypad takes place wherein a random number Q is generated using a random number generation method as previously described. The false sampling is designed to mask the actual sampling signals generated by the actual polling circuit. The random number Q is compared to a predetermined number R (Step 84). If the random number Q is not equivalent to the predetermined number R (NO in Step 86), then the simulation mode is not initiated, i.e., the simulation flag is not set. Therefore, a random column is selected for false sampling (Step 90) as described above in connection with Step 62 of the actual polling circuit. However, if the randomly generated number Q is equal to the predetermined number R (YES in Step 86), a simulation flag is set, a simulation counter 17 (see Fig. 1) is activated, and a random column and row combination are selected and stored in memory 29 (Step 92). The selected column and row combination will be used in the simulation mode such that if a random column selected in Step 94 coincides with the column of the row/column combination selected in Step 92, then a random row will not be selected and the row chosen in Step 92 will be used for simulation, as will be described in more detail below.

After the method determines that the simulation mode is not to be commenced (NO in Step 86), a random column is selected (Step 90) using a random selection process. Thereafter, a random row is selected (Step 96) using a random selection process substantially similar to the selection of the random column. Then, a random determination is made (as explained below) as to whether the randomly selected row is to have a signal provided thereon to confuse an electronic eavesdropper (Step 98). If the randomly selected row is to be used, (YES in Step 98), a random number T is selected and signals are provided by signal generator 15 of the false polling circuit 16 on both the randomly selected column and row (Step 100) for the duration indicated by random number T. However, if the randomly selected row is not to have a signal transmitted thereon, then a random number U is selected and a signal is only provided on the conductor of the randomly selected column (Step 102) for the duration indicated by random number U.

The determination made by Step 98 of whether the randomly selected row is to be falsely connected to the selected column may be accomplished by any known method wherein two alternative outcomes are possible. One suitable method utilizes a random number generator wherein one outcome (i.e., the row is to be falsely connected) is associated with the generation of an odd random number and a second outcome (i.e., the row is not to be falsely connected) is associated with the generation of an even random number. Other suitable methods may be employed. A random decision process is used so that an electronic eavesdropper will be unable to detect a decision-making pattern with respect to Step 98.

The following explanation returns to Step 86 when its determination results in a YES output. After the simulation counter is started and a random row/column combination has been selected and stored in Step 92, and a random column is selected in Step 94, a determination is made (Step 104) as to whether the randomly selected column (from Step 94) is the same as the column of the row/column combination selected in Step 92 and stored in memory 29. If the column selected in Step 94 is not the same as the column of the row/column combination selected in Step 92 (NO in Step 104), then a random row is selected (Step 96). Thereafter, the aforementioned random determination is made as to whether the randomly generated row will have a signal provided thereon (Step 98). If the row is not to have a signal provided thereon (NO in step 98), then only a signal is provided on the selected column conductor to perform false sampling (Step 102). However, as previously mentioned, if the randomly generated row is to include a signal thereon (YES in Step 98), then the column selected in Step 94 and the row selected in Step 96 each have a signal provided thereon. The signals may or may not be coincident, and may vary in duration, start time and/or end time (Step 100). By providing the pulsed signal on the conductors of both the randomly selected column and row, it will mask the actual sampling signals and, if coincident, simulate actual key entries being made. This will confuse an electronic eavesdropper because random signals (i.e., noise) are being transmitted on the row conductors.

If it is determined that the method is currently in a simulation mode to simulate actuation of a keypad (YES in Step 94), and that the randomly selected column from Step 94 coincides with the column selected in Step 92 (YES in Step 104), the row which was selected in Step 92 is obtained from memory 29 (Step 106) and the conductors corresponding to the row/column combination selected in Step 92 are provided with coincident pulsed signals to simulate a keypad entry. From detection of the pulsed signal on the conductors of both the column and row combination selected in Step 92 each time the column selected in Step 94 coincides with the column selected in Step 92 during the simulation mode, it will appear to an electronic eavesdropper that actual sampling and data entry (i.e., actuation of a key of the keypad) is
occuring. After signals are transmitted on the row and column conductors (Step 100) or only on the column conductor (Step 102), TIMER 1 is reloaded with a new randomly selected value Z (Step 105) and the method returns to Step 56 wherein TIMER 0 and TIMER 1 are operating (Fig. 2A).

[0045] If after TIMER 1 is detected as having an overflow (YES in Step 60) it is determined (i.e., a simulation flag has previously been set in Step 92) that the method is currently in simulation mode (YES in Step 82), the special simulation counter 17 which was activated in step 92 is incremented (Step 108). Then, the simulation counter 17 is monitored to determine whether an overflow has occurred (Step 110). If an overflow of simulation counter 17, which is indicative of the end of the simulation mode, is detected (YES in Step 110), memory 29 which stores the column/row combination selected in Step 92 is cleared (Step 114) and the method continues with Step 84 wherein a random number Q is generated and compared to the predetermined value R to determine whether the simulation mode should be entered (i.e., restarted). Preferably, both the predetermined number R and the randomly generated number Q of Step 84 are four bit numbers such that there is a 1 in 128 probability that the simulation mode will be entered during each pass of Step 84. Preferably, the simulation counter is set to overflow after 128 cycles. However, other probabilities of entering the simulation mode and other simulation counter overflows are foreseen.

[0046] If it is determined there has not been an overflow of the simulation counter 17 (NO in Step 110), the method continues with the selection of the random column in Step 94 and the determination as to whether the random column selected in Step 94 is the same as the column selected in Step 92 as previously described.

[0047] Referring now to Figures 2A, 2C and 2E, once the auxiliary processor 6 determines that all of the PIN data has been identified and received (YES in Step 78), the auxiliary processor 6 sends a command to the control circuit 12 of the secured processor 2 to cease operation and polling of the keypad (Step 112). This effectively suspends operation of the actual and false polling circuits. Thereafter, the auxiliary processor 6 sends a command signal via data line 23 to the control circuit 12 to transfer the PIN data from memory circuit 20 to the data encoding circuit 22. The command signal also instructs the control circuit to command the data encoding circuit 22 to encrypt the PIN data (Step 114). After the PIN data has been encrypted, the data encoding circuit 22 sends the encrypted data to the auxiliary processor 6 (Step 116).

[0048] After transmission of the PIN data to the central processor 21, the auxiliary processor 6 may instruct the secured processor 2 to either go into the normal unsecured mode of keypad sampling (See Fig. 2B) or to stop sampling the keypad altogether and wait for and detect the next activation of the transaction terminal by a user (e.g., insertion of an identification card into the card reader, Step 30).

[0049] The data encoding circuit 22 preferably encrypts the PIN data in accordance with an encryption technique specified by the American National Standards Institute of New York as known in the art. Other encoding and encryption methods may be utilized without departing from the scope of the invention. The present invention is designed such that once the PIN data is identified and acquired by the secured processor 2, it is encrypted within the secured processor itself. In this way, unencrypted PIN data is not exposed to external data lines (i.e., data bus 5 and 25 in Fig. 1) which would be susceptible to electronic eavesdropping.

[0050] Referring now to Figure 3B, a timing chart showing the generation of pulse signals by the actual and false polling circuits in accordance with the present invention is shown. Figure 3B shows 23 time frames (t1-t23) of varying duration and occurrence. Actual sampling is conducted by the actual polling circuit 14 during time frames t1 and t17. False samples and simulated data entry occur during all other time frames. As is evident from Fig. 3B, without knowing where sampling is being conducted by the actual polling circuit, an electronic eavesdropper is not likely to determine during which time period(s) PIN data is being entered. For example, during time periods t6, t13, t15, t17, and t23, various row and column combinations are shown as having coincident signals. However, only during time t17, during which time actual sampling is being conducted by the actual polling circuit is a key of the keypad detected as being depressed by a user. As is evident from Figure 3B, an electronic eavesdropper cannot readily discern which signals are actual samples and which samples are false samples. Figure 3B clearly shows the benefits of the present invention and its ability to mask actual samples and simulate key depressions with a plurality of false samples and simulated data entries.

[0051] In order to substantially prevent unauthorized access to the unencrypted PIN and account information, the configuration of the present invention includes substantially less hardware than other designs which require a substantial physical barrier (i.e., a device which does not permit physical access to electronic circuits, and their I/O lines). As previously described, the present invention accomplishes this by encrypting the PIN data within the secured processor. Physical barriers to prevent access to PIN data do not yield the level of security that masking, simulation and encryption within the secured processor is able to provide.

[0052] The present invention includes additional features to prevent the unauthorized access to a user’s PIN and account information. Referring again to Fig. 1 of the drawings, the data entry keypad system 1 which includes at least the secured processor 2 within transaction terminal 4, also includes an anti-tampering switch 24 oper-
ably coupled between a power supply V_{BATT} and each of the circuits contained within the secured processor 2. The anti-tampering switch 24 is designed to detect and defeat the physical tampering of the secured processor. In a preferred embodiment, the anti-tampering switch is a normally open switch which is forced closed when shutting a cover of a case (not shown) in which the secured processor 2 is contained. As a result, if the case is opened by an unauthorized person, the switch 24 will change from a closed to an open state, thereby interrupting the connection to the power supply and breaking the supply of power to the secured processor. Since each circuit of the secured processor requires power to maintain its memory (i.e., execution programs stored in ROM, data stored in RAM, etc.) the severance of the power supply will cause the erasure of all of the contents of the processor. This includes encryption code stored in the data encoding circuit 22 and the sampling operations performed by the actual and false polling circuits 14, 16. Therefore, opening the case and removing the secured processor will render the secured processor unusable. Any circuit analysis of the secured processor by an unauthorized person will not compromise the method.

As a further security measure, the secured processor 2 is preferably attached and encapsulated in a multilayer circuit board 120 as shown in Figure 4. More specifically, the secured processor is contained on circuit board substrate 122 and is encapsulated by circuit board substrates 124 and 126. In the preferred embodiment, all of the circuitry of the keypad and the secured processor, with the exception of the keypad itself, is contained on circuit board substrate 122 (i.e., an interior layer of multilayer circuit board 120). In addition, electrical connections between circuit board substrates 124 and 126 and the secured processor 2, for connection to various interface circuits such as ASIC’s and microprocessors, preferably utilize blind vias 128 which hide connections 130 within the interior of the multilayer circuit board. As a result of the positioning of the secured processor 2 within multilayer circuit board 120, any attempt to physically access the secured processor 2 would necessarily result in destruction of the circuit board substrates 124, 126 and inoperability of the secured processor.

In an alternative embodiment of the invention and as a further security measure, steps 112, 114 and 116 are modified as follows. When the processor determines that all of the PIN data has been received and identified by the actual polling circuit 14, the PIN data is preferably not immediately provided to the processor 6. Instead, rather than executing Step 112, a random time delay may be executed wherein sampling of the keypad continues while data encryption occurs with Step 114. Then, Step 116 is executed only when encryption is complete but when the random time delay expires. In this way, an electronic eavesdropper will be unable to identify the actual polling circuit signals based on a consistent relationship between the time that the actual polling circuit ceases operation and the time that encrypted data is provided to processor 6.

As a result of the present invention, the PIN data provided to a transaction terminal by a user is protected from electronic eavesdropping by encrypting the PIN data before the data is provided on external data lines to the processor. The keypad processor security apparatus utilizes both actual and false polling of the keypad, in addition to the generation of false keypad actuation to prevent an electronic eavesdropper from fraudulently accessing PIN data.

For example, one timer can be utilized in the control circuit 12 as opposed to timers 18a and 18b. Also, the operation of the system need not begin with actuation of the actual polling circuit, but instead, the false polling circuit could be activated first. These and all such other modifications are intended to fall within the scope of the present invention as defined by the following claims.

Claims

1. A secured processor (2) for use with a plurality of data entry ports (3) which receive data signals, the secured processor comprising:

 actual polling means (14) operatively coupled to the plurality of data entry ports for conducting actual polling, the actual polling means providing an actual polling means signal and monitoring data entry ports to determine whether data signals are being received, the actual polling means identifying the data entry ports receiving data signals and generating an output signal corresponding thereto; and

 false polling means (16) operatively coupled to the plurality of data entry ports for providing a false polling means signal to the plurality of data entry ports for at least one of (i) producing a false indication that a data signal is being received by at least one of the plurality of data entry ports and (ii) producing a false indication that actual polling of the plurality of data entry ports is occurring;

characterized in that the actual polling means (14) and the false polling means (16) include signal generators (13, 15) for providing actual and false polling signals to the plurality of data entry ports in the form of pulsed signals, each pulse randomly varying in width.

2. The secured processor as defined by claim 1 further comprising:

 data encoding means (22) operatively coupled to the actual polling means (14) for responding to a signal related to the actual polling means output signal, the data encoding means encod-
ing a signal related to the data signal and generating an encoded signal for transmission external to the secured processor.

3. The secured processor as defined by any of the claims 1 and 2, wherein the plurality of data entry ports corresponds to a keypad (7) having a plurality of keys (10), and wherein the false indication that data is being received by at least one of the plurality of data entry ports corresponds to a simulation that at least one of the plurality of keys of the keypad is being activated.

4. The secured processor as defined by any of the claims 1 to 3, wherein the false indication that actual polling of the plurality of data entry ports is occurring corresponds to a masking of the actual polling signal provided by the actual polling means.

5. The secured processor as defined by any of the claims 1 to 4, wherein the secured processor comprises a microprocessor.

6. The secured processor as defined by any of the claims 1 to 5, wherein the actual polling means (14), false polling means (16) and data encoding means (22) comprises electronic circuits.

7. The secured processor as defined by claim 6, wherein the actual polling circuit (14), false polling circuit (16) and data encoding circuit (22) are contained within a single electronic chip.

8. The secured processor as defined by claim 7, wherein the single electronic chip is encapsulated within a multilayer circuit board (120).

9. The secured processor as defined by any of the claims 6 to 8 further comprising:

 a control circuit (12) operatively coupled to the actual polling circuit and the false polling circuit, the control circuit instructing at least one of the actual polling circuit and the false polling circuit to poll the plurality of data entry ports.

10. The secured processor as defined by claim 9, wherein the control circuit (12) includes a timer circuit (18a, 18b), the timer circuit providing an indication to the control circuit for instructing at least one of the actual polling circuit and false polling circuit to poll the plurality of data entry ports.

11. The secured processor as defined by any of the claims 1 to 10 further comprising: memory means (20) operatively coupled to the actual polling means and the data encoding means, the memory means being responsive to and storing at least one signal related to the actual polling means output signal.

12. The secured processor as defined by any of the claims 1 to 11 further comprising:

 a power-up switch (24) operatively coupled to a power supply and to at least one of the actual polling means, false polling means and data encoding means, the power-up switch being responsive to a physical tampering of the secured processor and at least temporarily interrupting the operative coupling of the power supply to at least one of the actual polling means, false polling means and data encoding means.

13. The secured processor as defined by any of the claims 9 to 12, wherein the control circuit (12) controls the actual polling signal such that time between each of the plurality of pulses varies.

14. The secured processor as defined by any of the claims 9 to 13, wherein the control circuit (12) controls the false polling signal such that time between each of the plurality of pulses varies.

15. The secured processor as defined by any of the claims 1 to 14, wherein the false polling circuit further comprises:

 a second memory means for storing a signal indicative of at least one of the plurality of data entry ports to be provided with the false polling signal.

16. A method of providing a secured transmission of actual data signals received by a keypad (7) of a transaction terminal to a processor (2) which is external to the transaction terminal, the method comprising the steps of:

 a) polling the keypad by generating at least one pulse signal to determine whether actual data signals are being provided thereto;
 b) polling the keypad by generating at least one pulse signal to provide a false indication that at least one of (i) actual data signals are being provided thereto and (ii) actual polling of the transaction terminal is occurring; and
 c) encoding the actual data signals and transmitting the encoded data signals to the external processor;

 characterized in that the pulses randomly vary (63; 100, 102) in width.

17. The method of providing a secured transmission as defined by the claim 16, wherein the sampling of the transaction terminal in step (a) is performed random-
18. The method of providing a secured transmission as defined by one of the claims 16 and 17, wherein the sampling of the transaction terminal in step (b) is performed randomly.

19. The method of providing a secured transmission as defined by any of the claims 16 to 18, the method further comprising the step of:

performing a random time delay prior to transmitting the encoded data signal to the processor.

20. A transaction terminal comprising:

a keypad (7) having a plurality of key switches (10), each of the plurality of key switches selectively electrically coupling at least one of a plurality of row conductors and at least one of a plurality of column conductors; and

a secured processor (2) according to any of claims 1 to 15 wherein the data entry ports (3) are operatively coupled to each of the plurality of row and column conductors of the keypad.

21. The transaction terminal as defined by claim 20, wherein a control circuit (12) controls an elapsed time between each of the actual polling pulses.

22. The transaction terminal as defined by claim 20, wherein a control circuit (12) controls an elapsed time between each of the false polling pulses.

23. The transaction terminal as defined by any of the claims 20 to 22 further comprising:

an auxiliary processor (6) operatively coupled to the secured processor for receiving the encoded signal and transmitting the encoded signal external to the data entry keypad system (7).

24. The transaction terminal as defined by any of the claims 20 to 23 further comprising:

a card reader circuit (8) operatively coupled to the secured processor, the card reader circuit providing an indication to the secured processor of activation of the data entry keypad system by a user.

25. The transaction terminal as defined by any of the claims 20 to 24 further comprising:

an interface circuit (9) operatively coupled between the secured processor and the card reader circuit, the interface circuit providing an interface for operable communication between the card reader circuit and the secured processor.

Patentansprüche

1. Ein gesicherter Prozessor (2) zum Gebrauch mit einer Vielzahl von Dateneingabeanschlüssen (3), die Datensignale empfangen. Der gesicherte Prozessor umfasst:

tatsächliches Abfragemittel (14), das operativ an die Vielzahl von Dateneingabeanschlüssen zur Durchführung von tatsächlichem Abfragen gekoppelt ist, wobei das tatsächliche Abfragemittel eine tatsächlichen Abfragemittelsignal und die Überwachung der Dateneingabeanschlüsse bereitstellt, um zu bestimmen, ob Datensignale empfangen werden; die tatsächlichen Abfrage- mittel identifizieren die Dateneingabeanschlüsse, die Datensignale empfangen und ein dem- entsprechendes Ausgangssignal generieren; und

falsches Abfragemittel (16), das operativ an die Vielzahl von Dateneingabeanschlüssen zur Bereitstellung eines falschen Abfragemittelsignals an die Vielzahl von Dateneingabeanschlüssen für mindestens eines von (i) gekoppelt ist, was die falsche Meldung produziert, dass ein Datensignal von mindestens einem der Vielzahl von Dateneingabeanschlüssen empfangen wird und (ii) produziert die falsche Meldung, dass die tatsächliche Abfrage der Vielzahl von Dateneingabeanschlüssen stattfindet;

gekennzeichnet, dass das tatsächliche Abfragemittel (14) und das falsche Abfragemittel (16) Signalgeber (13, 15) zur Bereitstellung von tatsächlichen und falschen Abfragesignalen an die Vielzahl von Dateneingabeanschlüssen in Form von impulsartigen Signalen umfassen, wobei jeder Impuls willkürlich in der Breite variiert.

2. Der gesicherter Prozessor wie durch Anspruch 1 definiert umfasst weiterhin: Datenkodierungsmittel (22), das operativ an das tatsächliche Abfragemittel (14) gekoppelt ist, zur Erwiderung auf ein Signal in Verbindung mit dem Ausgangssignal des tatsächlichen Abfragemittels, wobei das Datenkodierungs- mittel ein Signal in Verbindung mit dem Datensignal kodiert und ein kodiertes Signal zur externen Übermittlung an den gesicherten Prozessor generiert.

3. Der gesicherte Prozessor wie durch die Ansprüche 1 und 2 definiert, worin die Vielzahl von Dateneingabeanschlüssen einem Tastenfeld (7) entsprechen, das eine Vielzahl von Tasten (10) hat, und worin die falsche Meldung, dass durch mindestens einen der Vielzahl von Dateneingabeanschlüssen
Daten erhalten werden einer Simulation entspricht, dass mindestens eine der Vielzahl von Tasten des Tastenfelds aktiviert ist.

4. Der gesicherte Prozessor wie durch die Ansprüche 1 bis 3 definiert, worin die falsche Angabe, dass eine tatsächliche Abfrage der Vielzahl von Dateneingabeanschlüssen stattfindet, einer Maskierung des tatsächlichen Abfragesignals entspricht, die durch das tatsächliche Abfragemittel geboten wird.

5. Der gesicherte Prozessor wie durch die Ansprüche 1 bis 4 definiert, worin der gesicherte Prozessor einen Mikroprozessor umfasst.

6. Der gesicherte Prozessor wie durch die Ansprüche 1 bis 5 definiert, worin das tatsächliche Abfragemittel (14), das falsche Abfragemittel (16) und das Datenkodierungsmittel (22) elektronische Schaltungen umfassen.

7. Der gesicherte Prozessor wie durch Anspruch 6 definiert, worin die tatsächliche Abfrageschaltung (14), die falsche Abfrageschaltung (16) und die Datenkodierungsschaltung (22) innerhalb eines einzelnen elektronischen Chips enthalten sind.

8. Der gesicherte Prozessor wie durch Anspruch 7 definiert, worin der einzelne elektronische Chip innerhalb einer mehrschichtigen Schaltplatte verkapselt ist (120).

9. Der gesicherte Prozessor wie durch die Ansprüche 6 bis 8 definiert umfasst weiterhin:

 einen Regelkreis (12), der operativ an die tatsächliche Abfrageschaltung und die falsche Abfrageschaltung gekoppelt ist, wobei der Regelkreis mindestens eine der tatsächlichen Abfrageschaltung und der falschen Abfrageschaltung anweist, die Vielzahl der Dateneingabeanschlüsse abzufragen.

10. Der gesicherte Prozessor wie durch Anspruch 9 definiert, worin der Regelkreis (12) eine Zeitgeber­schaltung (18a, 18b) umfasst, wobei die Zeitgeber­schaltung eine Meldung an den Regelkreis zur Anweisung von mindestens einer der tatsächlichen Abfrageschaltung und falschen Abfrageschaltung abgibt, die Vielzahl der Dateneingabeanschlüsse abzufragen.

11. Der gesicherte Prozessor wie durch die Ansprüche 1 bis 10 definiert umfasst weiterhin:

 Speichermittel (20), die operativ an das tatsächliche Abfragemittel und das Datenkodierungs­mittel gekoppelt sind, wobei das Speichermittel auf mindestens ein Signal in Verbindung mit dem Ausgangssignal des tatsächlichen Abfragemittels reagiert und dieses speichert.

12. Der gesicherte Prozessor wie durch die Ansprüche 1 bis 11 definiert umfasst weiterhin:

 einen Einschalter (24), der operativ an eine Stromzufuhr und an mindestens eines von tatsäch­lichem Abfragemittel, falschem Abfragemittel und Datenkodierungsmittel gekoppelt ist, wobei der Einschalter auf eine physische Verfälschung des gesicherten Prozessors reagiert und zumindest vorübergehend die operative Kopplung der Stromzufuhr an mindestens eines von tatsäch­lichem Abfragemittel, falschem Abfragemittel und Datenkodierungsmittel unterbricht.

13. Der gesicherte Prozessor wie durch die Ansprüche 9 bis 12 definiert, worin der Regelkreis (12) das tatsächliche Abfragesignal so kontrolliert, dass die Zeit zwischen jeder der Vielzahl von Impulsen variiert.

14. Der gesicherte Prozessor wie durch die Ansprüche 9 bis 13 definiert, worin der Regelkreis (12) das falsche Abfragesignal so kontrolliert, dass die Zeit zwischen jeder der Vielzahl von Impulsen variiert.

15. Der gesicherte Prozessor wie durch die Ansprüche 1 bis 14 definiert, worin die falsche Abfrageschaltung weiterhin umfasst:

 ein zweites Speichermittel zur Speicherung eines Signals, das ein Beispiel von mindestens einem der Vielzahl von Dateneingabeanschlüssen ist, das mit dem falschen Abfragesignal bereitgestellt wird.

16. Eine Methode zur Bereitstellung einer gesicherten Übermittlung von tatsächlichen Datensignalen, die durch ein Tastenfeld (7) eines Transaktionsterminals an einen Prozessor (2) empfangen werden, der außerhalb des Transaktionsterminals liegt, wobei die Methode die folgenden Schritte umfasst:

 a) Abfrage des Tastenfelds durch Generierung von mindestens einem Impuls­signal zur Bestimmung, ob die tatsächlichen Datensignale dazu geboten werden;
 b) Abfrage des Tastenfelds durch Generierung von mindestens einem Impuls­signal zur Bereit­stellung einer falschen Meldung, dass mindestens eines der (i) tatsächlichen Datensignale dazu geboten wird und (ii) dass tatsächliche Abfrage des Transaktionsterminals stattfand; und
 c) Kodierung der tatsächlichen Datensignale und Übermittlung der kodierten Datensignale an
den externen Prozessor;

gekennzeichnet, dass die Impulse willkürlich in der Breite variieren (63; 100, 102).

17. Die Methode der Bereitstellung einer gesicherten Übermittlung wie durch den Anspruch 16 definiert, worin die Stichprobenprüfung des Transaktionsterminals in Schritt (a) per Zufallsprinzip durchgeführt wird.

18. Die Methode der Bereitstellung einer gesicherten Übermittlung wie durch einen der Ansprüche 16 und 17 definiert, worin die Stichprobenprüfung des Transaktionsterminals in Schritt (b) per Zufallsprinzip durchgeführt wird.

19. Die Methode der Bereitstellung einer gesicherten Übermittlung wie durch die Ansprüche 16 bis 18 definiert, wobei die Methode weiterhin den folgenden Schritt umfasst:

Durchführung einer zufälligen Zeitverzögerung vor der Übermittlung des kodierten Datensignals an den Prozessor.

20. Ein Transaktionsterminal umfasst:

ein Tastenfeld (7), dass eine Vielzahl von Tastschaltern (10) hat, wobei jeder der Vielzahl von Tastschaltern selektiv elektrisch mindestens einem einer Vielzahl von Schichtleitern und mindestens einem einer Vielzahl von Säulenleitern koppelt; und
einen gesicherten Prozessor (2) in Übereinstimmung mit den Ansprüchen 1 bis 15, worin die Dateneingabeanschlüsse (3) operativ an jeden der Vielzahl von Schicht- und Säulenleitern des Tastenfelds gekoppelt sind.

21. Das Transaktionsterminal wie durch Anspruch 20 definiert, worin ein Regelkreis (12) eine verstrichene Zeit zwischen jedem der tatsächlichen Abfrageimpulse regelt.

22. Das Transaktionsterminal wie durch Anspruch 20 definiert, worin ein Regelkreis (12) eine verstrichene Zeit zwischen jedem der falschen Abfrageimpulse regelt.

23. Das Transaktionsterminal wie durch die Ansprüche 20 bis 22 umfasst weiterhin: einen Hilfsprozessor (6), der operativ an den gesicherten Prozessor zum Erhalt des kodierten Signals und zur externen Übertragung des kodierten Signals an das Dateneingabetastenfeldsystem (7) gekoppelt ist.

24. Das Transaktionsterminal wie durch die Ansprüche 20 bis 23 definiert umfasst weiterhin:
eine Kartenleseschaltung (8), die operativ an den gesicherten Prozessor gekoppelt ist, wobei die Kartenleseschaltung eine Meldung an den gesicherten Prozessor bietet, dass das Dateneingabetastenfeldsystem durch einen Benutzer aktiviert worden ist.

25. Das Transaktionsterminal wie durch die Ansprüche 20 bis 24 definiert umfasst weiterhin:
eine Schnittstellenschaltung (9), die operativ zwischen den gesicherten Prozessor und die Kartenleseschaltung gekoppelt ist, wobei die Schnittstellenschaltung eine Schnittstelle für operable Kommunikation zwischen der Kartenleseschaltung und dem gesicherten Prozessor bietet.

Revendications

1. Un processeur sécurisé (2) en vue d’une utilisation avec une pluralité de ports d’entrées de données (3) recevant des signaux de données, sachant que le processeur sécurisé comprend :

un moyen de demande effective (14) relié de manière opérationnelle à la pluralité de ports d’entrées de données en vue de réaliser la demande effective, sachant que le moyen de demande effective fournit un signal de moyen de demande effective et surveille les ports d’entrées de données en vue de déterminer si les signaux de données sont reçus, sachant que le moyen de demande effective identifie les ports d’entrées de données recevant les signaux de données et génère un signal de sortie y correspondant ; et

un moyen de demande fausse (16) relié de manière opérationnelle à la pluralité de ports d’entrées de données en vue de fournir un signal de moyen de demande fausse à la pluralité de ports d’entrées de données pour au moins l’un d’entre eux, (i) de produire une fausse indication concernant la réception d’un signal de données par au moins un des ports de la pluralité de ports d’entrées de données et (ii) de produire une fausse indication signalant que la demande effective de la pluralité des ports d’entrées de données a lieu ;

caractérisé en ce que le moyen de demande effective (14) et le moyen de demande fausse (16) incluent des générateurs de signaux (13, 15) servant à fournir des signaux de demande effectifs et faux à la pluralité de ports d’entrées de données sous la
forme de signaux impulsionnels, sachant que la largeur de chaque impulsion varie au hasard.

2. Le processeur sécurisé, conformément à la revendication 1, comprend en outre :
 un moyen de codage de données (22) relié de manière opérationnelle au moyen de demande effective (14) en vue de répondre à un signal relatif au signal de sortie du moyen de demande effective, sachant que le moyen de codage de données envoie un signal relatif au signal de données et génère un signal codé en vue de la transmission externe au processeur sécurisé.

3. Le processeur sécurisé, conformément à l'une des revendications 1 ou 2, sachant que la pluralité de ports d'entrées de données correspond à un clavier (7) ayant une pluralité de touches (10), et sachant que la fausse indication signalant que des données sont reçues par au moins l'un des ports de la pluralité de ports d'entrées de données correspond à une simulation indiquant qu'au moins une des touches de la pluralité de touches du clavier est activée.

4. Le processeur sécurisé, conformément à l'une des revendications 1 à 3, sachant que la fausse indication signalant que la demande effective de la pluralité de ports d'entrées de données a lieu correspond à un masquage du signal de demande effectif fourni par le moyen de demande effective.

5. Le processeur sécurisé, conformément à l'une des revendications 1 à 4, sachant que le processeur sécurisé comprend un microprocesseur.

6. Le processeur sécurisé, conformément à l'une des revendications 1 à 5, sachant que le moyen de demande effective (14), le moyen de demande fausse (16) et le moyen de codage de données (22) comprennent des circuits électroniques.

7. Le processeur sécurisé, conformément à la revendication 6, sachant que le circuit de demande effective (14), le circuit de demande fausse (16) et le circuit de codage de données (22) sont réunis sur une puce électronique unique.

8. Le processeur sécurisé, conformément à la revendication 7, sachant que la puce électronique unique est encapsulée sur une carte de circuit imprimé multicouche (120).

9. Le processeur sécurisé, conformément à l'une des revendications 6 à 8 comprenant en outre :
 un circuit de commande (12) relié de manière opérationnelle au circuit de demande effective et au circuit de demande fausse, sachant que le circuit de commande donne l'ordre au circuit de demande effective ou au circuit de demande fausse d'interroger la pluralité des ports d'entrées de données.

10. Le processeur sécurisé, conformément à la revendication 9, sachant que le circuit de commande (12) inclut un circuit de temporisation (18a, 18b), sachant que le circuit de temporisation fournit une indication au circuit de commande donnant l'ordre au circuit de demande effective ou au circuit de demande fausse d'interroger la pluralité des ports d'entrées de données.

11. Le processeur sécurisé, conformément à l'une des revendications 1 à 10 comprenant en outre :
 une mémoire (20) reliée de manière opérationnelle au moyen de demande effective et au moyen de codage de données, sachant que la mémoire est sensible à et enregistre au moins un signal relatif au signal de sortie du moyen de demande effective.

12. Le processeur sécurisé, conformément à l'une des revendications 1 à 11 comprenant en outre :
 un commutateur d'alimentation (24) relié de manière opérationnelle à une alimentation et au moyen de demande effective, au moyen de demande fausse ou au moyen de codage de données, sachant que le commutateur d'alimentation est sensible à une altération physique du processeur sécurisé et à l'interruption au moins temporaire du raccordement opérationnel de l'alimentation au moyen de demande effective, au moyen de demande fausse ou au moyen de codage de données.

13. Le processeur sécurisé, conformément à l'une des revendications 9 à 12, sachant que le circuit de commande (12) contrôle le signal de demande effective de telle manière que le temps varie entre chaque impulsion.

14. Le processeur sécurisé, conformément à l'une des revendications 9 à 13, sachant que le circuit de commande (12) contrôle le signal de demande fausse de telle manière que le temps varie entre chaque impulsion.

15. Le processeur sécurisé, conformément à l'une des revendications 1 à 14, sachant que le circuit de demande fausse comprend en outre :
 une seconde mémoire en vue de l'enregistrement d'un signal indiquant que le signal de dé-
mande fausse doit être fourni au moins à l’un des ports de la pluralité de ports d’entrées de données.

16. Une méthode pour la réalisation d’une transmission sécurisée de signaux de données effectifs reçus par le clavier (7) d’un terminal de transaction à un processeur (2) externe au terminal de transaction, sachant que la méthode comprend les étapes suivantes :

a) interrogation du clavier par la génération d’au moins un signal impulsionnel en vue de déterminer si les signaux de données effectifs y sont fournis ;

b) interrogation du clavier par la génération d’au moins un signal impulsionnel en vue de fournir une fausse indication signalant qu’au moins un des (i) signaux de données effectifs y est fourni et que (ii) l’interrogation effective du terminal de transaction a lieu ; et

c) codage des signaux de données effectifs et transmission des signaux de données codés au processeur externe ;

caractérisée en ce que la largeur des impulsions varie au hasard (63; 100, 102).

17. La méthode de réalisation d’une transmission sécurisée conformément à la revendication 16, sachant que l’échantillon du terminal de transaction de l’étape (a) est effectué au hasard.

18. La méthode de réalisation d’une transmission sécurisée conformément à l’une des revendications 16 et 17, sachant que l’échantillon du terminal de transaction de l’étape (b) est effectué au hasard.

19. La méthode de réalisation d’une transmission sécurisée conformément à l’une des revendications 16 à 18, la méthode comprenant également l’étape de :

réalisation d’une temporisation au hasard avant la transmission du signal des données codées au processeur.

20. Un terminal de transaction comprenant :

un clavier (7) avec une pluralité de touches contact (10), sachant que chacune des touches contact relie de manière sélective et électrique au moins un des conducteurs de la pluralité de conducteurs de rangée et au moins un des conducteurs de la pluralité de conducteurs de colonne ; et

un processeur sécurisé (2) conformément à l’une des revendications 1 à 15 sachant que les ports d’entrées de données (3) sont reliés de manière opérationnelle à chacune des pluralités de conducteurs de rangée et de colonne du clavier.

21. Le terminal de transaction conformément à la revendication 20, sachant qu’un circuit de commande (12) contrôle un temps écoulé entre chaque impulsion de demande effective.

22. Le terminal de transaction conformément à la revendication 20, sachant qu’un circuit de commande (12) contrôle un temps écoulé entre chaque impulsion de demande fausse.

23. Le terminal de transaction conformément à l’une des revendications 20 à 22 comprenant en outre :

un processeur auxiliaire (6) relié de manière opérationnelle au processeur sécurisé en vue de la réception du signal codé et de la transmission du signal codé externe au système de clavier d’entrée de données (7).

24. Le terminal de transaction conformément à l’une des revendications 20 à 23 comprenant en outre :

un circuit de lecteur de carte (8) relié de manière opérationnelle au processeur sécurisé, sachant que le circuit de lecteur de carte fournit une indication au processeur sécurisé concernant l’activation par un utilisateur du système de clavier d’entrée de données.

25. Le terminal de transaction conformément à l’une des revendications 20 à 24 comprenant en outre :

un circuit d’interface (9) relié de manière opérationnelle entre le processeur sécurisé et le circuit de lecteur de carte, sachant que le circuit d’interface fournit une interface en vue d’une communication utilisable entre le circuit de lecteur de carte et le processeur sécurisé.
FIG. 1
FIG. 2A
FROM STEP 32

ACTIVATE ACTUAL POLLING CIRCUIT 14

LOAD TIMER 0 WITH VALUE X

ACTIVATE TIMER 0

TIMER 0 OVERFLOW?

NO

SELECT COLUMN FROM TABLE FOR SAMPLING

YES

PROVIDE SIGNAL ON CONDUCTOR OF SELECTED COLUMN

MONITOR ALL ROWS IN PARALLEL TO DETERMINE IF ANY ROW IS CONNECTED TO SELECTED COLUMN

IS A ROW CONNECTED TO COLUMN?

NO

SEND ROW/COLUMN INFORMATION TO AUXILIARY PROCESSOR 6

YES

IS ALL PIN INFORMATION RECEIVED?

NO

END OR RETURN TO STEP 30 OF FIG. 2A

FIG. 2B
FROM STEP 58

SELECT A RANDOM COLUMN FOR ACTUAL SAMPLING

PROVIDE SIGNAL ON CORRESPONDING CONDUCTOR OF SELECTED COLUMN

MONITOR ALL ROWS IN PARALLEL TO DETERMINE IF ANY ROW IS CONNECTED TO SELECTED COLUMN

IS A ROW CONNECTED TO COLUMN?

STORE COLUMN/ROW COMBINATION IN MEMORY CIRCUIT 20

RANDOM TIME DELAY

SEND INDICATION TO PROCESSOR 6 THAT A KEY DEPRESSION IS DETECTED

TO STEP 78

FIG. 2C
FIG. 2D
FROM STEP 78

PROCESSOR 6 SENTS COMMAND TO SECURITY PROCESSOR 2 TO STOP POLLING

RETRIEVE STORED PIN; ENCRYPT ROW / COLUMN INFORMATION

SEND ENCRYPTED DATA TO PROCESSOR 6

TO STEP 30

FIG. 2E
FIG. 4
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 4126760 [0004]
- US 4926173 A [0004]
- GB 2190775 A [0004]
- EP 0248712 A [0004]

Non-patent literature cited in the description