EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 30.06.1999 Bulletin 1999/26

Application number: 96901320.0

Date of filing: 23.01.1996

CROSSLINKED TINTED POLYMERS
VERNETZTE GETÖNTE POLYMERE
POLYMERES TEINTES RETICULES

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

Priority: 03.02.1995 CH 31695

Date of publication of application: 19.11.1997 Bulletin 1997/47

Proprietors:
- Novartis AG
 4058 Basel (CH)
 Designated Contracting States:
 BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE
- Novartis-Erfindungen Verwaltungsgesellschaft m.b.H.
 1235 Wien (AT)
 Designated Contracting States:
 AT

Inventors:
- MÜLLER, Achim
 D-63741 Aschaffenburg (DE)
- PÖHLMANN, Thomas
 D-63843 Niedernberg (DE)
- SEIFERLING, Bernhard
 D-63773 Goldbach (DE)

References cited:
- EP-A-0 072 353
- EP-A-0 388 357

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to a novel process for the production of mouldings, in particular contact lenses, in which a crosslinkable tinted polymer is crosslinked in solution, and to mouldings, in particular contact lenses, which are obtainable by this process.

[0002] The present invention also relates to novel crosslinkable tinted polymers comprising units containing a crosslinkable group and units containing a covalently bonded reactive dye radical which can be employed in the novel process, in particular those based on starting polymers containing functional groups, for example hydroxy groups, on the polymer chain or functional groups, for example imino groups, in the polymer chain or functional groups bonded to the polymer skeleton via a bridge, where these functional groups allow covalent bonds to compounds containing a crosslinkable modifier group or another modifier group. These starting polymers are, in particular, polyhydroxyl compounds having a 1,2- and/or 1,3-diol structure, such as polyvinyl alcohol, or hydrolysed copolymers of vinyl acetate, for example copolymers with vinyl chloride, N-vinylpyrrolidone, etc. The invention furthermore relates to crosslinked novel polymers, either homopolymers or copolymers, made from these novel crosslinkable tinted polymers, to a process for the preparation of the novel crosslinkable tinted polymers and the homopolymers and copolymers obtainable therefrom, to mouldings made from said homopolymers or copolymers, in particular contact lenses made from these homopolymers or copolymers, and to a process for the production of contact lenses using the said homopolymers or copolymers.

[0003] Tinted or coloured contact lenses are known. Conventional contact lenses are only tinted or coloured after their final shaping by subsequent application of a reactive dye, tinting taking place on the surface (for example in accordance with EP-A-0 368 357 and EP-A-0 072 353). This tinting process is followed by at least a neutralization step, an extraction step and a rinsing step. The completion of the lenses takes a considerable time.

[0004] One of the objects of the present invention was substantially to reduce or completely to eliminate these time-consuming production steps.

[0005] This object is achieved in accordance with the invention on the one hand by the provision of novel crosslinkable tinted polymers comprising units containing a crosslinkable group and units containing a covalently bonded reactive dye radical, and on the other hand by crosslinking these crosslinkable tinted polymers directly, preferably in water, in particular by photocrosslinking, very rapidly to give crosslinked tinted polymers, in particular tinted contact lenses.

[0006] The invention thus consists in, in particular, carrying out the tinting of contact lenses before their final shaping. This overcomes all disadvantages known from the prior art mentioned, and in particular the time-consuming neutralization steps and extraction steps for completion of the lenses are eliminated.

[0007] The present invention relates, in particular, to a water-soluble crosslinkable tinted polymer comprising units containing a crosslinkable group of the formula I.

\[
\begin{align*}
 & \text{CH} \quad \text{CH}_2 \quad \text{CH} \quad \text{CH}_2 \\
 & \text{O} \quad \text{C} \quad \text{O} \quad \text{R}_1 \\
 & \text{R} \quad \text{N} \quad \text{R}_2 \\
 & \text{R}_3
\end{align*}
\]

(1)

in which \(R\) is alkylene having up to 12 carbon atoms, \(R_1\) is hydrogen or \(C_1\)-\(C_7\)-alkyl, and \(R_2\) is an olefinically unsaturated, electron-withdrawing, copolymerizable radical, preferably having up to 25 carbon atoms, and \(R_3\) is hydrogen, a \(C_1\)-\(C_6\)-alkyl group or a cycloalkyl group, and comprising units containing a covalently bonded reactive dye, where the covalent bond to the polymer backbone is, in particular, either direct via an ether, thioether, amino, imino or amido group or via a bivalent or trivalent bridge.

[0008] The starting polymers (homopolymers and copolymers) for the crosslinkable tinted polymers advantageously contain a functional group on the polymer chain, for example a hydroxy (aliphatic or phenolic), amino, amido, thio or carboxyl group, or functional derivatives thereof, or contain a functional group in the polymer chain, for example an imino group, which can then react directly with a reactive dye molecule or can react with a group which contains a crosslinkable group or a group containing a reactive dye. Besides the reactive dye molecule and the crosslinkable group, the polymer backbone can, if desired, also contain further modifiers.

[0009] The starting polymers are preferably derivatives of polyvinyl alcohol or copolymers of vinyl alcohol which
contain a 1,3-diol skeleton. The crosslinkable group and the group containing a reactive dye radical can be bonded to the polymer skeleton in various ways, for example, in the case of a group containing a crosslinkable group, through certain percentage of the 1,3-diol units being modified to give a 1,3-dioxane which contains a crosslinkable radical in the 2-position. The crosslinkable radical is, in particular, an aminoalkyl radical with a crosslinkable group bonded to its nitrogen atom. This is preferably a derivative of a polyvinyl alcohol having a mean molecular weight of at least about 2000 which comprises from about 0.5 to about 80 %, based on the number of hydroxyl groups in the polyvinyl alcohol, of units of the above given formula I.

[0010] In formula I R₂ is, for example, an olefinically unsaturated acyl radical of the formula R₃₀-CO-, in which R₃₀ is an olefinically unsaturated, copolymerizable radical having 2 to 24 carbon atoms, preferably having 2 to 8 carbon atoms, particularly preferably having 2 to 4 carbon atoms. Preferably R₃₀ is alkenyl having 2 to 8 carbon atoms. In another embodiment, the radical R₂ is a radical of the formula II

\[\text{II} \]

\[-\text{CO-NH-}(\text{R₄-NH-CO-O})ₚ\text{R₅-OCO-R₃₀} \]

in which p is zero or one, and R₄ and R₅, independently of one another, are alkylene having 2 to 6 carbon atoms, arylenene having 6 to 12 carbon atoms, a saturated bivalent cycloaliphatic group having 6 to 10 carbon atoms, arylenalkylene or alkylenearylene having 7 to 14 carbon atoms or arylenalkylenearylene having 13 to 16 carbon atoms, and in which R₃₀ is as defined above.

[0011] The crosslinkable polymer is therefore in particular a derivative of a polyvinyl alcohol having a molecular weight of at least about 2000 which comprises 0.5 - 80 %, based on the number of hydroxyl groups in the polyvinyl alcohol, of units of the formula III

\[\text{III} \]

\[\text{R} \text{N}\left[\text{CO-NH-}(\text{R₄-NH-CO-O})ₚ\text{R₅-OCO-R₃₀}\right] \]

in which R is alkylene having up to 12 carbon atoms, R₃ is hydrogen or alkyl having up to 7 carbon atoms, p has the value zero or one, q has the value zero or one, R₃₀ is an olefinically unsaturated, copolymerizable radical having 2 to 8 carbon atoms, and R₄ and R₅, independently of one another, are alkylene having 2 to 8 carbon atoms, arylenene having 6 to 12 carbon atoms, a saturated bivalent cycloaliphatic group having 6 to 10 carbon atoms, arylenalkylene or alkylenearylene having 7 to 14 carbon atoms or arylenalkylenearylene having 13 to 16 carbon atoms.

[0012] Alkylene R preferably has up to 12 carbon atoms and can be linear or branched. Suitable examples include octylene, hexylene, pentylene, butylene, propylene, ethylene, methylene, 2-propylene, 2-butylen and 3-pentylen. Lower alkylene R preferably has up to 6, particularly preferably up to 4 carbon atoms. Methylene and butylene are particularly preferred.

[0013] R₁ is preferably hydrogen or alkyl having up to 7, in particular up to 4, carbon atoms, in particular hydrogen.

[0014] Alkylene R₄ and R₅ preferably has 2 to 6 carbon atoms and is, in particular, linear. Suitable examples include propylene, butylene, hexylene, dimethylethylene and, particularly preferably, ethylene.

[0015] Arylene R₄ or R₅ is preferably phenylene, which is unsubstituted or substituted by lower alkyl or lower alkoxy, in particular 1,3-phenylene or 1,4-phenylene or methyl-1,4-phenylene.

[0016] A saturated bivalent cycloaliphatic group R₄ or R₅ is preferably cyclohexylene or cyclohexylene(lower alkylene), for example cyclohexylenemethylene, which is unsubstituted or substituted by one or more methyl groups, for example trimethylcyclohexylenemethylene, for example the bivalent isophorone radical.

[0017] The alkylenarylene unit of alkylenearylene or arylenealkylene R₄ or R₅ is preferably phenylene, unsubstituted or substituted by lower alkyl or lower alkoxy, and the alkylene unit thereof is preferably lower alkylene, such as methylene or ethylene, in particular methylene. Radicals R₄ or R₅ of this type are therefore preferably phenylene or methylenephene.
[0018] Arylenealkylenearylene R₄ or R₅ is preferably phenylene(lower alkylene)phenylene having up to 4 carbon atoms in the alkyne unit, for example phenyleneethylenepheneylene.

[0019] The radicals R₄ and R₅ are preferably, independently of one another, alkylene having 2 to 6 carbon atoms, phenylene, unsubstituted or substituted by lower alkyl, cyclohexylenylicate or cyclohexylene(lower alkylene), unsubstituted or substituted by lower alkyl, phenylene(lower alkylene), (lower alkylene)phenylene or phenylene(lower alkylene)phenylene.

[0020] For the purposes of this invention, the term "lower" in connection with radicals and compounds denotes, unless defined otherwise, radicals or compounds having up to 7 carbon atoms, preferably having up to 4 carbon atoms.

[0021] Lower alkyl, has, in particular, up to 7 carbon atoms, preferably up to 4 carbon atoms, and is, for example, methyl, ethyl, propyl, butyl or tert-butyl.

[0022] Lower alkoxy has, in particular, up to 7 carbon atoms, preferably up to 4 carbon atoms, and is, for example, methoxy, ethoxy, propoxy, butoxy or tert-butoxy.

[0023] The olefinically unsaturated, copolymerizable radical R₉₀ having 2 to 24 carbon atoms is preferably alkyl having 2 to 24 carbon atoms, in particular alkenyl having 2 to 8 carbon atoms, particularly preferably alkyl having 2 to 4 carbon atoms, for example ethenyl, 2-propenyl, 3-propenyl, 2-butenyl, hexenyl, octenyl or dodecenyln. Ethenyl and 2-propenyl are preferred, so that the -CO-R₉₀ group is the acyl radical of acrylic acid or methacrylic acid.

[0024] The bivalent group -R₄-NH-CO-O- is present if q is one and absent if q is zero. Crosslinkable polymers in which q is zero are preferred.

[0025] The bivalent group -CO-NH-(R₂-NH-CO-O)₄-R₅-O- is present if p is one and absent if p is zero. Crosslinkable polymers in which p is zero are preferred.

[0026] In the crosslinkable polymers in which p is one, the index q is preferably zero. Particular preference is given to crosslinkable polymers in which p is one, the index q is zero and R₅ is lower alkylene.

[0027] A preferred novel polymer is therefore in particular a derivative of a polyvinyl alcohol having a molecular weight of at least about 2000 which comprises units of the formula III in which R is lower alkylene having up to 6 carbon atoms, p is zero and R₉₀ is alkyl enyl having 2 to 8 carbon atoms.

[0028] A further preferred crosslinkable polymer is therefore in particular a derivative of a polyvinyl alcohol having a molecular weight of at least about 2000 which comprises units of the formula III in which R is lower alkylene having up to 6 carbon atoms, p is one, q is zero, R₅ is lower alkylene having 2 to 6 carbon atoms, and R₉₀ is alkyl enyl having 2 to 8 carbon atoms.

[0029] A further preferred crosslinkable polymer is therefore in particular a derivative of a polyvinyl alcohol having a molecular weight of at least about 2000 which comprises units of the formula III in which R is alkylene having up to 6 carbon atoms, p is one, q is zero, R₅ is alkylene having 2 to 6 carbon atoms, phenylene, unsubstituted or substituted by C₁₋₄ alkyl, cyclohexylene or cyclohexylene(C₁₋₇ alkylene), unsubstituted or substituted by C₁₋₇ alkyl, phenylene (C₁₋₇ alkylene), (C₁₋₇ alkylene)phenylene or phenylene(C₁₋₇ alkylene), phenylene, R₅ is C₁₋₇ alkylene having 2 to 6 carbon atoms, and R₉₀ is alkyl enyl having 2 to 8 carbon atoms.

[0030] One way of fixing the reactive dye other than directly to the polymer backbone comprises reacting the reactive dye with, for example, an amino group of a compound which then serves as a bridge to the polymer chain. Suitable such bridges are all bivalent and trivalent groups which on the one hand form a covalent bond to the polymer backbone and on the other end contain the covalently bonded reactive dye radical. From the large number of such bridges, mention may be made by way of example of acetal and ketal bridges. Preferably, the reactive dye is covalently bonded to the polymer backbone either directly via an ether, thioether, amino or amido group or via a bivalent or trivalent bridge, preferably by a trivalent bridge derived from an α-amino-C₁₋₇ alkylaldehyde acetel.

[0031] The units containing a reactive dye radical covalently bonded to the polymer backbone conform, in particular, to the formulae IV, IVA, IVB and IVC below.

\[
\begin{align*}
&\text{(IV)} \quad \begin{array}{c}
\text{CH}_2 \\
\text{C=O}
\end{array} \\
&\text{(IVA)} \quad \begin{array}{c}
\text{CH}_2-\text{CH}_2 \quad \text{N} \\
\text{RF}'
\end{array}
\end{align*}
\]
[0032] In a preferred embodiment, R₁ and R₂ are hydrogen and R is C₁₋₄ alkyl.

[0033] Polyvinyl alcohols which can be derivatized preferably have a mean molecular weight of at least 2000, in particular about 10,000. The upper limit to their molecular weight is up to 1,000,000. The polyvinyl alcohols preferably have a molecular weight of up to 300,000, in particular of up to 100,000, very particularly preferably of up to about 50,000.

[0034] Suitable polyvinyl alcohols usually have principally a 1,3-diol structure. However, the derivatized crosslinkable polyvinyl alcohols can also contain hydroxyl groups in the form of 1,2-glycols, such as copolymer units of 1,2-dihydroxyethylene, as can be obtained, for example, by alkaline hydrolysis of vinyl acetate-vinylene carbonate copolymers.

[0035] In addition, the derivatized polyvinyl alcohols can also contain small proportions, for example of up to 20 %, of copolymer units of ethylene, propylene, acrylamide, methacrylamide, dimethacrylamide, hydroxyethyl methacrylate, methyl methacrylate, methyl acrylate, ethyl acrylate, vinylpyrrolidone, hydroxyethyl acrylate, allyl alcohol, styrene or similar comonomers usually used.

[0036] Polyvinyl alcohols (PVA) which can be used as starting polymers are commercially available polyvinyl alcohols, for example Vocol® 107 from Air Products (MW = 22,000 to 31,000, 98-98.8 % hydrolysed), Polysciences 4397 (MW = 25,000, 98.5 % hydrolysed), BF 14 from Chan Chun, Elvanol® 90-50 from DuPont and UF-120 from Unitika. Other producers are, for example, Nippon Gohsei (Gohsenol®), Monsanto (Gelvato®), Wacker (Polyviol®) or the Japanese producers Kuraray, Denki and Shin-Etsu. However, it is advantageous to use Mowiol® products from Hoechst, in particular those of the 3-83, 4-88, 4-98, 6-88, 6-98, 8-88, 8-98, 10-98, 20-98, 26-88 and 40-88 type.

[0037] The PVAs are prepared by basic or acidic, partial or virtually complete hydrolysis of polyvinyl acetate.

[0038] As mentioned above, it is also possible to use copolymers of hydrolyzed or partially hydrolysed vinyl acetate, which are obtainable, for example, as hydrolysed ethylene-vinyl acetate (EVA), or vinyl chloride-vinyl acetate, N-vinylpyrrolidone-vinyl acetate and maleic anhydride-vinyl acetate.

[0039] Polyvinyl alcohol is usually prepared by hydrolysis of the corresponding homopolymeric polyvinyl acetate. In a preferred embodiment, the polyvinyl alcohol derivatized in accordance with the invention comprises less than 50 % of polyvinyl acetate units, in particular less than 20 % of polyvinyl acetate units. Preferred amounts of residual acetate units in the polyvinyl alcohol derivatized in accordance with the invention are, based on the total amount of vinyl alcohol
units and acetate units, from about 2 to 20 %, preferably from about 2 to 16 %, in particular from 2 to 12 %, especially from 0.5 to 3 %.

[0040] Polyvinyl alcohols comprising units of the formula III can be prepared in a manner known per se. For example, a polyvinyl alcohol having a mean molecular weight of at least about 2000 which comprises units of the formula VI

\[-\text{CH(OH)}-\text{CH}_2\text{-} \quad \text{(VI)}\]

can be reacted with from about 0.5 to 80 %, based on the number of hydroxyl groups in the compound of the formula VI, of a compound of the formula (VII)

\[
\begin{align*}
\text{O} & \quad \text{C} & \quad \text{O} \\
\text{R}^1 & \quad \text{R}_3 & \quad \text{R}^4 & \quad \text{R}^5 \\
& \quad \text{R} & \quad \text{N} \\
\text{[CO-NH-(R_4-NH-CO-O)]_q-R_5-O-CO-R_{30}}
\end{align*}
\]

(VII)

in which \(R^1\) and \(R^4\), independently of one another, are hydrogen, \(C_1-C_7\) alkyl or \(C_1-C_7\) alkanoyl, such as acetyl or propionyl, and the other variables are as defined under the formula III, in particular in an acidic medium.

[0041] Alternatively, a polyvinyl alcohol having a molecular weight of at least about 2000 and which comprises units of the formula VI can be reacted with a compound of the formula VIII

\[
\begin{align*}
\text{O} & \quad \text{C} & \quad \text{O} \\
\text{R}^1 & \quad \text{R}_3 & \quad \text{R}^4 & \quad \text{R}^5 & \quad \text{R}^6 & \quad \text{R}^7 \\
& \quad \text{R} & \quad \text{N} \\
\text{H}
\end{align*}
\]

(VIII)

in which the variables are as defined for the compound of the formula VII, in particular under acidic conditions, and the resultant cyclic acetal can subsequently be reacted with a compound of the formula IX

\[
\text{OCN-(R_4-NH-CO-O)]_q-R_5-O-CO-R_{30}} \quad \text{(IX)}
\]

in which the variables are as defined for the compound of the formula VII.

[0042] Alternatively, the product obtainable as described above from a compound of the formula VI and a compound of the formula VIII can be reacted with a compound of the formula (X)

\[
\text{X-CO-R}_{30} \quad \text{(X)}
\]

in which \(R_{30}\) is, for example, alkenyl having 2 to 8 carbon atoms, and \(X\) is a reactive group, for example etherified or esterified hydroxyl, for example halogen, in particular chlorine.

[0043] Compounds of the formula VII in which \(p\) is zero are disclosed, for example, in EP 201 693. Compounds of the formula VIII are also described therein. Compounds of the formula IX are known per se or can be prepared in a manner known per se. An example of a compound of the formula IX in which \(q\) is zero is isocyanatoethyl methacrylate. An example of a compound of the formula IX in which \(q\) is one is a product of the reaction of isophorone diisocyanate.
with 0.5 equivalent of hydroxyethyl methacrylate. Compounds of the formula X are known per se, a typical representative being methacryloyl chloride. Compounds of the formula VII in which p and/or q is 1 can be prepared in a manner known per se from the abovementioned compounds, for example by reacting a compound of the formula VIII with isocyanatoethyl methacrylate or by reacting a compound of the formula VIII with isophorone diisocyanate which has previously been terminated with 0.5 equivalent of hydroxyethyl methacrylate.

[0044] Polyvinyl alcohols comprising units of the formula IVB can be prepared in a manner known per se. For example, a polyvinyl alcohol having a mean molecular weight of at least about 2000 which comprises units of the formula VI

\[-\text{CH(OH)}-\text{CH}_2^+.\]

can be reacted with a compound of the formula XI

\[
\begin{array}{c}
\text{R}^1 \text{R}^2 \\
\text{O} \\
\text{C} \text{R}_3 \\
\text{O} \\
\text{R} \\
\end{array}
\]

\[
\begin{array}{c}
\text{N-} \text{R}_1 \\
\text{R}^\prime \\
\end{array}
\]

\[
\text{RF}^\prime
\]

in which the symbols R' and R'' are hydrogen, C1-C7 alkyl or C1-C7 alkanoyl, and the other symbols R3, R, R1 and RF' are as defined above, in aqueous/alkaline medium, for example in a sodium carbonate solution, at from room temperature to about 40°C.

[0045] The compounds of the formula XI are novel and represent a further subject-matter of the invention.

[0046] These compounds of the formula XI are obtained, for example, by reacting an α-aminoaldehyde acetal, such as α-aminocetaldehyde dimethyl acetal or 4-aminobutylaldehyde diethyl acetal, with a compound which introduces the reactive dye radical RF', for example one of the formula

\[
\text{D-R}_{14}-\text{CH(U)}-\text{CH}_2\text{-O-SO}_3\text{Na}
\]

in which D, U and R14 are as defined under the formulae IV to IVc.

[0047] Reactive dyes which can be used are in particular those which are known as "reactive dyes which form ether bonds". These dyes contain reactive groups which react with cellulose to form an ether bond. They are described in general terms in Fiber-Reactive Dyes, Chapter VI, by W.F. Beech, SAF International, Inc., New York (1970) US-A-4 553 775 (Su) likewise mentions typical examples of commercially available dyes which can be used.

[0048] Of the reactive dye types which are suitable for the novel use, mention may be made, for example, of the following general classes: reactive dyes containing vinyl sulfone precursors, such as β-sulfatoethylsulfonyl, β-sulfatoethylsulfonamido, β-hydroxyethylsulfonyl and β-hydroxyethylsulfonamido substituents, and suitable derivatives thereof; dyes containing acryloylamino, β-chloropropionylamino and β-sulfopropionylamino groups and related reactive groups; dyes containing β-phenylsulfonylpropionylamino groups; dyes containing β-sulfato or β-chloroethylsulfonylamino groups; chloroacetyl dyes; α-bromoacryloyl dyes; and many other reactive dyes developed for use in the dyeing of natural and synthetic fibres, in particular cellulose or wool, which act by nucleophilic addition reactions.

[0049] Some typical examples of commercially available dyes which are suitable for the novel use are dye-\text{SO}_2\text{-CH}_2\text{-CH}_2\text{-O-SO}_3\text{Na} (Remazol), dye-\text{SO}_2\text{NHCH}_2\text{CH}_2\text{OSO}_3\text{Na} (Levafix), dye-\text{NH-OC-CH}_2\text{CH}_2\text{SO}_2\text{C}_6\text{H}_5 (Solidazol),

\[
\text{dye} - \text{NH-OC-CH-CH}_2\text{Br} \ (\text{Lanasol}),
\]

\[
\begin{array}{c}
\text{Br}
\end{array}
\]
[0050] The invention also covers the use of dyes containing more than one reactive group (albeit in very small amounts) which is suitable for the formation of a covalent bond by nucleophilic addition reaction with hydroxyl, amino, or mercapto groups.

[0051] Reactive dyes which are particularly suitable for formation of a covalent bond with the hydroxyl, amino, amido or mercapto groups present in the simple or derivatized crosslinkable polymer are those of the general formulae XVII or XVIII

\[
\text{D} - \text{R}_{14} - \text{C} = \text{CH}_2 \quad \text{XVII} \quad \text{D} - \text{R}_{14} - \text{CH} - \text{CH}_2 \quad \text{XVIII}
\]

in which

- \(\text{D} \) is the radical of an organic dye;
- \(\text{R}_{14} \) is a divalent, organic, electron-withdrawing group which is suitable for withdrawing electrons from the carbon atoms in the \(\text{C}=\text{CH}_2 \) or \(\text{CH}-\text{CH}_2 \) groups in the formulae XVII and XVIII and thus activating them;
- \(\text{U} \) is hydrogen or halogen, and
- \(\text{V} \) is a leaving group, or mixtures thereof.

[0052] The organic dye radical \(\text{D} \) is preferably the radical of an azo (monoazo or disazo), phthalocyanine, azomethine, nitro, metal complex or anthraquinone dye.

[0053] The reactive dyes of the formula XVIII eliminate H\(\text{V} \) in the reaction media, forming intermediates of the formula XVII, which subsequently react by nucleophilic addition.

[0054] The divalent group -\(\text{R}_{14} \) can be bonded directly to an aromatic ring carbon of \(\text{D} \) or can be bonded thereto via an aliphatic group, such as an alkylene group, for example a lower alkylene group.

[0055] Suitable divalent groups \(\text{R}_{14} \) include, for example, -CO-, -SO\(-2\), -SO\(-3\), -NHCO-, -NHSO\(-2\), -SO\(-2\)NH- and the like. \(\text{R}_{14} \) is most preferably -SO\(-2\), -SO\(-2\)NH, -CO- or -NHCO-, especially -SO\(-2\).

[0056] If \(\text{U} \) is halogen, it is most preferably chlorine or bromine.

[0057] Suitable leaving groups \(\text{V} \) include -Cl, -Br, -OH, di(C\(_1\)-C\(_7\)) alkylamino,

\[
\text{OCH}_2\text{N}^+\text{Cl}^-
\]

-SO\(-2\)-phenyl, -OSO\(-3\)-Z\(^+\), in which Z\(^+\) is a cation, -OSO\(-3\)\(_{\text{R}_{16}}\) or -OSO\(-2\)\(_{\text{R}_{15}}\), in which \(\text{R}_{16} \) is in each case alkyl, aryl, aralkyl or alkaryl.

[0058] If \(\text{R}_{15} \) is alkyl, it is advantageous allyl having 1 to 6 carbon atoms, and preferably allyl having 1 to 4 carbon atoms. If \(\text{R}_{15} \) is aryl, it is preferably phenyl or naphthyl. If \(\text{R}_{15} \) is alkaryl, it is preferably (lower alkyl)-substituted phenyl, such as tolyl or xylyl, and if \(\text{R}_{15} \) is aralkyl, it is preferably phenyl/(lower alkyl), such as benzyl or phenethyl.

[0059] The present invention also covers the use of halotriazine dyes, in particular chlorotriazine dyes, obtainable from Ciba-Geigy AG. These typically have the formula
in which D' is a radical of an organic dye of the abovementioned type, which is bonded to the triazine ring either directly or via a suitable linker, T is a solubilizing moiety, halogen or a further D', and Z₁ is halogen, preferably fluorine, chlorine or bromine, in particular fluorine or chlorine, most preferably chlorine. If two halogen groups are present, these can be identical to or different from one another. If two groups D' are present, these can be identical to or different from one another. Corresponding dyes or radicals are known to the person skilled in the art, for example from EP-A-388 356.

[0060] Mention may be made by way of example of an anthraquinone dye (dichlorotriazinyl derivative), such as Reactive Blue 4, and an azo dye (dichlorotriazinyl derivative), such as Reactive Red 11.

[0061] Particularly preferred reactive dyes which can be used for tinting crosslinkable polymers have the trade names Remazol Schwarz B (Reactive Black 5), Remazol Brillantblau R (Reactive Blue 19, Dusyn-Blau R-R), Remazol Türkisblau G (Reactive Blue 21, Dusyn-Blau R-KG), Remazol Goldorange 3G (Reactive Orange 78), Remazol Brillantrot F3B (Reactive Red 180, Dusyn-Rot R-F3B), Remazol Gelb GR (Reactive Yellow 15), Remazol Brillantgelb GL (Reactive Yellow 37, Dusyn-Gelb R-GL), Dusyn-Gelb R-R (mixture of Reactive Yellow 17 and Reactive Yellow 15), Remazol Brillantgrün 6B (Reactive Blue 36, Dusyn-Grün R-K6B), Remazol Schwarz RL (Reactive Black 31, Dusyn-Schwarz R-KRL), Dusyn-Schwarz R-N (mixture of Reactive Black 5 and Reactive Orange 72), Remazol Brillantorange 3R (Reactive Orange 16), Remazol Brillantblau B, Remazol Brillantblau BB, Remazol Druckschwarz G, Remazol Rot B, and Dusyn-Blau R-UG.

[0062] For further illustration, the following shows the bonding of a reactive dye to a polymer backbone, either directly or via a bridge, where, in these formulae, D is a reactive dye radical, for example the radical of Remazol Brillantblau R of the following formula:

[0063] The following formulae, which serve for further illustration, conform to the formulae IVC, IVA, IVB and IV (in this sequence):
The concentration of the reactive dyes in the crosslinkable polymer can be up to 5% and is in particular in the range from 0.001 to 3%, in particular from 0.01 to 2%.

The tinting process is generally followed by a neutralization process, for example with 0.01 N HCl solution, after which the crosslinkable tinted polymer is purified.

The following are further starting polymers comprising, for example, copolymer units in the polymer chain which are derived from the following monomer units: a vinyl lactam (a), vinyl alcohol (b), if desired a vinyl (C₁-C₇ alkane) carboxylate (c), a vinyllic crosslinking agent (d) and, if desired, a vinyllic photoinitiator (e).

Preferred starting polymers comprise units derived from the following monomer units in the copolymer chain:

- 5 - 85 percent by weight of a vinyl lactam (a),
- 3 - 80 percent by weight of vinyl alcohol (b),
- 0 - 65 percent by weight of a vinyl (lower alkane) carboxylate (c),
- 3 - 40 percent by weight of a vinyllic crosslinking agent (d) and
- 0 - 5 percent by weight of a vinyllic photoinitiator (e).

Preference is furthermore given to a starting polymer comprising units derived from the following monomer.
units in the copolymer chain:

10 - 75 percent by weight of a vinylactam (a),
10 - 65 percent by weight of vinyl alcohol (b),
2 - 40 percent by weight of a vinyl (lower alkane)carboxylate (c),
5 - 35 percent by weight of a vinylic crosslinking agent (d) and
0 - 3 percent by weight of a vinylic photoinitiator (e).

[0069] Of particular interest are starting polymers comprising units derived from the following monomer units in the copolymer chain:

20 - 70 percent by weight of a vinylactam (a),
15 - 60 percent by weight of vinyl alcohol (b),
5 - 30 percent by weight of a vinyl (lower alkane)carboxylate (c),
7 - 30 percent by weight of a vinylic crosslinking agent (d) and
0 - 2 percent by weight of a vinylic photoinitiator (e).

[0070] The term vinylactam (a) here is taken to mean, for example, a five- to seven-membered lactam of the formula (XII)

\[
\begin{array}{c}
\text{A} \text{N} \quad \text{O} \\
\text{R}_6
\end{array}
\]

(XII)

where \(R_6 \) is linear or branched (if desired multiply branched) alkyylene or alkenylene having 2 to 8 carbon atoms, and
A is CO or CR\(_7\)CR\(_8\), where R\(_7\) is hydrogen, lower alkyl, aryl, aralkyl or alkaryl, and R\(_8\) is hydrogen or C\(_1\) - C\(_7\) alkyl.

[0071] Some N-vinylactams (a) conforming to the above structural formula (XII) are N-vinyl-2-pyrrolidone, N-vinyl-2-piperidone, N-vinyl-2-caprolactam, N-vinyl-3-methyl-2-pyrrolidone, N-vinyl-3-methyl-2-piperidone, N-vinyl-3-methyl-2-caprolactam, N-vinyl-4-methyl-2-pyrrolidone, N-vinyl-4-methyl-2-caprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-methyl-2-piperidone, N-vinyl-5-methyl-2-caprolactam, N-vinyl-5,5-dimethyl-2-pyrrolidone, N-vinyl-3,5,5-trimethyl-2-pyrrolidone, N-vinyl-5-methyl-5-ethyl-2-pyrrolidone, N-vinyl-3,4,5-trimethyl-3-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-3,5-dimethyl-2-piperidone, N-vinyl-4,4-dimethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam, N-vinyl-3,5-dimethyl-2-caprolactam, N-vinyl-4,6-dimethyl-2-caprolactam, N-vinyl-3,5,7-trimethyl-2-caprolactam, N-vinylmaleimide and N-vinylsuccinimide. If desired, mixtures thereof, can also be used.

[0072] A preferred vinylactam (a) is a heterocyclic monomer of the formula XII containing 4 to 6 carbon atoms in the heterocyclic ring, in particular 4 carbon atoms in the heterocyclic ring, more preferably a heterocyclic monomer of the formula XII containing 4 carbon atoms in the heterocyclic ring in which R\(_7\) is hydrogen or lower alkyl.

[0073] Another more preferred vinylactam (a) is a heterocyclic monomer of the formula XII containing 4 carbon atoms in the heterocyclic ring in which R\(_7\) and R\(_8\), independently of one another, are hydrogen or lower alkyl. A highly preferred vinylactam (a) is N-vinyl-2-pyrrolidone.

[0074] The term vinyl(lower alkane)carboxylate (c) is taken to mean, for example, vinyl heptanoate, vinyl hexanoate, vinyl pentanoate, vinyl butanoate, vinyl propanoate (vinyl propionate) or vinyl ethanoate (vinyl acetate). Mixtures of said vinyl esters (c) can likewise be used. Preferred vinyl(lower alkane)carboxylates (c) are vinyl acetate, vinyl propionate and mixtures of the two.

[0075] The term vinylic crosslinking agent (d) is taken to mean, for example, a derivative of the formula (XIII)

\[
R_9(CO)_n(X^1\cdot B\cdot X^2\cdot CO)_m\cdot(X^1\cdot B\cdot X^2\cdot CO)_r\cdot O\cdot CH=CH_2
\]

(XIII)

in which R\(_9\) is a hydrocarbon group which can be polymerized by means of free radicals; n, m, and r, independently of one another, are zero or one; the radicals B, independently of one another, are divalent radicals having up to 20 carbon
atoms; radicals X^1, independently of one another, are -O-, -NH- or a single bond; and X^2 is NH or a single bond.

[0076] The polymerizable group R_9 is, for example, alkenyl as a group, preferably having 2 to 12 carbon atoms, which can be polymerized by means of free radicals. Examples of alkenyl are vinyl, allyl, 1-propan-2-yl, 1-buten-2- or -3- or -4-yl, 2-buten-3-yl, the isomers of pentenyl, hexenyl, octenyl, decenyl and dodecenyl. R_9 preferably contains 2 to 12, particularly preferably 2 to 6, especially preferably 2 to 4, carbon atoms.

[0077] The divalent radical B is, for example, lower alkylene, arylene, a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms, alkylenearylene, arylenealkylene or arylenealkylenearylene.

[0078] A preferred vinylic crosslinking agent (d) is, for example, a compound of the formula (XIII) in which the polymerizable group R_9 is alkenyl having 2 to 8 carbon atoms; n, m and r, independently of one another, are zero or 1; the radicals B, independently of one another, are lower alkylene, arylene, a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms, alkylenearylene, arylenealkylene or arylenealkylenearylene; the radicals X^1, independently of one another, are -O-, -NH- or a single bond; and X^2 is NH or a single bond.

[0079] A preferred vinylic crosslinking agent (d) is, for example, a compound of the formula (XIII) in which the polymerizable group R_9 is alkenyl having 2 to 8 carbon atoms; n, m and r, independently of one another, are zero or 1; the radicals B, independently of one another, are lower alkylene, arylene, a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms, alkylenearylene or arylenealkylene; the radicals X^1 independently of one another, are -O-, -NH- or a single bond; and X^2 is NH or a single bond. The radicals B are preferably independently of one another, lower alkylene, arylene or a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms.

[0080] Another preferred vinylic crosslinking agent (d) is a compound of the formula (XIII) in which the polymerizable group R_9 is alkenyl having 2 to 8 carbon atoms; $n = 1$ or 0, and n and r are zero.

[0081] A particularly preferred vinylic crosslinking agent (d) is, for example, a compound of the formula (XIII) in which the polymerizable group R_9 is alkenyl having 2 to 4 carbon atoms; m and n are one and $r = 1$ or 0; the radicals B, independently of one another, are lower alkylene, arylene or a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms; the radicals X^1 independently of one another, are -O-, -NH- or a single bond; and X^2 is NH or a single bond.

[0082] A very preferred vinylic crosslinking agent (d) is, for example, a compound of the formula (XIII) in which the polymerizable group R_9 is alkenyl having 2 to 4 carbon atoms; m and n are one and $p = 1$ or 0; the radicals B, independently of one another, are lower alkylene; the radicals X^1, independently of one another, are -O-, -NH- or a single bond; and X^2 is NH or a single bond.

[0083] Vinylypyrrolidone-vinyl alcohol copolymers can also be derivatized and thus crosslinked via an acetal structure.

[0084] The term vinylic photoinitiator (e) is taken to mean, for example, a derivative of the formula (XIV)

\[
\text{CH}_2=\text{CH-OCOX}'^2\text{-B-X}^2\text{COY-PI} \quad \text{(XIV)}
\]

where the radicals X^2, independently of one another, are NH or a single bond; Y is -O-, -S- or -NH-; B is a divalent radical having up to 20 carbon atoms; and PI is a radical of a photoinitiator minus YH.

[0085] A preferred vinylic photoinitiator (e) is, for example, a compound of the formula (XIV) in which the radicals X^2, independently of one another, are NH or a single bond; Y is -O- or -NH-; B is a divalent radical and is, for example, lower alkylene, arylene, a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms, alkylenearylene, arylenealkylene or arylenealkylenearylene; and PI is the radical of a photoinitiator of the formula (XV) shown below minus YH. In this formula, Y is preferably -O-. Furthermore, independently of this preference for Y, B is preferably lower alkylene, arylene or a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms.

[0086] The term photoinitiator PI-YH is taken to mean, for example, a compound of the formula (XV)

\[
\text{HY- Z - X}^1\text{R}_{10} \quad \text{(XV)}
\]

in which Y is -O-, -S- or -NH-; X^1 is -O-, -NH- or a single bond; Z is lower alkylene, arylene, a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms, alkylenearylene, arylenealkylene or arylenealkylenearylene; and R_{10} is a radical of the formula (XVI)
in which \(R_{11} \) is lower alkyl or lower alkoxy; \(R_{12} \) is selected from lower alkyl, lower alkoxy and aralkyl; and \(R_{13} \) is hydroxyl, di(lower alkyl)amino, aryl or azacycloxaalkyl.

[0067] Preferred examples of radicals \(R_{10} \) of the formula (XVI) are

\[
\begin{align*}
\text{CH}_3 & \quad \text{Et} \\
\text{OH} & \quad \text{NMe}_2 \\
\text{CH}_3 & \quad \text{OMe} \\
\text{NHMe} & \quad \text{OMe} \\
\text{benzyl} & \quad \text{N-morpholiny}.
\end{align*}
\]

[0068] Highly preferred is furthermore a vinyl group (a) in which the radicals \(X_2 \) independently of one another, are NH or a single bond; \(Y \) is -O--; \(Z \) is a divalent radical, for example lower alkylene, arylen or a saturated bivalent cycloaliphatic group having 6 to 12 carbon atoms; and \(P \) is the radical of, for example, 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl][2-methy]propan-1-one minus the primary hydroxyl group.

[0069] For the purposes of this invention, the term "lower" in connection with radicals and compounds denotes, unless defined otherwise, in particular radicals or compounds having up to 7 carbon atoms, preferably having up to 4 carbon atoms.

[0090] Lower alkyl can be linear or branched and has, in particular, up to 7 carbon atoms, preferably up to 4 carbon atoms, and is, for example, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl or tert-butyl.

[0091] Analogously, the term (lower alkyl)carboxylic acid is taken to mean a linear or branched aliphatic carboxylic acid having up to 7 carbon atoms, preferably having up to 4 carbon atoms. Examples are acetic acid, propionic acid and butyric acid.

[0092] Alkylene has up to 10 carbon atoms and can be linear or branched. Suitable examples include decylene, octylene, hexylene, butylene, propylene, ethylene, methylene, 2-propylene, 2-butylene and 3-pentylene.

Alkylene is preferably lower alkylene.

[0093] Lower alkylene denotes alkylene having up to 7 carbon atoms, particularly preferably having up to 4 carbon atoms. Particularly preferred meanings of lower alkylene are methylene and ethylene.

[0094] Alkenylene has up to 10 carbon atoms and can be linear or branched. Suitable examples include decylene, octylene, hexylene, butylene and ethylene. Alkenylene is preferably lower alkenylene.

[0095] Lower alkenylene denotes alkenylene having up to 7 carbon atoms, particularly preferably having up to 4 carbon atoms. A particularly preferred meaning of lower alkenylene is ethylene.

[0096] Aryl is, for example, naphthyl, pyridyl, thiophenyl or phenyl, unsubstituted or substituted by lower alkyl or lower alkoxy.

[0097] Lower alkoxy has, in particular, up to 7 carbon atoms, preferably up to 4 carbon atoms, and is, for example, methoxy, ethoxy, propoxy or tert-butoxy.

[0098] Alkaryl is preferably phenyl(lower alkyl) having up to 4 carbon atoms in the alkyl unit, for example 1- or 2-phenylethyl or benzyl.

[0099] Alkaryl is preferably (lower alkyl)phenyl having up to 4 carbon atoms in an alkyl unit, for example ethylphenyl, tolyl or xyllyl.

[0100] Arylene is preferably phenylene, unsubstituted or substituted by lower alkyl or lower alkoxy, in particular 1,3-phenylene, 1,4-phenylene or methyl-1,4-phenylene.

[0101] A saturated bivalent cycloaliphatic group is preferably cyclohexylene or cyclohexilene(lower alkylene), for example cyclohexylmethylene, unsubstituted or substituted by one or more lower alkyl groups, for example methyl groups, such as trimethylycyclohexylanemethylene, for example the bivalent isophorone radical.

[0102] Cycloalkyl has, in particular, up to 7 carbon atoms, preferably 3 to 6 carbon atoms, and is, for example, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

[0103] The term azacycloxaalkyl is taken to mean an oxygen-containing saturated azacycloalkyl radical in which the oxygen is incorporated into the ring and azacycloalkyl is a nitrogen-containing cycloalkyl radical. A typical example
of an azacycloxaalkane is morpholine.

[0104] These polymers are advantageously prepared, for example, already from a suitable starting polymer, for example from the product of the polymerization of an N-vinylactam (a) and a vinyl (lower alkane)carboxylate (c). Examples of such starting polymers are N-vinylpyrrolidone-vinyl acetate, N-vinylpyrrolidone-vinyl propionate or mixed esters, namely N-vinylpyrrolidone-vinyl acetate/vinyl propionate.

[0105] The last-mentioned starting polymers are commercially available in various mean molecular weights and in various compositions.

[0106] Aldrich markets, for example N-vinylpyrrolidone-vinyl acetate (VP-VAc) polymer as 60/40 copolymer (60 % by weight of VP, 40 % by weight of VAc) which is a powder and has a molecular weight of $M_n = 56,000$. Aldrich also markets VP-VAc 50/70 in isopropanol.

[0107] A further supplier of VP-VAc starting polymers is BASF, which markets these polymers under the name Luviskol VA. Examples are Luviskol VA 28, Luviskol VA 37 and Luviskol VA 73 having a molecular weight of $M_n = 7000-22,000$ (PMMA). Luviskol VA 37 HM is a high-molecular-weight starting polymer having an M_n of 32,000 (PMMA). The numerical coding of these Luviskols indicates the composition. For example, Luviskol VA 26 means that this is a VP-VAc starting polymer comprising about 20 % by weight of VP and about 80 % by weight of VAc.

[0108] The molecular weights (M_n) are determined by gel permeation chromatography (GPC) [size exclusion chromatography (SEC)] using DMF as solvent, and relate, unless otherwise stated, to polymethyl methacrylate (PMMA) calibration standard.

[0109] The N-vinylactam (a)-vinyl (lower alkane)carboxylate (c) starting polymers can be partially or fully hydrolysed under acid or alkaline conditions. Partial hydrolysis gives terpolymers comprising the units vinylactam (a), vinyl alcohol (b) and vinyl (lower alkane)carboxylate (c), for example a terpolymer of vinylpyrrolidone, vinyl acetate and vinyl alcohol. Complete hydrolysis gives a starting polymer comprising the units vinylactam (a) and vinyl alcohol (b). Starting polymers hydrolysed in this way can be derivatized in a suitable manner, for example using methacryloyl chloride, a 1:1 addition product of toluene diisocyanate (TDI) and hydroxethyl methacrylate (HEMA), a 1:1 addition product of isophorone disocyanate (IPDI) and HEMA, or isocyanatoethyl methacrylate (IEM). Derivatization allows the type and amount, for example of the crosslinking agent component (d), to be determined and incorporated into the crosslinkable polymer.

[0110] An N-vinylactam (a)-vinyl alcohol (b) starting polymer can be derivatized analogously, for example again using a suitable precursor of a vinylic photoinitiator (e). A precursor of this type is derived, for example, from the above formula (XIV), it being possible to formulate a precursor of this type by, for example, formal subtraction of vinyl alcohol in the formula (XIV). Derivatization of the starting polymer to give a crosslinkable polymer comprising a photoinitiator component (e) can take place simultaneously with or after the incorporation of a crosslinking agent component (d).

[0111] The molecular weight of a polymer is determined primarily through a suitable choice of the starting polymer, for example for a commercial N-vinylpyrrolidone-vinyl acetate polymer. The derivatization described above only changes the molecular weight comparatively marginally and can in addition be controlled precisely through the choice, for example, of the crosslinking agent component and the degree of hydrolysis of the starting polymer. The molecular weights (M_n) of such polymers generally vary in the range of $M_n = 2000-200,000$ g/mol. The molecular weight is preferably in the range from 5000 to 200,000 g/mol, and very preferably in the range from 10,000 to 100,000 g/mol.

[0112] The crosslinkable polymers can be prepared in the presence or absence of a solvent. Suitable solvents are in principle all solvents which dissolve both a starting polymer and a crosslinkable polymer to be prepared and in addition are substantially inert. Examples thereof are water, alcohols, such as lower alkanols, for example ethanol or methanol, furthermore carboxamides, such as dimethylformamide (DMF) or dimethylacetamide (DMA), ethers, for example diethyl ether, tetrahydrofuran (THF) or diethylene glycol dimethyl ether (diglyme), furthermore dimethyl sulfoxide, and mixtures of suitable solvents. For example mixtures of an alcohol with an ether, for example ethanol/THF, or methanol/diethyl ether. Preference is given to lower alkanols, carboxamides and dimethyl sulfoxide.

[0113] The preparation of crosslinkable polymers, in particular during and after incorporation of the crosslinking agent component (d) and especially of the photoinitiator component (e), should be carried out in the absence of light in order to prevent uncontrolled and premature crosslinking. It is also advantageous if atmospheric oxygen is not excluded during the synthesis of the crosslinkable polymers or is even admixed, since oxygen acts as a free-radical scavenger during the synthesis. Any free radicals present are scavenged, suppressing uncontrolled crosslinking. The oxygen thus acts as a stabilizer.

[0114] The composition of a crosslinkable polymer is the principal determinant, after it has been crosslinked, of the properties of a resultant moulding, for example a hydrogel contact lens. The crosslinking agent component (d) in a crosslinkable polymer can principally serve to control the mechanical properties of a contact lens. The water content of, for example, a hydrogel contact lens is determined, for example, by the vinylactam (a) or vinyl alcohol (b) content in the crosslinkable polymer.

[0115] In addition to the abovementioned units, the novel water-soluble, crosslinkable polymers can also comprise further modifier units. Of the many possibilities for such modifiers, the following are mentioned by way of example:
Further units containing crosslinkable groups are, for example, those of the formulae A and B

\[\text{CH}_2\text{CH} \]
\[\text{CH}_2\text{CH}_2\text{N} \]
\[\text{R}_4 \]
\[\text{R}_1 \text{C} \text{R}_2 \]
\[\text{O} \]
\[\text{NH} \text{C} \text{C} \text{C} \equiv \text{CH}_2 \]
\[\text{O} \]
\[\text{R}_3 \]

(A)

(B)

in which

\(\text{R}_1 \) and \(\text{R}_2 \) embody amino acid radicals and are, independently of one another: hydrogen, a C_1-C_6alkyl group, an aryl group or a cyclohexyl group, these groups being unsubstituted or monosubstituted or polysubstituted,

\(\text{R}_3 \) is hydrogen or a C_1-C_6alkyl group, and

\(\text{R}_4 \) is an \(-\text{O}\)- or \(-\text{NH}\)- bridge.

Further units containing crosslinkable groups are, for example, those of the formula C

\[\text{CH}_2\text{CH} \]
\[\text{CH}_2\text{CH} \]
\[\text{R}_1 \]
\[\text{O} \]
\[\text{C} \]
\[\text{R}_2 \]
\[\text{R}_3 \]
\[\text{NH} \text{C} \text{C} \text{C} \equiv \text{CH}_2 \]

(C)

in which

\(\text{R} \) is a linear or branched bivalent radical of a C_1-C_12alkane, preferably of a C_1-C_6alkane,

\(\text{R}_1 \) is hydrogen, a C_1-C_6alkyl group or a cycloalkyl group, preferably a cyclohexyl group,

\(\text{R}_2 \) is hydrogen or a C_1-C_6alkyl radical,

\(\text{R}_3 \) is the

\[\text{R}_4 \]
\[\text{C} \equiv \text{CH}_2 \]

group if \(n = 0 \), or the

\[\text{R}_{16} \]
\[\text{R}_{17} \]
bridge if \(n = 1 \),
\(R_4 \) is hydrogen or \(\text{C}_1\text{-C}_2 \)alkyl,
\(n \) is zero or 1, preferably 0, and
\(R_{16} \) and \(R_{17} \), independently of one another, are hydrogen, linear or branched \(\text{C}_1\text{-C}_2 \)alkyl, aryl, preferably phenyl, or cyclohexyl;

or those of the formula D

\[
\begin{array}{c}
\text{O} \\
\text{C=O} \\
(\text{CH}_2)_p \\
R_{15}\text{C=CH}_2
\end{array}
\]

in which \(R_{15} \) is hydrogen or a \(\text{C}_1\text{-C}_2 \)alkyl group, in particular \(\text{CH}_3 \), and \(p \) is from zero to 6, preferably from zero to 2, especially zero.

Units which contain a bound photoinitiator are, in particular, those of the formula E

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
(\text{CH}_2)_n \\
(\text{BR})_m \\
(\text{Pl})
\end{array}
\]

in which

\(\text{BR} \) is an

\[
\begin{array}{c}
\text{NH-} \\
\text{CO} \\
(\text{CH}_2)_6 \\
\text{or} \\
\text{N} \\
(\text{CH}_2)_7 \\
R_7
\end{array}
\]

bridge or a quaternary salt thereof which has the formula
PI is the radical of a photoinitiator from the class consisting of the benzoins, such as benzoin ethers, for example benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin phenyl ether, and benzoin acetate; acetophenones, such as acetophenone, 2,2-dimethoxyacetophenone and 1,1-dichloroacetophenone; benzil, benzil ketals, such as benzil dimethyl ketal and benzil diethyl ketal; anthraquinones, such as 2-methylantraquinone, 2-ethylantraquinone, 2-tert-butyl antraquinone, 1-chloroantraquinone and 2-amylantraquinone; furthermore benzozenones, such as benzophenone and 4,4'-bis(N,N'-dimethylamino)benzophenone; thioanthenes and xanthones; acridine derivatives; phenazine derivatives; quinoxaline derivatives; and 1-aminophenyl ketones and in particular those of the formula

\[
\begin{align*}
\text{X} & \quad \text{C} \quad \text{C} \quad \text{R}_{10} \\
\text{R}_{11} & \quad \text{R}_{1} \quad \text{R}_{2} \quad \text{R}_{3} \quad \text{R}_{4} \\
\end{align*}
\]

in which

- X is -O-, -S- or -N(R_{12})-.
- Y is a counterion, such as H_{2}SO_{4}^{2-}, F^{2-}, Cl^{2-}, Br^{2-}, I^{2-}, CH_{3}COO^{2-}, OH^{2-}, BF_{4}^{2-} or H_{2}PO_{4}^{2-}.
- R_{5} is hydrogen, a C_{1}-C_{9}alkyl group or a cycloalkyl group.
- R_{6} is hydrogen; unsubstituted or substituted, linear or branched C_{1}-C_{9}alkyl; the -(CH_{2})_{n}PI group or the -CO-R_{13} group, in which R_{13} is linear or branched C_{1}-C_{8}alkyl which is unsubstituted or substituted by -COOH or acrylamide, or an unsubstituted, linear or branched radical of a C_{2}-C_{9}olefin.
- R_{7} is hydrogen, or unsubstituted or substituted, linear or branched C_{1}-C_{9}alkyl so long as R_{7} is not -CO-R_{13}.
- R_{8} is unsubstituted or substituted, linear or branched C_{1}-C_{9}alkyl, unsubstituted or substituted, linear or branched C_{1}-C_{9}alkoxy, a 6-membered carbocyclic or heterocyclic ring, or an unsubstituted linear or branched radical of a C_{2}-C_{9}olefin.
- R_{10} is a group of the formula -OR_{14} or

\[
\begin{align*}
\text{R}_{11} & \quad \text{R}_{15} \\
\text{R}_{16} & \quad \text{R}_{10} \\
\end{align*}
\]

- R_{11} is unsubstituted or substituted, linear or branched C_{1}-C_{9}alkyl, a 6-membered carbocyclic or heterocyclic ring, an unsubstituted, linear or branched radical of a C_{2}-C_{9}olefin, or aryl, where
- R_{9} and R_{11} together can also be cyclized to form a 5- or 6-membered carbocyclic ring.
- R_{12} is hydrogen or unsubstituted, linear or branched C_{1}-C_{4}alkyl.
- R_{13} is hydrogen or unsubstituted or substituted, linear or branched C_{1}-C_{4}alkyl.
- R_{15} and R_{16}, independently of one another, are unsubstituted, linear or branched C_{1}-C_{4}alkyl, or R_{15} and R_{16} can be bonded together to form a 5- or 6-membered heterocyclic ring.
- m is 0 or 1.
- n is a number from 1 to 12.
- o is a number from 1 to 6, and
- r is a number from 2 to 6.
where substituted radicals are substituted, in particular, by C₁-C₄alkyl or by C₁-C₄alkoxy, with the following provisos:

- if the BR bridge is a quaternary salt, n is a number from 2 to 12;
- R₁₄ is not hydrogen if R₈ is a C₁-C₄alkoxy radical; and
- R₇ is CO-R₁₃ when n=1.

[0120] Examples of units containing basic groups are those of the formula F

![Formula F](image)

in which R is a linear or branched bivalent radical of a C₁-C₁₂alkane, and R₃ is hydrogen, a C₁-C₄alkyl group or a cycloalkyl group, and R₇ is a basic primary, secondary or tertiary amino group, in particular a secondary or tertiary amino group which is substituted by C₁-C₄alkyl, or a quaternary amino group of the formula

-N®(R'₁)₂X®

in which R'₁ is hydrogen or, independently of one another, a C₁-C₁₂alkyl radical, in particular a C₁-C₄alkyl radical, and X is a counterion, for example HSO₄®, F®, Cl®, Br®, I®, CH₃COO®, OH®, BF₄® or H₂PO₄®.

[0121] Examples of units containing acidic groups are those of the formula G

![Formula G](image)

in which R and R₃ are as defined under the formula F, and R₈ is the radical of a monobasic, dibasic or tribasic aliphatic or aromatic, saturated or unsaturated organic acid.

[0122] Examples of units containing crosslinkable groups bonded via urethane or further modifier groups bonded via urethane are those of the formula H or J
in which

U is the

\[\begin{align*}
\text{R}_2 \\
\text{- X - O - CO - C = CH}_2
\end{align*} \]

or \(-\text{Y-NH-CO-O-Z-CH}_2\) group.

X is a bridge having 2 to 12 carbon atoms, in particular an aliphatic, cycloaliphatic or aromatic bridge, especially alkylene, cyclohexylene or phenylene, which are unsubstituted or in particular substituted by lower alkyl.

\(\text{R}_2\) is hydrogen or a \(\text{C}_1\text{-C}_4\) alkyl group.

Y is a bridge having 7 to 12 carbon atoms with the same preferences as for X.

Z is a \(\text{C}_9\text{-C}_{12}\) alkylene bridge, which may be interrupted once or more than once by oxygen atoms, and

A is an organic radical having 1 to 18 carbon atoms, in particular an aliphatic, cycloaliphatic or aromatic radical, especially alkyl, cycloalkyl or phenyl, which are unsubstituted or in particular substituted by lower alkyl.

[0123] The novel crosslinkable polymer (prepolymer) is soluble in water.

[0124] The crosslinkable polymer (prepolymer) used in accordance with the invention comprises the units containing one or more different crosslinkable group(s) and, if desired, the units containing the further modifier(s), reactive dye radicals and photoinitiators, etc., in a total amount of from about 0.5 to 80%, preferably from 1 to 50%, advantageously from 1 to 25%, in particular from 2 to 15%, particularly preferably from 2 to 10%, based on the number of functional groups in the starting polymer, for example hydroxyl groups in the polyvinyl alcohol.

[0125] Polymers (prepolymers) which can be crosslinked in accordance with the invention and are intended for the production of contact lenses comprise, in particular, from about 0.5 to about 25%, in particular from about 1 to 15%, particularly preferably from about 2 to 12%, of these units.

[0126] Surprisingly, crosslinkable tinted polymers are extremely stable. This is unexpected to the person skilled in the art since higher-functional acrylates, for example, usually require stabilization. If such compounds are not stabilized, rapid polymerization occurs. However, spontaneous crosslinking due to homopolymerization does not occur with the novel tinted, crosslinkable polymers. The crosslinkable tinted polymers can, in addition, be purified in a manner known per se, for example by precipitation with acetone, dialysis or ultrafiltration, particular preference being given to ultrafiltration. This purification operation allows the crosslinkable tinted polymers to be obtained in extremely pure form, for example as concentrated aqueous solutions, which are free or at least substantially free from reaction products, such as salts, and starting materials, or other non-polymeric constituents. In the case of ultrafiltration, the salts formed during neutralization of the reaction mixture and the salts present in the reactive dyes as impurities, for example sodium sulfate and sodium chloride, are also removed simultaneously.

[0127] The preferred method for the purification of the novel crosslinkable tinted polymers, ultrafiltration, which gives extremely pure products, can be carried out in a manner known per se. It is possible to carry out the ultrafiltration repeatedly, for example from two to ten times. Alternatively, the ultrafiltration can also be carried out continuously until the desired degree of purity has been achieved. The desired degree of purity can in principle be as great as desired. A suitable measure of the degree of purity is, for example, the GPC or the elemental analysis (for example chlorine content of the filtrate).

[0128] The novel tinted, high-purity, crosslinkable polymers can be crosslinked in an extremely effective and targeted
manner, in particular by photochemical crosslinking.

[0129] The present invention therefore furthermore relates to a photocrosslinked, tinted polymer which can be obtained by photocrosslinking a crosslinkable, tinted polymer comprising covalently bonded reactive dye radicals in the presence or absence of an additional vinyl comonomer. These photocrosslinked, tinted polymers (hydrogels) are insoluble in water.

[0130] In the case of photochemical crosslinking (photocrosslinking), it is expedient, especially where necessary, to add a photoinitiator which is capable of initiating free-radical crosslinking. The crosslinking can then be initiated by actinic or ionizing radiation.

[0131] The photocrosslinking is carried out in a suitable solvent. Such solvents are in principle all those which dissolve the crosslinkable tinted polymer and any vinyl monomers additionally used.

[0132] The photocrosslinking is preferably carried out directly from an aqueous solution of the novel water-soluble, crosslinkable tinted polymers, which can be obtained as a result of the preferred purification step, namely ultrafiltration, if desired after addition of an additional vinyl monomer.

[0133] The process for the preparation of the novel crosslinkable tinted polymers comprises, for example, derivatizing a polymer backbone with a crosslinking agent, where the polymer backbone is still capable of reacting covalently with a reactive dye, in particular a polyvinyl alcohol polymer backbone, and photocrosslinking the derivatized backbone, in particular in essentially pure form, i.e., for example, after a single or repeated ultrafiltration, in particular in aqueous solution, in the presence or absence of an additional vinyl comonomer.

[0134] The vinyl comonomer which can additionally be used in the photocrosslinking can be hydrophilic, hydrophobic or a mixture of hydrophobic and hydrophilic vinyl monomers. Suitable vinyl monomers include, in particular, those which are usually used in the production of contact lenses. The term "hydrophilic vinyl monomer" is taken to mean a monomer which, as a homopolymer, typically gives a polymer which is soluble in water or is capable of absorbing at least 10 % by weight of water. Analogously, the term "hydrophobic vinyl monomer" is taken to mean a monomer which, as a homopolymer, typically gives a polymer which is insoluble in water or is capable of absorbing less than 10 per cent by weight of water.

[0135] If a vinyl comonomer is used, the photocrosslinked tinted novel polymers preferably comprise from about 1 to 15 per cent, particularly preferably from about 3 to 8 per cent, of crosslinkable units, based, for example, on the number of hydroxyl groups of the polyvinyl alcohol, which are reacted with from about 0.1 to 80 units of the vinyl monomer.

[0136] The proportion of vinyl monomers, if used, is preferably from 0.5 to 80 units per crosslinkable unit, in particular from 1 to 30 units of vinyl comonomer per crosslinkable unit, particularly preferably from 5 to 20 units per crosslinkable unit.

[0137] It is furthermore preferred to use a hydrophobic vinyl comonomer or a mixture of a hydrophobic vinyl comonomer and a hydrophilic vinyl comonomer which comprises at least 50 per cent by weight of a hydrophobic vinyl comonomer. This allows the mechanical properties of the photocrosslinked polymer to be improved without drastically reducing the water content. However, both conventional hydrophobic vinyl monomers and conventional hydrophilic vinyl monomers are in principle suitable for the copolymerization.

[0138] Suitable hydrophobic vinyl monomers include, without this being a comprehensive list, C1-C18alkyl acrylates and methacrylates, C2-C8alkylacylamides and -methacrylamides, acrylonitrile, methacrylonitrile, vinyl C1-C18alkanoates, C2-C6alkenes, styrene, C1-C6alkylstyrene, vinyl alkyl ethers in which the alkyl moiety has 1 to 6 carbon atoms, C2-C12perfluoroalkyl acrylates and methacrylates and correspondingly partially fluorinated acrylates and methacrylates, C2-C12perfluoroalkyl ethylthiocarbamoyl methacrylates and -methacrylates, acryloxy- and methacryloxyalkylsiloxanes, N-vinylcarbazole, C1-C12alkyl esters of maleic acid, fumaric acid, itaconic acid, mesaconic acid and the like. Preference is given to, for example, C1-C4alkyl esters of vinylly unsaturated carboxylic acids having 3 to 5 carbon atoms or vinyl esters of carboxylic acids having up to 5 carbon atoms.

[0139] Examples of suitable hydrophilic vinyl monomers include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, styrene, chloroprene, vinyl chloride, vinylidene chloride, acrylonitrile, 1-butene, butadiene, methacrylonitrile, vinyltoluene, vinyl ethyl ether, perfluoroethylethylthiocarbamoylmethacrylate, isobornyl methacrylate, trifluoroethyl methacrylate, hexafluoroisopropyl methacrylate, hexafluorobutyl methacrylate, tris(trimethylisilyloxy)isopropyl methacrylate, 3-methacryloxypropyl(pentamethyldisiloxane and bis(methacryloxypropyl)tetramethyldisiloxane.

[0140] Suitable hydrophilic vinyl monomers include, without this being a comprehensive list, hydroxy-substituted lower alkyl acrylates and methacrylates, acrylamide, methacrylamide, lower alkylacrylamides and -methacrylamides, methoxylated acrylates and methacrylates, hydroxy-substituted lower alkylacrylamides and -methacrylamides, hydroxy-substituted lower alkyl vinyl ethers, sodium ethylenesulfonate, sodium styrenesulfonate, 2-acylamido-2-methylpropanesulfonic acid, N-vinylpyrrole, N-vinylsuccinimide, N-vinylpyrorolone, 2- and 4-vinylpyridine, acrylic acid, methacrylic acid, amino- (where the term "amino" also covers quaternary ammonium), mono(lower alkyl)amino- or di
Examples of suitable hydrophilic vinylic comonomers include hydroxyethyl methacrylate, hydroxyethyl acrylate, acrylamide, methacrylamide, dimethylacrylamide, allyl alcohol, vinylpyrrolidone, vinylpyrrolidone, glycerol methacrylate, N-(1,1-dimethyl-3-oxobutyl)acrylamide and the like.

Preferred hydrophobic vinylic comonomers are methyl methacrylate and vinyl acetate.

Preferred hydrophilic vinylic comonomers are 2-hydroxyethyl methacrylate, N-vinylpyrrolidone and acrylamide.

The novel crosslinkable tinted homopolymers and copolymers can be converted into mouldings, in particular contact lenses, in a manner known per se, for example by carrying out the crosslinking, in particular photocrosslinking, in a suitable contact-lens mould. The invention therefore furthermore relates to mouldings essentially comprising a crosslinked tinted polymer made from a novel crosslinkable tinted polymer comprising units containing a crosslinkable group and units containing a reactive dye radical. Further examples of novel mouldings, besides contact lenses, are biomedical mouldings and mouldings for specifically ophthalmic purposes, for example intraocular lenses, eye bandages, mouldings which can be used in surgery, such as heart valves, artificial arteries or the like, furthermore films and membranes, for example membranes for diffusion control, photostructurable films for information storage, and photore sist materials, for example membranes and mouldings for etch resists and screen printing resists.

A specific embodiment of the invention relates to contact lenses which comprise a novel tinted crosslinked polymer made from a crosslinkable tinted polymer or essentially comprising or consisting of a novel crosslinkable tinted polymer. Contact lenses of this type have a range of unusual and extremely advantageous properties, including, for example, excellent compatibility with the human cornea, based on a balanced ratio between water content (about 50-90 % by weight, in particular 60-85 % by weight), high oxygen permeability and very good mechanical properties, for example softness (hydrogels), transparency, clarity, freedom from stresses and tear strength. In addition, the novel tinted contact lenses have high dimensional stability and have very homogeneous tinting or colouring. Even after autoclaving one or more times at, for example, about 120°C for about 30-40 minutes, no changes in shape are observed. If the novel tinted contact lenses are used as one-day lenses, they additionally require no care products. Furthermore, they are economically advantageous to produce. The tinted novel contact lenses are colour-fast to all types of sterilization treatment, such as chemical, enzymatic and heat sterilization.

It is furthermore emphasized that the novel tinted contact lenses can be produced very simply, efficiently and quickly compared with the prior art. This is due to a number of factors. Firstly, the starting materials, such as the polymer backbones, are inexpensive to obtain or prepare. Secondly, it is advantageous that the crosslinkable polymers and the crosslinkable tinted polymers are surprisingly stable, so that they can be subjected to very substantial purification. The crosslinking can therefore be carried out using a crosslinkable tinted polymer which requires virtually no subsequent purification, such as, in particular, complex extraction of unpolymerized constituents. Furthermore, the crosslinking can be carried out in purely aqueous solution, so that a subsequent hydration step is unnecessary. In addition, the reaction times during tinting of the polymers are very short. Finally, the photocrosslinking takes place within less than 5 minutes, so that the process for the production of the novel tinted contact lenses can be designed to be extremely economical from this point of view too.

All the above advantages naturally apply not only to contact lenses, but also to the other mouldings mentioned. The totality of the various advantageous aspects in the production of novel tinted mouldings results in the novel tinted mouldings being particularly suitable as mass-produced articles, for example as contact lenses, which are worn for a short time span (from about 1 to 4 days) and are then replaced by new lenses.

The present invention furthermore relates to the production of the novel tinted mouldings, in particular the novel tinted contact lenses. These processes are illustrated below using the example of contact lenses. However, these processes can also be used for the other mouldings mentioned.

The novel tinted contact lenses can be produced in a manner known per se, for example in a conventional spin-casting mould, as described, for example, in US-A-3 408 429, or in a closed mould, for example by the full-mould process in a static mould, as described, for example, in US-A-4 347 198.

It has been found that the process described above with reference to crosslinkable tinted polymers comprising, in particular, units of the formula I is of general applicability. The present invention therefore also relates to a novel process for the production of polymeric tinted mouldings, in particular tinted contact lenses, in which a water-soluble crosslinkable tinted polymer containing reactive dye radicals is crosslinked in solution, and to mouldings, in particular, contact lenses, obtainable by this process. The tinted mouldings obtainable by crosslinking in this way are insoluble, but swellable, in water.

In detail, this process for the production of tinted mouldings, in particular tinted contact lenses, comprises the following steps:
a) Preparation of an aqueous solution of a water-soluble crosslinkable tinted polymer comprising units containing a crosslinkable group and units containing a bonded reactive dye radical,

b) introduction of the resultant solution into a mould,

c) initiation of the crosslinking in water or in an organic solvent in which the crosslinkable tinted polymer is dissolved, and

d) opening of the mould so that the moulding can be removed.

[0152] Unless expressly excluded below, the comments and preferences given above in connection with the crosslinkable tinted polymers comprising units of the formula I and the comments and preferences given in connection with the processes for the preparation of polymers and production of mouldings, in particular contact lenses, from these crosslinkable tinted polymers also apply in connection with the above-described process comprising steps a), b), c) and d). This statement applies to all the cases in which the comments and preferences in connection with crosslinkable tinted polymers comprising units of the formula I can be applied appropriately to the process described above.

[0153] The crucial criteria regarding whether a crosslinkable tinted polymer can be employed in the novel process are that the crosslinkable tinted polymer comprises units containing a crosslinkable group and units containing a bonded reactive dye radical, and that this polymer is soluble in water.

[0154] An essentially aqueous solution of a water-soluble crosslinkable tinted polymer can be prepared in a manner known per se, for example by isolating the crosslinkable tinted polymer, for example in pure form, i.e. free from undesired constituents, and dissolving the crosslinkable tinted polymer in an essentially aqueous medium.

[0155] The criterion that the crosslinkable tinted polymer is soluble in water is, for the purposes of the invention, taken to mean in particular that the crosslinkable tinted polymer is soluble in an essentially aqueous solution at 20°C in a concentration of from about 3 to 90 per cent by weight, preferably from about 5 to 60 per cent by weight, in particular from about 10 to 60 per cent by weight. If possible in individual cases, crosslinkable tinted polymer concentrations of greater than 90 % are also included for the purposes of the invention. Particular preference is given to crosslinkable tinted polymer concentrations in solution of from about 15 to about 50 per cent by weight, in particular from about 15 to about 40 per cent by weight, for example from about 25 to about 40 per cent by weight.

[0156] For the purposes of this invention, essentially aqueous solutions of the crosslinkable tinted polymer include in particular solutions in water, in aqueous salt solutions, in particular in aqueous salt solutions having an osmolarity of from about 200 to 450 milliosmol in 1000 ml (unit: mOsm/l), preferably an osmolarity of from about 250 to 350 mOsm/l, in particular about 300 mOsm/l, or in mixtures of water or aqueous salt solutions with physiologically acceptable polar organic solvents, for example glycerol. Preference is given to solutions of the crosslinkable tinted polymers in water alone.

[0157] The aqueous salt solutions are advantageously solutions of physiologically acceptable salts, such as buffer salts, for example phosphate salts, which are conventional in the area of contact-lens care, or isotonicizing agents, in particular alkali metal halides, for example sodium chloride, which are conventional in the area of contact-lens care, or solutions of mixtures thereof. An example of a particularly suitable salt solution is an artificial, preferably buffered tear fluid whose pH and osmolarity have been matched to natural tear fluid, for example an unbuffered, preferably buffered for example by phosphate buffer, sodium chloride solution whose osmolarity and pH conform to the osmolarity and pH of human tear fluid.

[0158] The above-defined, essentially aqueous solutions of the crosslinkable tinted polymer are preferably pure solutions, i.e. those which are free or essentially free from undesired constituents. Particular preference is given to solutions of the crosslinkable tinted polymer in pure water or in an artificial tear fluid as described above.

[0159] The viscosity of the solution of the crosslinkable tinted polymer in the essentially aqueous solution is unimportant over broad limits. However, it should preferably be a flowable solution which can be shaped without stresses.

[0160] The molecular weight of the crosslinkable tinted polymer is likewise unimportant within broad limits. However, the crosslinkable tinted polymer preferably has a molecular weight of from about 10,000 to about 200,000.

[0161] The crosslinkable tinted polymer used in accordance with the invention should furthermore, as mentioned, comprise crosslinkable groups. The term crosslinkable groups is taken to mean, in addition to the acetal groups mentioned at the outset containing crosslinkable groups, all conventional crosslinkable groups known to the person skilled in the art, for example photocrosslinkable or thermally crosslinkable groups. Particularly suitable crosslinkable groups are those as already proposed under the production of contact-lens materials. These include, in particular, but not exclusively, groups which contain carbon-carbon double bonds. In order to demonstrate the variety of crosslinkable groups which are suitable, crosslinking mechanisms which may be mentioned here, merely by way of example, are free-radical polymerization, 2+2 cycloaddition, Diels-Alder reaction, ROMP (ring opening metathesis polymerization), vulcanization, cationic crosslinking and epoxy curing.
Suitable polymeric backbones, in addition to the starting polymers already mentioned at the outset, are materials as have in some cases already been proposed as contact-lens materials and which are capable of covalently binding reactive dyes, for example polymeric diols other than PVA, polymers comprising saccharides, polymers comprising vinylpyrrolidone, polymers comprising alkyl (meth)acrylates, polymers comprising alkyl (meth)acrylates which are substituted by hydrophilic groups, such as hydroxyl, carboxyl or amino groups, polyalkylene glycols, or copolymers or mixtures thereof.

As already mentioned, for a crosslinkable tinted polymer to be suitable in the novel process, it is essential that it is crosslinkable. However, the crosslinkable polymer is uncrosslinked so that it is water-soluble.

Furthermore, the crosslinkable polymer and the crosslinkable tinted polymer are advantageously stable in the uncrosslinked state, so that they can be subjected to purification, as described above. The crosslinkable tinted polymers are preferably employed in the crosslinking process in the form of pure solutions. The crosslinkable tinted polymers can be converted into the form of pure solutions as described below, for example.

The water-soluble, crosslinkable tinted polymers used in the novel process can preferably be purified in a manner known per se, for example by precipitation with organic solvents, such as acetone, filtration and washing, extraction in a suitable solvent, dialysis or ultrafiltration, particular preference being given to ultrafiltration. This purification operation allows the crosslinkable tinted polymers to be obtained in extremely pure form, for example as concentrated aqueous solutions, which are to hereinafter as pure or essentially pure. This term is understood to refer to a crosslinkable polymer or to a solution thereof which is free or at least substantially free from undesirable constituents.

Undesired constituents in this context are generally all constituents which are physiologically undesired, especially monomeric, oligomeric or polymeric starting compounds used for the preparation of the water-soluble, crosslinkable tinted polymer, or byproducts formed during the preparation of the water-soluble, crosslinkable tinted polymer. Preferred degrees of purity of these constituents are less than 0.01 %, in particular less than 0.001 %, very particularly preferably less than 0.0001 % (1 ppm). It is to be noted, however, that there may be present in the solution, for example by formation as byproducts during the preparation of the water-soluble, crosslinkable tinted polymer, constituents which are not undesired from a physiological point of view, such as for example sodium chloride. Preferred degrees of purity of these constituents are less than 1 %, in particular less than 0.1 %, very particularly preferably less than 0.01 %. In most cases such levels of constituents may be obtained by applying 3 to 4 repeated ultrafiltration cycles.

The preferred process for the purification of the crosslinkable tinted polymers used in the crosslinking process, namely ultrafiltration, can be carried out in a manner known per se. The ultrafiltration can be carried out repeatedly, for example from two to ten times. Alternatively, the ultrafiltration can also be carried out continuously until the desired degree of purity has been achieved. The desired degree of purity can in principle be chosen to be as great as desired.

In a preferred embodiment of the process for the production of tinted contact lenses, an essentially aqueous solution of the crosslinkable tinted polymer which is essentially free from undesirable constituents, for example free from monomeric, oligomeric or polymeric starting compounds used for the preparation of the crosslinkable tinted polymer, and/or free from by-products formed during the preparation of the crosslinkable tinted polymer, is prepared in step a) and used further. This essentially aqueous solution is particularly preferably a purely aqueous solution or a solution in an artificial tear fluid as described above. It is furthermore preferred for the process to be carried out without addition of a comonomer, for example a vinyl cocomonomer.

Owing to the abovementioned measures and in particular owing to a combination of said measures, the crosslinking process is carried out using a solution of the crosslinkable tinted polymer containing no or essentially no undesired constituents requiring extraction after crosslinking. It is therefore a particular feature of this preferred embodiment of the process that extraction of undesired constituents is not necessary after the crosslinking.

The crosslinking process is therefore preferably carried out in such a way that the essentially aqueous solution of the crosslinkable tinted polymer is free or essentially free from undesired constituents, in particular from monomeric, oligomeric or polymeric starting compounds used for the preparation of the crosslinkable tinted polymer, or from by-products formed during the preparation of the crosslinkable tinted polymer, and/or that the solution is used without addition of a comonomer.

An addition which may be added to the solution of the crosslinkable tinted polymer (or a mixture of such polymers) is a photoinitiator for the crosslinking so long as an initiator is necessary for crosslinking. This may be the case, in particular, if the crosslinking takes place by photocrosslinking, which is preferred in the novel process.

If, however, the crosslinkable tinted polymer comprises units containing a photoinitiator component, the crosslinking can be carried out directly without addition of an additional photoinitiator.

In the case of photocrosslinking, it is expedient to add an initiator which is capable of initiating free-radical crosslinking and is readily soluble in water. Examples thereof are known to the person skilled in the art; suitable photoinitiators which may be mentioned specifically are benzoin, such as benzoin, benzoin ethers, such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin phenyl ether, and benzoin acetate; acetoephonones, such as acetoephonone, 2,2-dimethoxyacetophenone and 1,1-dichloroacetophenone; benzil, benzil ketals, such as ben-
zil dimethyl ketal and benzil diethyl ketal, anthraquinones, such as 2-methylandthraquinone, 2-ethylanthraquinone, 2-tet-butylanthraquinone, 1-chloroanthraquinone, 2-ethylanthraquinone; furthermore triphenylphosphine, benzylphosphine oxides, for example 2,4,6-trimethylbenzylidiphenylphosphine oxide, benzophenones, such as benzo-phenone and 4,4'-bis(N,N'-dimethylamino)benzophenone, thioxanthones and xanthones, acridine derivatives, phen-azine derivatives; quinoline derivatives and 1-phenyl-1,2-propanediol 2-O-benzoyl oxime, 1-sinapophenyl ketones and 1-hydroxyphenyl ketones, such as 1-hydroxy-1-cyclohexylphenyl ketone, phenyl 1-hydroxyisopropyl ketone, 4-isopropylphenyl 1-hydroxyisopropyl ketone, 2-hydroxy-4-{4-(2-hydroxyethoxy)phenyl}-2-methylprop-1-one, 1-phenyl-2-hydroxy-2-methylprop-1-one, and 2,2-dimethoxy-1,2-diphenylethanone, all of which are known compounds.

[0174] Particularly suitable photoinitiators, which are usually employed in combination with UV lamps as light source, are acetylphenones, such as 2,2-dialkoxybenzophenones and hydroxyphenyl ketones, for example the initiators obtainable under the trade names Irgacure®2959 and Irgacure®1173.

[0175] Another class of photoinitiators usually employed when argon ion lasers are used are benzil ketals, for example benzil dimethyl ketal.

[0176] The photoinitiators are added in effective amounts, expediently in amounts of from about 0.1 to about 2.0 % by weight, in particular from 0.2 to 0.5 % by weight, based on the total amount of the crosslinkable tinted polymer.

[0177] The resultant solution can be introduced into a mould using methods known per se, such as, in particular, conventional metering, for example dropwise. The novel tinted contact lenses can be produced in a manner known per se, for example in a conventional spin-casting mould, as described, for example, in US-A-3 408 429, or by the full-mould process in a static mould, as described, for example, in US-A-4 347 198. Appropriate moulds are made, for example, of polypropylene. Examples of suitable materials for reusable moulds are quartz and sapphire glass.

[0178] The novel crosslinkable tinted polymers which are suitable can be crosslinked by irradiation with ionizing or actinic radiation, for example electron beams, X-rays, UV or VIS light, i.e. electromagnetic radiation or particle radiation having a wavelength in the range from about 250 to 650 nm. Also suitable are He/Cd, argon or nitrogen or metal vapour or Nd:YAG laser beams with multiplied frequency. It is known to the person skilled in the art that each selected light source requires selection and, if necessary, sensitization of the suitable photoinitiator. It has been recognized that in most cases the depth of penetration of the radiation into the crosslinkable polymer and the rate are in direct correlation with the absorption coefficient and concentration of the photoinitiator.

[0179] The crosslinking can, if desired, also be initiated thermally. It should be emphasized that the crosslinking can take place in a very short time in accordance with the invention, for example in less than five minutes, preferably in less than one minute, in particular in up to 30 seconds, particularly preferably as described in the examples.

[0180] Apart from water, which is preferred, the crosslinking medium can additionally be any medium in which the crosslinkable tinted polymer is soluble. In the case of polyvinyl alcohol as the polymer backbone, for example, all solvents which dissolve polyvinyl alcohol are suitable, such as alcohols, for example glycols, glycerol, piperazine (at elevated temperature), diamines, such as triethylenediamine, formamide, dimethylformamide, hexamethylyphosphoric triamide, dimethyl sulfoxide, pyridine, acetonitrile and dioxane.

[0181] The opening of the mould so that the moulding can be removed can be carried out in a manner known per se. Whereas the process proposed in the prior art (US-A-3 408 429 and 4 347 198) requires subsequent purification steps at this point, for example by extraction, and also steps for hydration of the resultant mouldings, in particular contact lenses, such steps are unnecessary here.

[0182] Since the solution of the crosslinkable tinted polymer preferably comprises no undesired low-molecular-weight constituents, the crosslinked tinted product also comprises no such constituents. Subsequent extraction is therefore unnecessary. Since the crosslinking is carried out in an essentially aqueous solution, subsequent hydration is unneces-sary. These two advantages mean, inter alia, that complex subsequent treatment of the resultant tinted mouldings, in particular contact lenses, is unnecessary. The tinted contact lenses obtainable by the novel process are therefore distinguished, in an advantageous embodiment, by the fact that they are suitable for their intended use without extrac tion. The term ‘intended use’ in this connection is taken to mean, in particular, that the contact lenses can be employed in the human eye. The contact lenses obtainable by the crosslinking process are furthermore distinguished in an ad-vantageous embodiment by the fact that they are suitable for their intended use without hydration.

[0183] This process therefore proves to be extremely suitable for the efficient production of a large number of mouldings, such as contact lenses, in a short time. The tinted contact lenses obtainable by this process have, inter alia, the advantages over the contact lenses known from the prior art that they can be used as intended without subsequent treatment steps, such as extraction or hydration. In addition, virtually any desired shade or any tint can be achieved by using a specific reactive dye or a combination of reactive dyes, Bleeding of the dye does not occur, nor does leaching out, neither in the tear fluid nor in the sterilization solution.

[0184] The examples below serve to further illustrate the invention. In the examples, unless expressly stated other wise, amounts are by weight and temperatures are given in degrees Celsius. RT denotes room temperature of about 20°C. These examples are not intended to represent any restriction of the invention, for example to the scope of the examples.
Example 1: 220 g (5.5 mol) of sodium hydroxide are dissolved in 300 g of water and 700 g of ice in a 3 litre reactor fitted with stirrer and cooling means. The sodium hydroxide solution is cooled to 10°C, and 526 g (5.0 mol) of aminocetaldehyde dimethyl acetal and 50 mg of 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxide (free-radical inhibitor) are added. 548.6 g (5.5 mol) of methacryloyl chloride are slowly added to this solution at 10°C over the course of 3.5 hours. When the addition is complete, the pH slowly drops to 7.2, and amine is no longer detectable by GC. The reaction mixture is extracted with 500 ml of petroleum ether in order to remove impurities, and the water phase is saturated with sodium chloride and extracted three times with 500 ml of tert-butyl methyl ether. The organic phase is dried using magnesium sulfate, filtered and evaporated on a rotary evaporator. The 862.2 g of yellowish oil obtained are slowly stirred into 2000 ml of petroleum ether at -10°C using an Ultraturax. The product crystallizes, and is filtered off and dried, giving 713.8 g of methacrylamidoacetaldehyde dimethyl acetal (86% of theory), melting point 30-32°C. The product is 99.7% pure according to GC.

Example 2: General method for the preparation of high-acetate products of the reaction of PVA with acetal, or aldehydes.

Example 3: General procedure for the acid hydrolysis of VP-VAc polymers.

Example 4: In each case, 30 ml of a 14 percent by weight PVA solution from Example 2 are stirred for 1 minute with various volumes (V) as shown in Table 1 of 0.5 percent by weight sodium carbonate solution. 60 mg of a Duasyn-Rot R-F3B solution are added in each case, and the mixtures are stirred for 2 minutes at RT while the pH is monitored. The calculated amount of 0.01 N HCl solution for neutralization is then added. Thin-layer chromatography (TLC; stationary phase silica gel 60 F254 on aluminium foil, layer thickness 0.2 mm; Merck) in acetone shows no unbound dye. The mixture is subjected to ultrafiltration through a 3 kD membrane (Filtron) in an ultrafiltration cell (Berghof) until chloride is no longer detectable by argentometry. The concentration of the solution can likewise be carried out in the ultrafiltration cell or by vacuum distillation (140 mbar, 40°C) with blowing-in of air, or the solution freed from salts is precipitated in acetone and the resultant solid is dried in vacuo.
Table 1

<table>
<thead>
<tr>
<th>Ex.</th>
<th>V (sodium carbonate)/ml</th>
<th>pH before addition of dye</th>
<th>pH after addition of dye</th>
<th>V(hydrochloric acid)/ml</th>
<th>pH after addition of hydrochloric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a)</td>
<td>10</td>
<td>10.8</td>
<td>10.6</td>
<td>50</td>
<td>6.5</td>
</tr>
<tr>
<td>4b)</td>
<td>5</td>
<td>10.7</td>
<td>10.5</td>
<td>20</td>
<td>6.8</td>
</tr>
<tr>
<td>4c)</td>
<td>1</td>
<td>9.1</td>
<td>8.5</td>
<td>4</td>
<td>6.4</td>
</tr>
<tr>
<td>4d)</td>
<td>0.5</td>
<td>6.4</td>
<td>6.4</td>
<td>1.5</td>
<td>5.9</td>
</tr>
</tbody>
</table>

[0193] Example 5: A mixture of 15 ml of a 30 percent by weight aqueous solution of polyethyleneimine (Polysciences) and 15 ml of demineralized water (pH of the mixture, 10.5) is adjusted to a pH of 6.8 using 3 ml of 37 % hydrochloric acid. 5 ml of 0.5 percent sodium carbonate solution (pH 7.2) are added, followed by 60 mg of a Duasyn-Blau R-R solution (pH 7.4), and the pH is adjusted to 7.2 by means of 20 ml of 0.01 N hydrochloric acid. TLC in acetone shows no unbound dye.

[0194] Example 6: A solution of 3.00 g of a terpolymer of vinylpyrrolidone (43.4 percent by weight), vinyl acetate (25.2 percent by weight) and vinyl alcohol (31.4 percent by weight) prepared as described in Example 3 (prepared from Luvicb K 57 i M (BASF)) in 60 ml of demineralized water (pH 6.3) is stirred for 1 minute with 5 ml of 0.5 percent sodium carbonate solution (pH 10.6). 40 mg of a Duasyn-Blau R-KG solution (pH 10.8) are added, and the mixture is stirred for 2 minutes. After addition of 30 ml of 0.01 N hydrochloric acid, the pH is 6.5, TLC shows no unbound dye.

[0195] Example 7: In each case, 30 ml of a 14 percent by weight crosslinkable PVA solution as per Example 2 (with the acetal from Example 1) are stirred for 1 minute with 5 ml of demineralized water and 5 ml of a 0.5 percent sodium carbonate solution, and a dye as shown in Table 2, dissolved in 1 ml of demineralized water, is then added. After a reaction time of 8 minutes, during which a sample is taken every minute for TLC and the pH slowly drops somewhat, the mixture is neutralized by means of 20 ml of 0.01 N hydrochloric acid. TLC in acetone shows no free dye.

Table 2

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Dye</th>
<th>Amount of dye/mg</th>
<th>pH before addition of dye</th>
<th>pH after a reaction time of 8 minutes</th>
<th>pH after addition of the hydrochloric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a)</td>
<td>Duasyn-Gelb R-GI</td>
<td>60</td>
<td>10.6</td>
<td>9.9</td>
<td>6.2</td>
</tr>
<tr>
<td>7b)</td>
<td>Duasyn-Rot R-F3B</td>
<td>60</td>
<td>10.6</td>
<td>10.1</td>
<td>6.4</td>
</tr>
<tr>
<td>7c)</td>
<td>Duasyn-Blau R-KG</td>
<td>30</td>
<td>10.6</td>
<td>10.0</td>
<td>6.4</td>
</tr>
<tr>
<td>7d)</td>
<td>Duasyn-Grün R-KGB</td>
<td>30</td>
<td>10.6</td>
<td>10.3</td>
<td>6.7</td>
</tr>
<tr>
<td>7e)</td>
<td>Duasyn-Schwarz R-KRL</td>
<td>45</td>
<td>10.7</td>
<td>10.2</td>
<td>6.6</td>
</tr>
<tr>
<td>7f)</td>
<td>Duasyn-Schwarz R-N</td>
<td>30</td>
<td>10.6</td>
<td>10.2</td>
<td>6.5</td>
</tr>
<tr>
<td>7g)</td>
<td>Remazol Brilliantblau B</td>
<td>15</td>
<td>10.8</td>
<td>10.2</td>
<td>6.5</td>
</tr>
<tr>
<td>7h)</td>
<td>Remazol Brilliantblau BB</td>
<td>15</td>
<td>10.5</td>
<td>10.2</td>
<td>6.5</td>
</tr>
<tr>
<td>7i)</td>
<td>Remazol Druckschwarz G</td>
<td>15</td>
<td>10.8</td>
<td>10.2</td>
<td>6.6</td>
</tr>
</tbody>
</table>

[0196] Example 8: In each case, 30 ml of a 15 percent by weight solution of Mowiol 4-88 (PVA from Hoechst AG) are stirred for 1 minute with 5 ml of demineralized water and 5 ml of a 0.5 percent sodium carbonate solution, and, at room temperature, a solution of 15 mg of a dye as shown in Table 3 in 1 ml of water are added. The conversion is monitored by sampling for TLC in acetone.
Example 9: Batches as in Example 8, reaction temperature 50°C; dyes as shown in Table 4.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Dye</th>
<th>TLC results</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a)</td>
<td>Remazol Brilliantblau B</td>
<td>no free dye detectable</td>
</tr>
<tr>
<td>8b)</td>
<td>Remazol Brilliantblau BB</td>
<td>no free dye detectable</td>
</tr>
<tr>
<td>8c)</td>
<td>Remazol Schwarz B</td>
<td>no free dye detectable after 3 minutes</td>
</tr>
</tbody>
</table>

Example 10: 50 ml of a 14 percent by weight crosslinkable PVA solution as per Example 2 (with the acetal from Example 1) (pH 6.2) are stirred for 1 minute with 8 ml of a 0.5 percent sodium carbonate solution (pH 10.8) and then for 3 minutes with a solution of 50 mg of Duasyn-Blau R-KG in 1 ml of water (pH 10.7 after 1 minute; pH 10.8 after 2 minutes). After this time, the mixture is neutralized (pH 7.0) by means of 30 ml of 0.01 N hydrochloric acid. TLC in acetone shows no free dye. The solution is made up to 400 ml twice and subjected to ultrafiltration through a 3 kD membrane (Filtron) in an ultrafiltration cell (Berghof) until no chloride can be detected by argentometry. A further concentration to 33 percent by weight is carried out by vacuum distillation (140 mbar, 40°C) and blowing-in of air.

Example 11: 50 ml of a 14 percent by weight crosslinkable PVA solution as per Example 2 (with the acetal from Example 1) (pH 6.44) are stirred for 1 minute with 8 ml of a 0.5 percent sodium carbonate solution (pH 10.84) and then for 4 minutes with a solution of 100 mg of Duasyn-Flot R-F3B in 1 ml of water (pH 10.6 after 1 minute; pH 10.5 after 2 minutes; pH 10.4 after 3 minutes). After this time, the mixture is neutralized (pH 6.6) by means of 30 ml of 0.01 N hydrochloric acid. TLC in acetone shows no free dye. The solution is made up to 400 ml and subjected to ultrafiltration through a 3 kD membrane (Filtron) in an ultrafiltration cell (Berghof). The mixture is again made up with 400 ml of water, after which chloride is no longer detectable by argentometry, and the mixture is concentrated to 31 % by weight.

Example 12: 200 g of a 14 percent by weight crosslinkable PVA solution as per Example 2 (with the acetal from Example 1) (pH 6.2) are stirred with 30 ml of 0.5 percent sodium carbonate solution (pH 10.94 after 1 minute). A solution of 100 mg of Remazol Schwarz B in 5 ml of water is added, and the mixture is stirred for 12 minutes. During this period, the pH drops continuously from 10.7 (after 1 minute) to 10.2 (after 12 minutes). After only 1 minute, TLC in acetone shows no free dye. After neutralization (pH 7.0) by means of 1 ml of 1 N hydrochloric acid, the batch is mixed with 150 g of water and introduced into an ultrafiltration cell (Berghof) and subjected to ultrafiltration through a 3 kD membrane (Filtron), and washed with a total of 450 ml of water until the sodium chloride content in the eluate is 0.003 percent by weight (determined by argentometry). Further concentration of the solution to 37 percent by weight is carried out by removal of water by distillation at 140 mbar and 40°C with blowing-in of air.

Example 13: 22 percent by weight aqueous solutions of dyes as shown in Table 5 are reacted at room temperature with solutions of aminoacetaldehyde dimethyl acetal (Aldrich) in 2 g of water. The reaction is monitored by TLC in acetone. No free dye is detectable.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Dye</th>
<th>Initial weight of dye/g</th>
<th>Initial weight of water/g</th>
<th>Initial weight of aminoacetaldehyde dimethyl acetal/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>12a)</td>
<td>Remazol Schwarz B</td>
<td>4</td>
<td>14</td>
<td>0.951</td>
</tr>
<tr>
<td>12b)</td>
<td>Remazol Brilliantblau R</td>
<td>4</td>
<td>14</td>
<td>0.966</td>
</tr>
</tbody>
</table>
Table 5 (continued)

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Dye</th>
<th>Initial weight of dye/g</th>
<th>Initial weight of water/g</th>
<th>Initial weight of aminoacetaldheyde dimethyl acetal/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>12c</td>
<td>Duasynt-Blau R-KG</td>
<td>8</td>
<td>10</td>
<td>0.563</td>
</tr>
<tr>
<td>12d</td>
<td>Remazol Goldorange 3G</td>
<td>4</td>
<td>14</td>
<td>0.858</td>
</tr>
<tr>
<td>12e</td>
<td>Duasynt-Rot R-F3B</td>
<td>16</td>
<td>2</td>
<td>0.808</td>
</tr>
<tr>
<td>12f</td>
<td>Remazol Gelb GR</td>
<td>4</td>
<td>14</td>
<td>0.772</td>
</tr>
</tbody>
</table>

[0202] **Example 14:** Analogously to Example 2, 400 g of PVA (Mowiol 4-88) are stirred for 24 hours at 20°C with 40 g of methacylamidoacetaldheyde dimethyl acetal, 7 g of 4-aminobutyraldehyde diethyl acetal, 266.6 g of conc. hydrochloric acid (37 %), 666.6 g of acetic acid and 2666.6 g of water. The pH is adjusted to 3.6 by means of aqueous NaOH, the mixture is subjected to ultrafiltration through a 5 kD membrane and then adjusted to pH 7. Concentration gives a 15.62 % crosslinkable polymer solution having an amine content of 0.1 mmol/g, an acetate content of 2.383 mmol/g and an intrinsic viscosity of 0.339.

[0203] **Example 15:** 200 g of a 16 percent by weight PVA solution as per Example 14 are diluted with 100 g of water, and a solution of 50 mg of Remazol Gelb GR in 2.5 ml of water is slowly added with vigorous stirring. TLC in acetone shows no free dye. The solution is transferred to an ultrafiltration cell (Berghof) and, after making up to 400 ml with water, subjected to ultrafiltration through a 3 kD membrane. The mixture is made up to 200 ml of water and then concentrated to 16 percent by weight. Argentometry shows that the salt content of the eluate is 0.003 percent by weight. Further concentration to 36 percent by weight is carried out by vacuum distillation (140 mbar, 40°C) with blowing-in of air.

[0204] **Example 16:** 200 g of a 16 percent by weight PVA solution as per Example 14 are diluted with 100 g of water, and a solution of 50 mg of Remazol Goldorange 3G in 2.5 ml of water is slowly added with vigorous stirring. TLC in acetone shows no free dye. The solution is transferred to an ultrafiltration cell (Berghof) and, after making up to 400 ml with water, subjected to ultrafiltration through a 3 kD membrane. The mixture is made up to 250 ml of water and then concentrated to a solids content of 20 percent by weight. Argentometry shows that the salt content of the eluate is 0.003 percent by weight. Further concentration to 34 percent by weight is carried out by vacuum distillation (140 mbar, 40°C) with blowing-in of air.

[0205] **Example 17:** 13.987 g of the crosslinkable PVA solution from Example 10 coloured by means of Duasynt-Blau R-KG are stirred with a solution of 13.9 g of Irgacure 2959 (0.3 % based on the polymer) in 0.626 ml of water. The resulting 30 percent PVA solution is transferred into quartz moulds and irradiated for from 5 to 10 seconds with intense UV light (UVA PRINT 300 CM with H-lamp from Hönle, 3200 W, 12 mW/cm², measured with a Hönle-UV-B detector in the wavelength range from 250 to 320 nm) and crosslinked to give a tinted hydrogel. Extraction experiments on 20 lenses in 10 ml of water (1 hour at 121°C) show that, according to the UV-VIS spectrum of the extraction solution, no coloured polymer is extracted from the lenses (the detection limit of the dye by means of the UV-VIS spectrum is approx. 1 ppm).

[0206] **Example 18:** A mixture of 1.475 g of a coloured sol as in Example 17 and 1.474 g of a PVA sol comprising crosslinkable PVA (cf. Example 2) and 0.3 percent by weight of Irgacure 2959 is introduced into moulds and crosslinked as described in Example 17 to give a coloured hydrogel.

[0207] **Example 19:** 5.166 g of a PVA solution as described in Example 11 which has been coloured with Duasynt-Rot R-F3B are stirred with a solution of 4.8 mg of Irgacure 2959 (0.3 % by weight based on the polymer) in 189 mg of water. After the PVA solution has been transferred into moulds and irradiated with UV light, crosslinking is carried out as described in Example 17 to give a coloured hydrogel.

[0208] **Example 20:** 3.973 g of a PVA solution as described in Example 12 which has been coloured with Remazol Schwarz B are stirred with a solution of 4.4 mg of Irgacure 2959 (0.3 % by weight based on the polymer) in 961 mg of water. After the PVA solution has been transferred into moulds and irradiated with UV light, crosslinking is carried out as described in Example 17 to give a coloured hydrogel.

[0209] **Example 21:** A mixture of 1.193 g of a coloured sol as in Example 20 and 1.165 g of a PVA sol comprising crosslinkable PVA (cf. Example 2) and 0.3 percent by weight of Irgacure 2959 is introduced into moulds and crosslinked as described in Example 17 to give a coloured hydrogel.

[0210] **Example 22:** A mixture of 1.292 g of a coloured sol as in Example 19 and 1.236 g of a PVA sol comprising crosslinkable PVA (cf. Example 2) and 0.3 percent by weight of Irgacure 2959 is introduced into moulds and crosslinked as described in Example 17 to give a coloured hydrogel.

[0211] **Example 23:** 7.937 g of a PVA solution as described in Example 15 which has been coloured with Remazol
Gelb GR are stirred with a solution of 8.6 mg of Irgacure 2959 (0.3 % by weight based on the polymer) in 1.651 g of water, transferred into moulds and crosslinked as described in Example 17 to give a coloured hydrogel.

Example 24: 6.503 g of a PVA solution as described in Example 16 which has been coloured with Remazol Goldorange 3G are stirred with a solution of 6.6 mg of Irgacure 2959 (0.3 % by weight based on the polymer) in 0.815 g of water, transferred into moulds and crosslinked as described in Example 17 to give a coloured hydrogel.

Example 25: 5.753 g of a PVA solution as described in Example 12 which has been coloured with Remazol Schwarz B are stirred with a solution of 10.7 mg of Irgacure 2959 (0.5 % by weight based on the polymer) in 1.400 g of water, transferred into moulds and crosslinked as described in Example 17 to give a coloured hydrogel.

Example 26: 7.002 g of a PVA solution as described in Example 12 which has been coloured with Remazol Schwarz B are stirred with a solution of 26.1 mg of Irgacure 2959 (1.0 % by weight based on the polymer) in 1.704 g of water, transferred into moulds and crosslinked as described in Example 17 to give a coloured hydrogel.

Table 6 shows the water content, the transmission, the wavelength and the central thickness of the contact lenses produced in Examples 17 to 26.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Water content a)[%]</th>
<th>Transmission b)[%]</th>
<th>Wavelength [mm]</th>
<th>Central thickness [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>65</td>
<td>62</td>
<td>672</td>
<td>105</td>
</tr>
<tr>
<td>18</td>
<td>66</td>
<td>74</td>
<td>672</td>
<td>95</td>
</tr>
<tr>
<td>19</td>
<td>66</td>
<td>78</td>
<td>553</td>
<td>83</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>65</td>
<td>592</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>65</td>
<td>90</td>
<td>596</td>
<td>65</td>
</tr>
<tr>
<td>22</td>
<td>66</td>
<td>86</td>
<td>553</td>
<td>91</td>
</tr>
<tr>
<td>25</td>
<td>66</td>
<td>66</td>
<td>592</td>
<td>95</td>
</tr>
<tr>
<td>26</td>
<td>65</td>
<td>64</td>
<td>592</td>
<td>105</td>
</tr>
</tbody>
</table>

a) ± 2 %

b) ± 5 %

Example 27: (Comparative example - untinted lenses)
A PVA solution as in Example 2 containing the acetal as in Example 1 was mixed with Irgacure 2959 and crosslinked analogously to Example 17. Water content 67 ± 2 %, transmission 400-800 nm > 90 %.

Claims

1. A process for the production of crosslinked tinted mouldings, which comprises the following steps:

 a) preparation of an aqueous solution of a water-soluble crosslinkable tinted polymer comprising units containing a crosslinkable group and units containing a bonded reactive dye radical,

 b) introduction of the resultant solution into a mould,

 c) initiation of the crosslinking in water or in an organic solvent in which the crosslinkable tinted polymer is dissolved, and

 d) opening of the mould so that the moulding can be removed.

2. A process according to claim 1, wherein the mouldings are contact lenses.

3. A process according to claims 1 and 2, wherein the water-soluble crosslinkable tinted polymer of step a) is derived from a starting polymer containing, on or in the polymer chain, a functional group which can react with a reactive dye.

4. A process according to claim 3, wherein the water-soluble crosslinkable tinted polymer of step a) is derived from polyvinyl alcohol.
5. A process according to claim 3, wherein the water-soluble crosslinkable tinted polymer of step a) comprises units in the polymer chain which are derived from the following monomer units: a vinylacrylam, vinyl alcohol, if desired a vinyl (C₁-C₇-alkane)carboxylate, a vinylic crosslinking agent and, if desired, a vinylic photoinitiator.

6. A process according to claim 5, wherein the polymer is a terpolymer of vinylpyrrolidone, vinyl acetate and vinyl alcohol.

7. A process according to claim 1, wherein the aqueous solution of the water-soluble crosslinkable tinted polymer is free from undesired constituents, such as from monomeric, oligomeric or polymeric starting compounds used for the preparation of this polymer, or from by-products formed during the preparation of this polymer, or from impurities present in the reactive dyes.

8. A process according to claim 1, wherein the aqueous solution of the water-soluble crosslinkable tinted polymer is used without addition of a comonomer, in particular a vinylic comonomer.

9. A process according to claim 1, wherein an initiator for the crosslinking is added to the solution of the water-soluble, crosslinkable tinted polymer.

10. A process according to claim 1, wherein the crosslinking is not followed by extraction in order to remove undesired constituents.

11. A process according to claim 1, wherein the reactive dye is covalently bonded to the polymer backbone either directly via an ether, thioether, amino or amido group or via a bivalent or trivalent bridge.

12. A process according to claim 11, wherein the bridge is a trivalent bridge derived from an ω-amino-C₁-C₁₂alkylaldehyde acetal.

13. A process according to claim 1, which comprises the following steps:

 a) preparation of an aqueous solution of a water-soluble crosslinkable tinted polymer comprising units containing a crosslinkable group and units containing a reactive dye radical covalently bonded to the polymer backbone either directly or via a bridge, which solution is free from undesired constituents, such as from monomeric, oligomeric or polymeric starting compounds used for the preparation of this polymer or from by-products formed during the preparation of this polymer, or from impurities present in the reactive dyes, and is used without addition of a comonomer,

 b) introduction of the resultant solution into a mould,

 c) initiation of the crosslinking, and

 d) opening of the mould so that the moulding can be removed.

14. A process according to claim 13, wherein the mouldings are tinted contact lenses.

15. A process according to claim 14 for the production of a contact lens, wherein the aqueous solution is prepared using pure water or an artificial, preferably buffered, tear fluid.

16. A process according to claim 14 for the production of a tinted contact lens, wherein a crosslinking initiator is added to the solution, and the crosslinking takes place by photocrosslinking.

17. A tinted moulding, in particular a tinted contact lens, obtainable by a process according to claim 1.

18. A tinted contact lens according to claim 17, which is suitable for its intended use without extraction.

19. A tinted contact lens obtainable according to any of claims 14 to 16, which is suitable for its intended use without extraction.

20. A water-soluble crosslinkable tinted polymer comprising units containing a crosslinkable group of the formula I
in which \(R \) is alkylene having up to 12 carbon atoms, \(R_1 \) is hydrogen or \(C_1-C_7 \)-alkyl, and \(R_2 \) is an olefinically unsaturated, electron-withdrawing, copolymerizable radical, preferably having up to 25 carbon atoms, and \(R_3 \) is hydrogen, a \(C_1-C_3 \)-alkyl group or a cycloalkyl group, and comprising units containing a covalently bonded reactive dye, where the covalent bond to the polymer backbone is, in particular, either direct via an ether, thioether, amino, imino or amido group or via a bivalent or trivalent bridge.

21. A crosslinkable tinted polymer according to claim 20, in which the units containing a reactive dye conform to the formula IV, IVA, IVB or IVC

in which:

\(RF' \) is a radical of the formula

\[
\begin{align*}
\text{H} \\
\text{CH}_2 \text{C} \text{R}_{14} \text{D} \\
\text{U}
\end{align*}
\]
22. A crosslinkable tinted polymer according to claim 21, wherein \(R_1 \) and \(R_3 \) are hydrogen, \(R \) is \(C_1-C_4 \) alkyl, and \(Y \) is \(-O-\) or \(-N(R_1)\).

23. A crosslinkable tinted polymer according to claim 20, wherein the covalently bonded reactive dye is derived from a reactive dye which conforms to the general formula XVII or XVIII

\[
\begin{align*}
D \cdot R_{14} \cdot C = CH_2 & \quad \text{XVII} \quad \text{or} \quad D \cdot R_{14} \cdot CH - CH_2 & \quad \text{XVIII} \\
U & \quad U & \quad V
\end{align*}
\]

in which

- \(D \) is a radical of an organic dye,
- \(R_{14} \) is a divalent, organic, electron-withdrawing group,
- \(U \) is hydrogen or halogen, and
- \(V \) is a leaving group selected from the group consisting of \(-\text{Cl}, -\text{Br}, -\text{OH}, \text{di}((C_1-C_7)\text{-alkyl})\text{amino},
\]

\[
\begin{array}{c}
\text{Cl}^- \quad \text{OCH}_2
\end{array}
\]

\(-\text{SO}_2\)-phenyl, \(-\text{OSO}_2\)-, \(-\text{Z}^+\), in which \(Z^+ \) is a cation, \(-\text{OSO}_2R_{15}\) and \(-\text{OSO}_2^2R_{15}\), in which \(R_{15} \) is in each case alkyl, aryl, aralkyl or alkaryl,

24. A crosslinkable tinted polymer according to claim 23, wherein \(D \) is the radical of an azo (monoazo or disazo), phthalocyanine, azomethine, nitro, metal complex or anthraquinone dye.

25. A crosslinkable tinted polymer according to claim 23, wherein \(R_{14} \) is \(-\text{CO}_2\)-, \(-\text{SO}_2\)-, \(-\text{SO}_2^-\)-, \(-\text{SO}_3^-\)-, \(-\text{NHCO}_3\)- or \(-\text{NHSO}_3^-\)-.

26. A crosslinkable tinted polymer according to claim 21, wherein the reactive dye radical \(RF^1 \) is derived from

Remazol Schwarz B (Reactive Black 5),
Remazol Brilliantblau R (Reactive Blue 19, Duasyblau R-R),
Remazol Türkisblau G (Reactive Blue 21, Duasyblau R-KG),
Remazol Goldorange 3G (Reactive Orange 78),
Remazol Brilliantrot F1B (Reactive Red 180, Duasyrot R-F3B),
Remazol Gelb GR (Reactive Yellow 15),
Remazol Brilliantgelb GL (Reactive Yellow 37, Duasygelb R-GL),
Duasyn-Gelb R-R (mixture of Reactive Yellow 17 and Reactive Yellow 15),
Remazol Brilliantgrün 6B (Reactive Blue 36, Duasygrün R-K6B),
Remazol Schwarz RL (Reactive Black 31, Duasy-Schwarz R-KFL),
Duasyn-Schwarz R-N (mixture of Reactive Black 5 and Reactive Orange 72),
Remazol Brilliantorange 3R (Reactive Orange 16),
Remazol Brilliantblau B,
Remazol Brilliantblau BB,
27. A crosslinkable tinted polymer according to claim 20, which is a derivative of a polyvinyl alcohol having a mean molecular weight of at least 2000 which comprises from 0.5 to 80 %, based on the number of hydroxyl groups in the polyvinyl alcohol, of crosslinkable units of the formula I

![Formula I](image)

in which R is alkylene having up to 12 carbon atoms, Rₙ is hydrogen or alkyl having up to 7 carbon atoms, and Rₚ is an olefinically unsaturated, electron-withdrawing, copolymerizable radical, preferably having up to 25 carbon atoms, and Rₗ is hydrogen, a C₁₋₆alkyl group or a cycloalkyl group.

28. A crosslinkable tinted polymer according to claim 27, in which Rₚ is an olefinically unsaturated acyl radical of the formula Rₚ=CO₂, in which Rₚ₉ is an olefinically unsaturated, copolymerizable radical having 2 to 24 carbon atoms, preferably having 2 to 8 carbon atoms, particularly preferably having 2 to 4 carbon atoms.

29. A crosslinkable tinted polymer according to claim 28, in which Rₚ₉ is alkenyl having 2 to 8 carbon atoms.

30. A crosslinkable tinted polymer according to claim 27, in which the radical Rₚ is a radical of the formula II

![Formula II](image)

in which q is zero or one, and R₂ₙ and Rₚ, independently of one another, are alkylene having 2 to 8 carbon atoms, arylenene having 6 to 12 carbon atoms, a saturated bivalent cycloaliphatic group having 6 to 10 carbon atoms, arylenalkylene or alkylenearylene having 7 to 14 carbon atoms or arylenalkylenearylene having 13 to 16 carbon atoms, and in which Rₚₗ is an olefinically unsaturated, copolymerizable radical having 2 to 24 carbon atoms, preferably having 2 to 8 carbon atoms, particularly preferably having 2 to 4 carbon atoms.

31. A crosslinkable tinted polymer according to claim 27, which is a derivative of a polyvinyl alcohol having a molecular weight of at least 2000 which comprises from 0.5 to 80 %, based on the number of hydroxyl groups in the polyvinyl alcohol, of units of the formula III

![Formula III](image)
in which R is alkylene having up to 12 carbon atoms, R₁ is hydrogen or alkyl having up to 7 carbon atoms, p has the value zero or one, q has the value zero or one, R₉₀ is an olefinically unsaturated, copolymerizable radical having 2 to 8 carbon atoms, and R₅ and R₆ independently of one another, are alkylene having 2 to 8 carbon atoms, arylenec having 6 to 12 carbon atoms, a saturated bivalent cycloaliphatic group having 6 to 10 carbon atoms, arylenalkylene or arylenearylene having 7 to 14 carbon atoms or arylenalkylenearylene having 13 to 16 carbon atoms.

32. A crosslinkable tinted polymer according to claim 31, in which R is alkylene having up to 6 carbon atoms, p is zero and R₉₀ is alkényl having 2 to 6 carbon atoms.

33. A crosslinkable tinted polymer according to claim 31, in which R is alkylene having up to 6 carbon atoms, p is one, q is zero, R₅ is alkylene having 2 to 6 carbon atoms, and R₉₀ is alkényl having 2 to 6 carbon atoms.

34. A crosslinkable tinted polymer according to claim 31, in which R is alkylene having up to 6 carbon atoms, p is one, q is one, R₅ is alkylene having 2 to 6 carbon atoms, phenylene, unsubstituted or substituted by alkyl having up to 7 carbon atoms, cyclohexylene or cyclohexylene(C₆-C₇-alkylene), unsubstituted or substituted by C₁-C₇-alkyl, phenylene(C₆-C₇-alkylene)phenylene or phenylene(C₆-C₇-alkylene)phenylene, R₅ is alkylene having 2 to 6 carbon atoms, and R₉₀ is alkényl having 2 to 8 carbon atoms.

35. A crosslinkable tinted polymer according to claim 27, which is a derivative of a polyvinyl alcohol having a molecular weight of at least 2000 which comprises from 1 to 15 %, based on the number of hydroxyl groups in the polyvinyl alcohol, of units of the formula I.

36. A compound of the formula XI

\[
\text{R'} \quad \begin{array}{c}
\text{O} \\
\text{R} \\
\text{R'}
\end{array} \quad (\text{XI})
\]

\[
\begin{array}{c}
\text{R} \\
\text{N-R₁} \\
\text{RF’}
\end{array}
\]

in which the symbols R' and R’ are hydrogen or C₁-C₇-alkyl or C₁-C₇-alkancyl, and the other symbols R₃, R, R₁ and RF’ are as defined in claim 21.

37. A crosslinked water-insoluble tinted polymer obtainable by photocrosslinking a crosslinkable tinted polymer according to claim 20 in the presence or absence of an additional vinylic comonomer.

38. A crosslinked tinted polymer according to claim 37, obtained by photocrosslinking a crosslinkable tinted polymer according to claim 20 in pure form, in the presence or absence of an additional vinylic comonomer.

39. A crosslinked tinted polymer according to claim 38, where the crosslinkable tinted polymer is converted into pure form by single or repeated ultrafiltration.

40. A crosslinked tinted polymer according to claim 37, obtainable by photocrosslinking a crosslinkable tinted polymer according to claim 20 in the absence of an additional vinylic comonomer.

41. A crosslinked tinted polymer according to claim 37, obtainable by photocrosslinking a crosslinkable tinted polymer according to claim 20 in the presence of from 0.5 to 80 units, in particular from 1 to 30 units, particularly preferably from 5 to 20 units, of an additional vinylic comonomer per unit of the formula I.

42. A process for the preparation of a crosslinked tinted polymer according to claim 37, which comprises photo-
EP 0 807 268 B1

crosslinking a crosslinkable tinted polymer according to claim 20 in the presence or absence of an additional vinylic comonomer.

43. A process according to claim 42, wherein the crosslinkable tinted polymer is employed in pure form.

44. A process according to claim 43, wherein the crosslinkable tinted polymer is converted into pure form by single or repeated ultrafiltration.

45. A process according to claim 42, which is carried out in solution, in particular in aqueous solution.

46. A tinted moulding essentially comprising a crosslinked tinted polymer according to claim 37.

47. A tinted moulding according to claim 46, which is a tinted contact lens.

48. A process for the production of a tinted moulding according to claim 46, which comprises photocrosslinking a crosslinkable tinted polymer according to claim 20 in a closed mould in the presence or absence of an additional vinylic comonomer.

49. A process for the production of a tinted contact lens according to claim 47, which comprises photocrosslinking a crosslinkable tinted polymer according to claim 20 in a closed contact-lens mould by the full-mould process in the presence or absence of an additional vinylic comonomer.

Patentansprüche

1. Verfahren zur Herstellung von vernetzten getönten Formteilen, welches die folgenden Schritte umfasst:
 a) Herstellung einer wässrigen Lösung eines wasserlöslichen vernetzbaren getönten Polymers, das Einheiten, die eine vernetzbare Gruppe enthalten, und Einheiten, die einen gebundenen Reaktivfarbstoffrest enthalten, umfasst.
 b) Einführung der resultierenden Lösung in eine Form,
 c) Auslösung der Vernetzung in Wasser oder in einem organischen Lösungsmittel, in dem das vernetzbare getönte Polymer gelöst ist, und
 d) Öffnen der Form, so daß das Formteil entnommen werden kann.

2. Verfahren gemäß Anspruch 1, worin die Formteile Kontaktlinsen sind.

3. Verfahren gemäß Ansprüchen 1 und 2, worin das wasserlösliche vernetzbare getönte Polymer von Schritt a) von einem Ausgangspolymer abgeleitet ist, das an oder in der Polymerkette eine funktionelle Gruppe enthält, die mit einem Reaktivfarbstoff reagieren kann.

7. Verfahren gemäß Anspruch 1, worin die wässrige Lösung des wasserlöslichen vernetzbaren getönten Polymers frei ist von unerwünschten Bestandteilen, so wie von monomeren, oligomeren oder polymeren Ausgangsverbindungen, die für die Herstellung dieses Polymers verwendet werden, oder von Nebenprodukten, die während der
Herstellung dieses Polymers gebildet werden, oder von Verunreinigungen, die in den Reaktivfarbstoffen vorliegen.

8. Verfahren gemäß Anspruch 1, worin die wässrige Lösung des wasserlöslichen vernetzbaren getönten Polymers ohne Zugabe eines Comonomers, insbesondere eines vinylischen Comonomers, verwendet wird.

9. Verfahren gemäß Anspruch 1, worin der Lösung des wasserlöslichen, vernetzbaren getönten Polymers ein Initiator für die Vernetzung hinzugefügt wird.

10. Verfahren gemäß Anspruch 1, worin der Vernetzung keine Extraktion zur Entfernung unerwünschter Bestandteile folgt.

11. Verfahren gemäß Anspruch 1, worin der Reaktivfarbstoff entweder direkt über eine Ether-, Thioether-, Amino- oder Amidogruppe oder über eine bivalente oder trivalente Brücke kovalent an das Polymergrundgerüst gebunden ist.

12. Verfahren gemäß Anspruch 11, worin die Brücke eine trivalente Brücke ist, die von einem α-Amino-C₁₃-C₁₃-alkyldihyacetal abgeleitet ist.

13. Verfahren gemäß Anspruch 1, das die folgenden Schritte umfasst:

 a) Herstellung einer wässrigen Lösung eines wasserlöslichen vernetzbaren getönten Polymers, das Einheiten umfasst, die eine vernetzbare Gruppe enthalten, und Einheiten, die einen Reaktivfarbstoffrest enthalten, der entweder direkt oder über eine Brücke kovalent an das Polymergrundgerüst gebunden ist, wobei diese Lösung von unerwünschten Bestandteilen, so wie von monomeren, oligomeren oder polymeren Ausgangsverbindungen, die für die Herstellung dieses Polymers verwendet werden, oder von Nebenprodukten, die während der Herstellung dieses Polymers gebildet werden, oder von Verunreinigungen, die in Reaktivfarbstoffen vorliegen, frei ist und ohne Zugabe eines Comonomers verwendet wird.

 b) Einführung der resultierenden Lösung in eine Form

 c) Auslösung der Vernetzung, und

 d) Öffnen der Form, so daß das Formteil entnommen werden kann.

14. Verfahren gemäß Anspruch 13, worin die Formteile getönte Kontaktlinsen sind.

15. Verfahren gemäß Anspruch 14 für die Herstellung einer Kontaktlinse, worin die wässrige Lösung unter Verwendung von reinem Wasser oder einer künstlichen, vorzugsweise gepufferten, Tränenflüssigkeit hergestellt wird.

16. Verfahren gemäß Anspruch 14 für die Herstellung einer getönten Kontaktlinse, worin der Lösung ein Vernetzungsinitiator zugegeben wird, und die Vernetzung durch Photovernetzung stattfindet.

17. Getöntes Formteil, insbesondere eine getönte Kontaktlinse, die durch ein Verfahren gemäß Anspruch 1 erhalten werden kann.

18. Getönte Kontaktlinse gemäß Anspruch 17, die für ihre beabsichtigte Verwendung ohne Extraktion geeignet ist.

19. Getönte Kontaktlinse, die gemäß einem der Ansprüche 14 bis 16 erhalten werden kann, die für ihre beabsichtigte Verwendung ohne Extraktion geeignet ist.

20. Wasserlösliches vernetzbares getöntes Polymer, das Einheiten umfasst, die eine vernetzbare Gruppe der Formel I
enthalten, in der R Alkylen mit bis zu 12 Kohlenstoffatomen ist. R₁ Wasserstoff oder C₁-C₇-Alkyl ist, und R₂ ein olefinisch ungesättigter, elektronenziehender, copolymerisierbarer Rest ist, der vorzugsweise bis zu 25 Kohlenstoffatome hat, und R₃ Wasserstoff, eine C₁-C₇-Alkylgruppe oder eine Cycloalkylgruppe ist, und das Einheiten umfasst, die einen kovalent gebundenen Reaktivfarbstoff enthalten, wobei die kovalente Bindung zu dem Polymergrundgerüst insbesondere entweder direkt ist über eine Ether-, Thioether-, Amino-, Imino- oder Amidogruppe, oder über eine bivalente oder trivalente Brücke.

21. Ein vernetzbares getöntes Polymer gemäß Anspruch 20, in dem die Einheiten, die einen Reaktivfarbstoff enthalten, der Formel IV, IVA, IVB oder IVC

entsprechen, worin:

RF⁻ ein Rest der Formel
EP 0 807 268 B1

D ein Rest eines organischen Farbstoffs ist,
R_{14} eine divalente elektronenziehende Gruppe ist,
U Wasserstoff oder Halogen ist,
R ein divalenter Rest eines C_{1}-C_{12}-Alkans ist,
R_{1} Wasserstoff oder C_{1}-C_{4}-Alkyl ist,
R_{3} Wasserstoff, C_{1}-C_{6}-Alkyl oder Cycloalkyl ist, und
Y =O- oder -N(R_{1})- ist.

22. Vernetzbares getöntes Polymer gemäß Anspruch 21, worin R_{1} und R_{3} Wasserstoff sind, R_{1}C_{1}-C_{4}-Alkyle ist, und
RF und Y wie oben definiert sind.

23. Vernetzbares getöntes Polymer gemäß Anspruch 20, worin der kovalent gebundene Reaktivfarbstoff von einem
Reaktivfarbstoff abgelöst ist, der der allgemeinen Formel XVII oder XVIII entspricht, worin

\[
D - R_{14} - C = CH_{2} \quad \text{XVII} \quad \text{oder} \quad D - R_{14} - CH - CH_{2} \quad \text{XVIII}
\]

U

V

entspricht, worin

D der Rest eines organischen Farbstoffs ist,
R_{14} eine divalente, organische, elektronenziehende Gruppe ist,
U Wasserstoff oder Halogen ist, und
V eine Abgangsgruppe ist, die aus der Gruppe ausgewählt ist, die aus -Cl, -Br, -OH, Di(C_{1}-C_{7}-alkyl)amino,
-SO_{2}-phenyl, -OSO_{2}-Z+, worin Z+ ein Kation ist, -OSO_{2}R_{15} und -OSO_{2}R_{15}, in denen R_{15} jeweils Alkyl, Aryl,
Aralkyl oder Alkaryl ist, besteht,

\[
\text{Cl} \quad \text{Cl}
\]

oder von einem Gemisch von Reaktivfarbstoffen der obigen Formeln XVII und XVIII.

24. Vernetzbares getöntes Polymer gemäß Anspruch 23, worin D der Rest eines Azo-(Monoazo- oder Diazo-), Phyto-
locyanin-, Azomethin-, Nitro-, Metallkomplexe- oder Anthrochinonfarbstoffs ist.

25. Vernetzbares getöntes Polymer gemäß Anspruch 23, worin R_{14} =SO_{2}-, -SO_{2}-, -SO_{2}-, -NHCO- oder -NHSO_{2}- ist.

26. Vernetzbares getöntes Polymer gemäß Anspruch 21, worin der Reaktivfarbstoffrest RF abgelöst ist von

Remazol Schwarz B (Reactive Black 5),
Remazol Brillantblau R (Reactive Blue 19, Duasyn-Blau R-R),
Remazol Türkisblau G (Reactive Blue 21, Duasyn-Blau R-KG),
Remazol Goldorange 3G (Reactive Orange 78),
Remazol Blaunrot F3B (Reactive Red 180, Duasyn-Rot R-F3B),
Remazol Gelb GR (Reactive Yellow 15),
Remazol Blaunrot gelb GL (Reactive Yellow 37, Duasyn-Gelb R-GL),
Duasyn-Gelb R-R (Gemisch aus Reactive Yellow 17 und Reactive Yellow 15),
Remazol Blaunrotgrün 6B (Reactive Blue 38, Duasyn-Grün R-K6B),
Remazol Schwarz RL (Reactive Black 31, Duasyn-Schwarz R-KFL),
Duasyn-Schwarz R-N (Gemisch aus Reactive Black 5 und Reactive Orange 72),
Remazol Blaunrotorange 3R (Reactive Orange 16).
27. Vernetzbares getöntes Polymer gemäß Anspruch 20, welches ein Derivat eines Polyvinylalkohols mit einem mittleren Molekulargewicht von wenigstens 2000 ist, das, bezogen auf die Anzahl an Hydroxygruppen im Polyvinylalkohol, 0,5 bis 80% vernetzbare Einheiten der Formel I

\[
\begin{align*}
\text{CH} & \quad \text{R}_3 \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{O} & \quad \text{C} \\
\text{O} & \quad \text{N} \\
\text{R} & \quad \text{R}_1 \\
& \quad \text{R}_2
\end{align*}
\]

umfasst, in der R Alkyle mit bis zu 12 Kohlenstoffatomen ist, R₁ Wasserstoff oder Alkyl mit bis zu 7 Kohlenstoffatomen ist, und R₂ ein olefinisch ungesättigter, elektronenziehender, copolymerisierbarer Rest, vorzugsweise mit bis zu 25 Kohlenstoffatomen, ist, und R₃ Wasserstoff, eine C₇-C₂₀-Alkylgruppe oder eine Cycloalkylgruppe ist.

28. Vernetzbares getöntes Polymer gemäß Anspruch 27, in dem R₂ ein olefinisch ungesättigter Acylrest der Formel R₅⁰-CO- ist, in der R₃⁰ ein olefinisch ungesättigter, copolymerisierbarer Rest mit 2 bis 24 Kohlenstoffatomen, vorzugsweise mit 2 bis 8 Kohlenstoffatomen, besonders bevorzugt mit 2 bis 4 Kohlenstoffatomen ist.

29. Vernetzbares getöntes Polymer gemäß Anspruch 28, in dem R₃⁰ Alkenyl mit 2 bis 8 Kohlenstoffatomen ist.

30. Vernetzbares getöntes Polymer gemäß Anspruch 27, in dem der Rest R₂ ein Rest der Formel II

\[
\text{CO-NH-(R}_4\text{-NH-CO-O)}_q\text{-R}_5\text{-O-CO-R}_3⁰
\]

ist, in der q null oder eins ist, und R₄ und R₅ unabhängig voneinander, Alkyle mit 2 bis 8 Kohlenstoffatomen, Arylen mit 6 bis 12 Kohlenstoffatomen, eine gesättigte bivalente cycloaliphatische Gruppe mit 6 bis 10 Kohlenstoffatomen, Arylenalkyle oder Alkylarylen mit 7 bis 14 Kohlenstoffatomen oder Arylenalkylaryl mit 13 bis 16 Kohlenstoffatomen ist, und in der R₅⁰ ein olefinisch ungesättigter, copolymerisierbarer Rest mit 2 bis 24 Kohlenstoffatomen, vorzugsweise mit 2 bis 8 Kohlenstoffatomen, besonders bevorzugt mit 2 bis 4 Kohlenstoffatomen ist.

31. Vernetzbares getöntes Polymer gemäß Anspruch 27, welches ein Derivat eines Polyvinylalkohols mit einem Molekulargewicht von wenigstens 2000 ist, das, bezogen auf die Anzahl an Hydroxygruppen in dem Polyvinylalkohol, 0,5 bis 80% Einheiten der Formel III
umfasst, in der R Alkyle mit bis zu 12 Kohlenstoffatomen ist, R_1 Wasserstoff oder Alkyl mit bis zu 7 Kohlenstoffatomen ist, p den Wert null oder eins hat, q den Wert null oder eins hat, R_{30} ein olefinisch ungesättigter, copolymerisierbarer Rest mit 2 bis 8 Kohlenstoffatomen ist, und R_4 und R_5, unabhängig voneinander, Alkyle mit 2 bis 8 Kohlenstoffatomen, Arylen mit 6 bis 12 Kohlenstoffatomen, eine gesättigte bivalente cycloaliphatische Gruppe mit 6 bis 10 Kohlenstoffatomen, Arylalkyle oder Alkylarylen mit 7 bis 14 Kohlenstoffatomen oder Arylalkyle mit 13 bis 16 Kohlenstoffatomen sind.

32. Vernetzbares getöntes Polymer gemäß Anspruch 31, in dem R Alkyle mit bis zu 6 Kohlenstoffatomen ist, p null ist und R_{30} Alkyle mit 2 bis 8 Kohlenstoffatomen ist.

33. Vernetzbares getöntes Polymer gemäß Anspruch 31, in dem R Alkyle mit bis zu 6 Kohlenstoffatomen ist, p eins ist, q null ist, R_5 Alkyle mit 2 bis 6 Kohlenstoffatomen ist, und R_{30} Alkyle mit 2 bis 8 Kohlenstoffatomen ist.

34. Vernetzbares getöntes Polymer gemäß Anspruch 31, in dem R Alkyle mit bis zu 6 Kohlenstoffatomen ist, p eins ist, q eins ist, R_4 Alkyle mit 2 bis 6 Kohlenstoffatomen, Phenyle, unsubstituiert oder substituiert durch Alkyl mit bis zu 7 Kohlenstoffatomen, Cyclohexyle oder Cyclohexyle(C_1-C_7-alkyle), unsubstituiert oder substituiert durch C_1-C_7-Alkyle, Phenyle(C_1-C_7-alkyle), (C_1-C_7-alkyle)phenyle oder Phenyle(C_1-C_7-alkyle)phenyle ist, R_5 Alkyle mit 2 bis 6 Kohlenstoffatomen ist, und R_{30} Alkyle mit 2 bis 8 Kohlenstoffatomen ist.

35. Vernetzbares getöntes Polymer gemäß Anspruch 27, welches ein Derivat eines Polyvinylalkohols mit einem Molekulargewicht von wenigstens 2000 ist, das, bezogen auf die Anzahl an Hydroxygruppen in dem Polyvinylalkohol, 1 bis 15% Einheiten der Formel I umfasst.

36. Verbindung der Formel XI

in der die Symbole R^1 und R^2 Wasserstoff oder C_1-C_7-Alkyl oder C_1-C_7-Alkanoyl sind, und die anderen Symbole R_3, R, R_4 und RF wie in Anspruch 21 definiert sind.

37. Vernetztes wasserunlösliches getöntes Polymer, das durch Photovernetzung eines vernetzbaren getönten Polymers gemäß Anspruch 20 in Gegenwart oder Abwesenheit eines zusätzlichen vinylischen Comonomers erhalten werden kann.
Revisions

1. Un procédé de production de moulages teintés, récuités, comprenant les étapes suivantes:
 a) la préparation d’une solution aqueuse d’un polymère teinté, réticulable, soluble dans l’eau comprenant des unités contenant un groupe réticulable et des unités contenant un colorant réactif lié,
 b) l’introduction de la solution résultante dans un moule,
 c) l’initiation de la réticulation dans de l’eau ou dans un solvant organique dans lequel le polymère teinté, réticulable est dissous, et
 d) l’ouverture du moule afin de pouvoir retirer le moulage.

2. Un procédé selon la revendication 1, dans lequel les moulages sont des lentilles de contact.

3. Un procédé selon les revendications 1 et 2, dans lequel le polymère teinté, réticulable, soluble dans l’eau de l’étape a) est dérivé d’un polymère de départ contenant, sur ou dans la chaîne polymère, un groupe fonctionnel qui peut réagir avec un colorant réactif.
4. Un procédé selon la revendication 3, dans lequel le polymère teinté, réticulable, soluble dans l'eau de l'étape a) est dérivé d'un alcool polyvinylique.

5. Un procédé selon la revendication 3, dans lequel le polymère teinté, réticulable, soluble dans l'eau de l'étape a) comprend des unités dans la chaîne polymère qui sont dérivées des unités monomères suivantes: un vinylactame, un alcool vinyle, si nécessaire, un (C₁₋₇-alcane)carboxylate de vinyle, un agent de réticulation vinyle et, si nécessaire, un photoinitiateur vinyle.

6. Un procédé selon la revendication 5, dans lequel le polymère est un terpolymère de la vinylpyrrolidone, de l'acétate de vinyle et de l'alcool vinyle.

7. Un procédé selon la revendication 1, dans lequel la solution aqueuse du polymère teinté, réticulable, soluble dans l'eau est exempte de composants indésirables tels que des composés de départ monomères, oligomères ou polymères utilisés pour la préparation de ce polymère ou des sous-produits formés pendant la préparation de ce polymère, ou des impuretés présentes dans les colorants réactifs.

8. Un procédé selon la revendication 1, dans lequel la solution aqueuse du polymère teinté, réticulable, soluble dans l'eau est utilisée sans addition d'un comonomère, en particulier d'un comonomère vinyle.

9. Un procédé selon la revendication 1, dans lequel un initiateur de réticulation est ajouté à la solution du polymère teinté, réticulable, soluble dans l'eau.

10. Un procédé selon la revendication 1, dans lequel la réticulation n'est pas suivie d'une extraction pour retirer les composants indésirables.

11. Un procédé selon la revendication 1, dans lequel le colorant réactif est lié par covalence à l'ossature du polymère soit directement via un groupe éther, thio-éther, amino ou amido ou bien via un pont bivalent ou trivalent.

12. Un procédé selon la revendication 11, dans lequel le pont est un pont trivalent dérivé du α-amino-C₁₋₇-alkylaldéhyde-acétal.

13. Un procédé selon la revendication 1, qui comprend les étapes suivantes:

 a) la préparation d'une solution aqueuse d'un polymère teinté, réticulable, soluble dans l'eau comprenant des unités contenant un groupe réticulable et des unités contenant un colorant réactif lié par covalence à l'ossature du polymère soit directement ou bien via un pont, ladite solution est exempte de composants indésirables tels que des composés de départ monomères, oligomères ou polymères utilisés pour la préparation de ce polymère ou de sous-produits formés pendant la préparation de ce polymère, ou des impuretés présentes dans les colorants réactifs, et est utilisée sans addition d'un comonomère,

 b) l'introduction de la solution résultante dans un moule,

 c) l'initiation de la réticulation, et

 d) l'ouverture du moule afin de pouvoir retirer le moulage.

14. Un procédé selon la revendication 13, dans lequel les moulages sont des lentilles de contact teintées.

15. Un procédé selon la revendication 14, pour la production d'une lentille de contact, dans lequel la solution aqueuse est préparée en utilisant de l'eau pure ou un liquide lacrymal artificiel, de préférence tamponné.

16. Un procédé selon la revendication 14, pour la production d'une lentille de contact teintée, dans lequel l'initiateur de réticulation est ajouté à la solution et la réticulation est effectuée par photoréticulation.

17. Un moulage teinté, en particulier une lentille de contact teintée, pouvant être obtenu(e) par un procédé selon la revendication 1.

18. Une lentille de contact teintée selon la revendication 17, qui est appropriée pour son utilisation prévue sans ex-
19. Une lentille de contact teintée pouvant être obtenue selon l'une quelconque des revendications 14 à 16, où est appropriée pour son utilisation prévue sans extraction.

20. Un polymère teinté, réticulable, soluble dans l'eau comprenant des unités contenant un groupe réticulable de formule I

\[
\begin{align*}
\text{CH} & \quad \text{CH}_2 \\
\text{R}_3 & \quad \text{O} \\
\text{C} & \quad \text{O} \\
\text{R} & \quad \text{N} \\
\text{R}_1 & \quad \text{R}_2
\end{align*}
\]

(I)

où \(R \) signifie un groupe alkylène ayant jusqu'à 12 atomes de carbone, \(R_3 \) signifie l'hydrogène ou un groupe \(C_1 \)-\(C_2 \)-alkyle, et \(R_2 \) signifie un groupe copolymérisable, fixant les électrons, oléfiniquement insaturé, ayant de préférence jusqu'à 25 atomes de carbone, et \(R_3 \) signifie l'hydrogène, un groupe \(C_1 \)-\(C_2 \)-alkyle ou un groupe cycloalkyle et comprenant des unités contenant un colorant réactif lié par covalence, où la liaison covalente à l'ossature du polymère est en particulier soit directe via un groupe éther, thioéther, amino, imino ou amido ou bien via un pont bivalents ou trivalents.

21. Un polymère teinté, réticulable selon la revendication 20, dans lequel les unités contenant un colorant réactif sont conformes à la formule IV, IVA, IVB ou IVC

\[
\begin{align*}
\text{CH}_2 & \quad \text{C} \\
\text{C} & \quad \text{O} \\
\text{O-} & \quad \text{Y-} \\
\text{RF} & \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{N} & \quad \text{RF}'
\end{align*}
\]

(IV)

\[
\begin{align*}
\text{CH}_2 & \quad \text{CH}_2 \\
\text{N-} & \quad \text{RF}'
\end{align*}
\]

(IVA)

\[
\begin{align*}
\text{CH} & \quad \text{CH}_2 \\
\text{C} & \quad \text{O} \\
\text{R} & \quad \text{N-R}_1 \\
\text{RF}' & \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{R}_3 & \quad \text{O}
\end{align*}
\]

(IVB)

\[
\begin{align*}
\text{CH}_2 & \quad \text{CH}_2 \\
\text{O} & \quad \text{RF}'
\end{align*}
\]

(IVC)

où
EP 0 807 268 B1

R^P signifie un groupe de formule

\[\text{H} \quad \text{CH}_2 \quad \text{C} = \text{R}_{14} - \text{D} \quad \text{U} \]

10 D signifie un groupe d'un colorant organique,
R_{14} signifie un groupe divalent fixant les électrons,
U signifie l'hydrogène ou un halogène,
R signifie un groupe divalent d'un groupe C1-C12alcane,
R1 signifie l'hydrogène ou un groupe C1-C4alkylé,
R2 signifie l'hydrogène, un groupe C1-C8alkyle ou cycloalkyle, et
Y signifie -O- ou -N(R1)-.

22. Un polymère teinté, réticulable selon la revendication 21, dans lequel R1 et R2 signifiant l'hydrogène, R signifie un groupe C1-C4alkylène, et R^P et Y sont tels que définis plus haut.

23. Un polymère teinté, réticulable selon la revendication 20, dans lequel le colorant réactif lié par covalence est dérivé d'un colorant réactif qui est conforme à la formule générale XVII ou XVIII

\[\text{D} \cdot \text{R}_{14} \cdot \text{C} = \text{CH}_2 \quad \text{XVII ou D} \cdot \text{R}_{14} \cdot \text{CH} \cdot \text{CH}_2 \quad \text{XVIII} \]

30 où

\[\text{D} \text{ signifie un groupe d'un colorant organique,} \]
\[\text{R}_{14} \text{ signifie un groupe divalent, organique, fixant les électrons,} \]
\[\text{U signifie l'hydrogène ou un halogène, et} \]
\[\text{V signifie un groupe éliminable choisi parmi le groupe comprenant -Cl, -Br, -OH, di(C1-C7-alkyl)amino,} \]
\[\text{SO}_2- \text{phényle, } -\text{SO}_3\text{-Z}^+, \text{où } Z^+ \text{ signifie un cation, } -\text{SO}_3\text{R}_{15} \text{ et } -\text{SO}_2\text{R}_{15}, \text{où } R_{15} \text{ signifie dans chaque cas un groupe alkyle, aryle, aralkyle ou alcaryle,} \]

40 ou d'un mélange de colorants réactifs des formules XVII et XVIII ci-dessus.

24. Un polymère teinté, réticulable selon la revendication 23, où D signifie le reste d'un colorant azoïque (monoazoïque ou disazoïque), de phthalocyanine, d'azométhine, de nitro, avec un complexe métallifère ou d'anthraquinone.

25. Un polymère teinté, réticulable selon la revendication 23, où R_{14} signifie -CO-, -SO$_2$-, -SO$_3$-, -NHCO- ou -NHSO$_2$.\n
26. Un polymère teinté, réticulable selon la revendication 21, dans lequel le colorant réactif R^P est dérivé de

Remazol Schwarz B (Reactive Black 5),
Remazol Brilliantblau R (Reactive Blue 19, Duasyn-Blau R-R),
Remazol Türkisblau G (Reactive Blue 21, Duasyn-Blau R-KG).
27. Un polymère teinté, réticulable selon la revendication 20, qui est un dérivé d'un alcool polyvinyle ayant un poids moléculaire moyen d'au moins 2000 qui, par rapport au nombre de groupes hydroxyles dans l'alcool polyvinyle, comprend de 0,5 à 80% d'unités réticulables de formule I

\[
\text{CH} \quad \text{CH}_2 \quad \text{CH}_2 \quad \text{CH} \\
\text{O} \quad \text{R}_3 \quad \text{O} \\
\text{C} \quad \text{R}_1 \quad \text{R}_2 \quad \text{N} \\
\text{R}_1 \quad \text{R}_2
\]

(I)

où \(R \) signifie un groupe alkylène ayant jusqu'à 12 atomes de carbone, \(R_1 \) signifie l'hydrogène ou un groupe alkyle ayant jusqu'à 7 atomes de carbone, et \(R_2 \) signifie un groupe copolymérisable, fixant les électrons, oléfiniquement insaturé, ayant de préférence jusqu'à 25 atomes de carbone, et \(R_3 \) signifie l'hydrogène, un groupe C\(_1\)-C\(_6\) alkyle ou un groupe cycloalkyle.

28. Un polymère teinté, réticulable selon la revendication 27, dans lequel \(R_3 \) signifie un groupe acyle oléfiniquement insaturé de formule R\(_{30}\)-CO-, où \(R_{30} \) signifie un groupe copolymérisable, oléfiniquement insaturé ayant de 2 à 24 atomes de carbone, de préférence de 2 à 8 atomes de carbone, en particulier de préférence de 2 à 4 atomes de carbone.

29. Un polymère teinté, réticulable selon la revendication 28, dans lequel \(R_{30} \) signifie un groupe alcényle ayant de 2 à 8 atomes de carbone.

30. Un polymère teinté, réticulable selon la revendication 27, dans lequel le reste \(R_2 \) est un reste de formule II

\[-\text{CO-NH-}(\text{R}_4\text{-NH-CO-O})_q\text{-R}_5\text{-O-CO-R}_{30}\] (II)

où \(q \) signifie 0 ou 1, et \(R_4 \) et \(R_5 \), indépendamment l'un de l'autre, signifient un groupe alkylène ayant de 2 à 8 atomes de carbone, un groupe arylène ayant de 6 à 12 atomes de carbone ou un groupe cycloalaphatique, bivalent, saturé ayant de 6 à 10 atomes de carbone, un groupe arylène-alkylène ou alkylène-arylène ayant de 7 à 14 atomes de carbone ou un groupe arylène-alkylène-arylène ayant de 13 à 16 atomes de carbone, et dans lequel \(R_{30} \) signifie un groupe copolymérisable, oléfiniquement insaturé ayant de 2 à 24 atomes de carbone, de préférence de 2 à 8 atomes de carbone, en particulier de préférence de 2 à 4 atomes de carbone.

31. Un polymère teinté, réticulable selon la revendication 27, qui est un dérivé d'un alcool polyvinyle ayant un poids...
moléculaire d’au moins 2000 qui, par rapport au nombre de groupes hydroxyle dans l’alcool polyvinylique, comprend de 0,5 à 80% d’unités de formule III

\[
\text{(III)}
\]

où R signifie un groupe alkylène ayant jusqu’à 12 atomes de carbone, \(R_1 \) signifie l’hydrogène ou un groupe alkyle ayant jusqu’à 7 atomes de carbone, \(p \) à la valeur 0 ou 1, \(q \) à la valeur 0 ou 1, \(R_{30} \) signifie un groupe copolymérisable, oléfiniquement insaturé ayant de 2 à 8 atomes de carbone, et \(R_4 \) et \(R_5 \) indépendamment l’un de l’autre, signifient un groupe alkylène ayant de 2 à 8 atomes de carbone, arylène ayant de 6 à 12 atomes de carbone, un groupe cyclosilaphatique bivalent saturé ayant de 6 à 10 atomes de carbone, un groupe arylène-alkylène ou alkylène-arylène ayant de 7 à 14 atomes de carbone ou arylène-alkylène-arylène ayant de 13 à 16 atomes de carbone.

32. Un polymère teinté, réticulable selon la revendication 31, dans lequel \(R \) signifie un groupe alkylène ayant jusqu’à 6 atomes de carbone, \(p \) signifie 0 et \(R_{30} \) signifie un groupe alcényle ayant de 2 à 8 atomes de carbone.

33. Un polymère teinté, réticulable selon la revendication 31, dans lequel \(R \) signifie un groupe alkylène ayant jusqu’à 6 atomes de carbone, \(p \) signifie 1, \(q \) signifie 0, \(R_5 \) signifie un groupe alkylène ayant de 2 à 6 atomes de carbone, et \(R_{30} \) signifie un groupe alcényle ayant de 2 à 8 atomes de carbone.

34. Un polymère teinté, réticulable selon la revendication 31, dans lequel \(R \) signifie un groupe alkylène ayant jusqu’à 6 atomes de carbone, \(p \) signifie 1, \(q \) signifie 1, \(R_4 \) signifie un groupe alkylène ayant de 2 à 6 atomes de carbone, phénylène non substitué ou substitué par un groupe alkyle ayant jusqu’à 7 atomes de carbone, cyclohexylène ou cyclohexylène(C\(_1\)-C\(_7\)-alkylène) non substitué ou substitué par un groupe C\(_1\)-C\(_7\)-alkylène, phénylène(C\(_1\)-C\(_7\)-alkylène), (C\(_1\)-C\(_2\)-alkylène)phénylène ou phénylène(C\(_1\)-C\(_7\)-alkylène)phénylène, \(R_5 \) signifie un groupe alkylène ayant de 2 à 6 atomes de carbone, et \(R_{30} \) signifie un groupe alcényle ayant de 2 à 8 atomes de carbone.

35. Un polymère teinté, réticulable selon la revendication 27, qui est un dérivé d’un alcool polyvinylique ayant un poids moléculaire d’au moins 2000 qui, par rapport au nombre de groupes hydroxyle dans l’alcool polyvinylique, comprend de 1 à 15% d’unités de formule I.

36. Un composé de formule XI

\[
\text{(XI)}
\]

où les symboles \(R' \) et \(R^* \) signifient l’hydrogène ou un groupe C\(_1\)-C\(_7\)-alkyle ou C\(_1\)-C\(_7\)-alcancyle, et les autres sym-
boîtes R_3, R, R_1 et RF sont tels que définis à la revendication 21.

37. Un polymère teinté, réticulé, insoluble dans l'eau pouvant être obtenu par photoréticulation d'un polymère teinté, réticulable selon la revendication 20, en présence ou en l'absence d'un comonomère vinylique supplémentaire.

38. Un polymère teinté, réticulé selon la revendication 37, obtenu par photoréticulation d'un polymère teinté, réticulable selon la revendication 20 sous forme pure, en présence ou en l'absence d'un comonomère vinylique supplémentaire.

39. Un polymère teinté, réticulé selon la revendication 36, dans lequel le polymère teinté, réticulable est transformé sous forme pure par ultrafiltration unique ou répétée.

40. Un polymère teinté, réticulé selon la revendication 37, pouvant être obtenu par photoréticulation d'un polymère teinté, réticulable selon la revendication 20, en l'absence d'un comonomère vinylique supplémentaire.

41. Un polymère teinté, réticulé selon la revendication 37, pouvant être obtenu par photoréticulation d'un polymère teinté, réticulable selon la revendication 20, en présence de 0,5 à 80 unités, en particulier de 1 à 30 unités, en particulier de préférence de 5 à 20 unités d'un comonomère vinylique supplémentaire par unité de formule I.

42. Un procédé de préparation d'un polymère teinté, réticulé selon la revendication 37, qui comprend la photoréticulation d'un polymère teinté, réticulable selon la revendication 20, en présence ou en l'absence d'un comonomère vinylique supplémentaire.

43. Un procédé selon la revendication 42, dans lequel le polymère teinté, réticulable est utilisé sous une forme pure.

44. Un procédé selon la revendication 43, dans lequel le polymère teinté, réticulable est transformé sous une forme pure par ultrafiltration unique ou répétée.

45. Un procédé selon la revendication 42, qui est effectué dans une solution, en particulier dans une solution aqueuse.

46. Un moulage teinté comprenant essentiellement un polymère teinté, réticulé selon la revendication 37.

47. Un moulage teinté selon la revendication 46, qui est une lentille de contact teintée.

48. Un procédé de production d'un moulage teinté selon la revendication 46, qui comprend la photoréticulation d'un polymère teinté, réticulable selon la revendication 20 dans un moule fermé, en présence ou en l'absence d'un comonomère vinylique supplémentaire.

49. Un procédé de production d'une lentille de contact teintée selon la revendication 47, qui comprend la photoréticulation d'un polymère teinté, réticulable selon la revendication 20 dans un moule pour lentilles de contact fermé, selon le procédé "du moule plein" (full-mould), en présence ou en l'absence d'un comonomère vinylique supplémentaire.