EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
26.06.2002 Bulletin 2002/26

Application number: 97302526.5

Date of filing: 14.04.1997

Removal of noxious substances from gas streams
Entfernung schädlicher Substanzen aus Gasströmen
Elimination des substances nocives dans les courants gazeux

Designated Contracting States:
DE FR GB IE IT NL SE

Priority: 16.04.1996 GB 9608061

Date of publication of application:
22.10.1997 Bulletin 1997/43

Proprietor: The BOC Group plc
Windlesham Surrey GU20 6HJ (GB)

Inventors:
• Smith, James Robert
  Blackford, Somerset BS28 4PA (GB)

• Seeley, Adrew James
  Clifton, Bristol BS8 1BN (GB)

Representative: Bousfield, Roger James et al
The BOC Group plc
Chertsey Road
Windlesham Surrey GU20 6HJ (GB)

References cited:
EP-A- 0 212 410
EP-A- 0 655 582
WO-A-86/02023
EP-A- 0 311 317
EP-A- 0 694 735

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to the removal of noxious substances from gas streams, in particular the removal of very stable fluorocarbons from gas streams emanating from semi-conductor processing chambers by means of combustion.

Many substances used in semi-conductor device manufacturing, and which are extracted from a chamber in which such manufacturing takes place, are toxic and/or environmentally harmful and must therefore be scrubbed from the exhaust gas stream before its release into the atmosphere.

A number of different types of wet or dry chemical scrubbing reactors have been proposed and numerous are commercially employed in the semi-conductor industry.

For example, in our Patent Specification No. WO 89/11905 there is disclosed a dry chemical reactor sold by our Edwards High Vacuum International Division comprising a heated packed tube of granular substances through which the exhaust stream is directed including in particular a first stage of silicon (with an optical addition of copper when the exhaust stream contains nitrogen trifluoride in particular) and a second stage of calcium oxide commonly in the form of lime. Such a reactor has met with considerable commercial success for the scrubbing of such toxic substances.

It is also known from European Patent Specification No 694 735 in the name of Alzeta Corporation, the contents of which are incorporated herein by reference, that noxious substances of the type in question can be removed from exhaust streams by combustion.

There is described in this prior Specification a process for the combustive destruction of noxious substances which comprises injecting an exhaust gas and added fuel gas in to a combustion zone that is laterally surrounded by the exit surface of a foraminous gas burner, simultaneously supplying fuel gas and air to the burner to effect combustion at the exit surface, the amount of the fuel gas supplied to the foraminous gas burner being on a BTU basis, greater than that of the added fuel gas, and the amount of the air being in excess of the stoichiometric requirement of all the combustibles entering the combustion zone, and discharging the remitting combustion product stream from the combustion zone.

A central feature of the prior combustive process is the critical need to supply the fuel gas admixed with the exhaust gas stream in to the combustion zone of the burner. Such premixing of the fuel gas and exhaust gas stream allows for a much greater and efficient scrubbing of the perfluorocarbon hexafluoroethane (C₂F₆). However, there remains certain problems associated with the scrubbing of the even more stable perfluorocarbon tetrafluoromethane (CF₄).

A great advantage of the prior combustive scrubbing process described above is that it inherently limits the maximum temperature that can be attained in the combustion chamber and thereby suppress the formation of NOₓ gas by-products that may otherwise be formed.

However, the relatively low maximum temperature may become a limiting factor in the destruction of the most stable perfluorocarbon gases, in particular tetrafluoromethane (CF₄).

It has now been found that an addition of oxygen to the exhaust gas stream prior to the introduction of the gas stream in to a foraminous gas burner generally allows for a more efficient combustion of perfluorocarbon gases including tetrafluoromethane (CF₄).

In accordance with the invention, there is provided a process for the combustive destruction of noxious substances from a gas stream, which comprises injecting the gas stream and added fuel gas as a mixture in to a combustion zone that is surrounded by an exit surface of a foraminous gas burner and simultaneously supplying a mixture comprising a fuel gas and air and/or oxygen to the foraminous gas burner to effect combustion at the exit surface, and discharging the resulting combustion product stream from the combustion zone, characterised in that oxygen is added to the mixture of the gas stream and the added fuel gas prior to the introduction of said mixture to the combustion zone and characterised in that the total gas stream mixture burns at the point of injection.

In general, the oxygen and the fuel gas should be mixed immediately prior to the introduction of the mixture in to the combustion zone.

This allows the burning of the mixture to be maximised but with a reduced potential for a “flash back”. Preferably, the mixing is effected in a pipe or pipes at the end of which a nozzle or nozzles effects the introduction of the mixture towards the combustion zone and on which the burning occurs. Preferably, however, only one such nozzle is present.

Preferably the amount of oxygen added to the mixture of the gas stream and fuel gas is such that the oxygen concentration of the total gas stream injected into the combustion zone is from 10 to 40% by volume, most preferably from 15 to 25% by volume.

Preferably also the fuel gas concentration of the total gas stream mixture entering the combustion zone is from 80 to 150% of the stoichiometric amount needed for combustion by the oxygen added to the gas stream fuel gas mixture.
[0016] It is important that both the fuel gas and the oxygen are introduced into the gas stream prior to the stream being injected into the combustion zone.

[0017] With regard to the oxygen, this is preferably introduced to the exhaust gas stream by way of an oxygen lance. Preferably a nozzle of such a lance is positioned within or in a pipe carrying the gas stream/fuel gas mixture immediately prior to the point of injection of the total gas stream mixture in to the combustion zone.

[0018] Advantageously, the oxygen lance comprises a concentric tube within the pipe carrying the gas stream. Advantageously also, the oxygen nozzle is positioned between 0.7 and 3 pipe internal diameters prior to the point of injection of the total gas stream mixture in to the combustion zone.

[0019] With regard to the fuel gas, this can be added to the gas stream at any convenient point prior to its entry into the combustion zone. However, for reasons of potential flammability in particular, both oxygen and fuel gas should not be present for any appreciable time prior to their co-injection into the combustion zone. If the oxygen is added to the gas stream upstream of the preferred embodiments described above and generally, it is preferably that the fuel gas is introduced into the gas stream by means of a gas nozzle that terminates within or on the pipe carrying the gas stream and positioned between 0.7 and 3 pipe diameters prior to the point of injection of the total gas stream mixture in to the combustion zone.

[0020] The fuel gas added to the gas stream (or used in the foraminous burner operation) is preferably carbon-based and is advantageously a hydrocarbon, for example methane, propane or butane or at least a mixture containing predominantly methane, propane or butane. Alternatively, it may be hydrogen. The fuel gas for the gas stream and for the burner are preferably the same but may be different if appropriate.

[0021] The mixture fed to the foraminous burner is preferably a fuel gas and air mixture. In general, the mixture should preferably have a 10 to 80% stoichiometric excess of air over the fuel gas.

[0022] The gas stream treated by the process of the invention preferably comprises at least one noxious substance in a nitrogen carrier gas.

[0023] For a better understanding of the invention, reference will now be made, by way of exemplification only, to the accompanying drawing which shows schematically a furnace with gas inlets for use in the process of the invention.

[0024] The drawing shows a furnace of the same general type as described in European Specification No. 694 735, and Figure 3 thereof in particular. The furnace comprises a substantially cylindrical steel shell 1 having a top plate 2 and a lower annular plate 6) in to which a fuel gas/air mixture can be fed via one or more inlet nozzles 7 to feed the foraminous burner 4 again of the same general type as described in European Specification No. 694 735.

[0025] A plenum volume 5 is therefore formed between the shell 1 and the screen 3 (and closed by the top plate 2 and a lower annular plate 6) in to which a fuel gas/air mixture can be fed via one or more inlet nozzles 7 to feed the combustion zone of the foraminous burner, a flame being formed in use on the internal surface of the screen.

[0026] The top plate 2 sealingly houses a plurality of pipes 8 for introduction in to the burner 4 of the exhaust gas stream admixed prior to its introduction with the fuel gas and oxygen.

[0027] Introduction of oxygen is effected from a source of oxygen (O₂) by means of oxygen lances 9 which are concentrically positioned within the pipes 8 and which have nozzles 10 which can introduce the oxygen gas in to the pipes 8; the nozzles 10 are situated at twice the diameter of the pipes 8 from the point of injection 11 of the exhaust gas stream in to the burner 4.

[0028] Introduction of methane as the fuel gas in to the gas stream in this example is effected upstream of the oxygen introduction in to the gas stream and is fed in to the pipes 8 from a source 12 via a pipe system 13.

[0029] To exemplify the use of a process of the invention in conjunction with the type of furnace shown in the drawing, a fuel gas/air mixture was supplied to the plenum volume 5 and, after diffusing through the screen 3, was ignited on the inner surface of the screen 3, ie within the foraminous burner 4.

[0030] An exhaust gas stream to be scrubbed was mixed with fuel gas upstream of the burner and with oxygen prior to its introduction to the burner 4 in the manner described above with reference to the drawing.

[0031] The Table shows the results of various tests to scrub a perfluorocarbon (PFC) gas from a gas stream comprising the perfluorocarbon in a nitrogen carrier gas, the perfluorocarbon being one of tetrafluoromethane (CF₄), sulphur hexafluoride (SF₆), nitrogen trifluoride (NF₃) and hexafluoroethane (C₄F₆), with varying amounts of methane (CH₄) as fuel gas and oxygen added to the gas stream in accordance with the invention.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>PFC Gas</th>
<th>CH₄ Flow (slpm)*</th>
<th>N₂ Flow (slpm)*</th>
<th>PFC Flow (slpm)*</th>
<th>O₂ Flow (slpm)*</th>
<th>% Destruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CF₄</td>
<td>0</td>
<td>50</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CF₄</td>
<td>9</td>
<td>50</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* slpm = standard liters per minute
The results shown in the Table confirm that with each of tetrafluoromethane (CF₄), sulphur hexafluoride (SF₆), nitrogen trifluoride (NF₃) and hexafluoroethane (C₂F₆), a level of destruction of these noxious substances from a nitrogen gas stream of at least 95% was achieved only with a combined presence in the gas stream of both a fuel gas, methane (CF₄), and oxygen prior to the introduction of the gas stream in to the burner. This confirms in particular the usefulness of the invention in scrubbing the most stable of the PFC gases, tetrafluoromethane.

The successful tests all had an oxygen concentration in the gas stream of about 20% and a fuel gas (methane) concentration of about 130% of the stoichiometric amount required for the oxygen added to the gas stream (the latter figure being based on two oxygen molecules being required for each methane molecule for a stoichiometric burn).

**Claims**

1. A process for the combustive destruction of noxious substances from a gas stream, which comprises injecting the gas stream and added fuel gas as a mixture in to a combustion zone that is surrounded by an exit surface of a foraminous gas burner and simultaneously supplying a mixture comprising a fuel gas and air and/or oxygen to the foraminous gas burner to effect combustion at the exit surface, and discharging the resulting combustion product stream from the combustion zone, *characterised in that* oxygen is added to the mixture of the gas stream and the added fuel gas resulting in a total gas stream mixture injected into the combustion zone and *characterised in that* the total gas stream mixture burns at the point of injection.

2. A process according to Claim 1 in which the amount of oxygen added to said mixture of the gas stream and the added fuel gas is such that the oxygen concentration of the total gas stream mixture injected into the combustion zone is from 10 to 40% by volume.

3. A process according to Claim 2 in which the amount of oxygen added to said mixture of the gas stream and the added fuel gas is such that the oxygen concentration of the total gas stream mixture injected into the combustion zone is from 15 to 25% by volume.

4. A process according to any preceding claim in which the fuel gas concentration of the total gas stream mixture entering the combustion zone is from 80 to 150% of the stoichiometric amount needed for combustion by the oxygen added to the gas stream/fuel gas mixture.

5. A process according to any preceding claim in which oxygen is added to the gas stream/fuel gas mixture by means of an oxygen lance.

6. A process according to Claim 5 in which the oxygen lance nozzle is positioned within or on a pipe carrying the gas stream/fuel gas mixture immediately prior to the point of injection of the total gas stream mixture in to the combustion zone.

7. A process according to Claim 6 in which the oxygen lance nozzle is positioned between 0.7 and 3 pipe internal diameters prior to the point of injection of the total gas stream mixture in to the combustion zone.
8. A process according to Claim 6 or Claim 7 in which the fuel gas is introduced into the gas stream by means of a gas nozzle that terminates within or on the pipe carrying the gas stream and positioned between 0.7 and 3 pipe diameters prior to the point of injection of the total gas stream mixture into the combustion zone.

9. A process according to any preceding claim in which the gas stream comprises at least one noxious substance in a nitrogen carrier gas.

10. A process according to any preceding claim in which the fuel gas is a hydrocarbon.

11. A process according to Claim 10 in which the fuel gas is one of methane, propane or butane.

Patentansprüche


2. Verfahren nach Anspruch 1, wobei die Menge des zu dem genannten Gemisch aus dem Gasstrom und dem zugegebenen Brenngas zugegebenen Sauerstoffs derart ist, dass die Sauerstoffkonzentration des Gesamtgasstromgemischs, das in die Brennzone eingeleitet wird, 10 bis 40 Vol.-% beträgt.

3. Verfahren nach Anspruch 2, wobei die Menge des zu dem genannten Gemisch aus dem Gasstrom und dem zugegebenen Brenngas zugegebenen Sauerstoffs so ist, dass die Sauerstoffkonzentration des Gesamtgasstromgemischs, das in die Brennzone eingeleitet wird, 15 bis 25 Vol.-% beträgt.

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Brenngaskonzentration des Gesamtgasstromgemischs, das in die Brennzone eintritt, 80 bis 150% der für die Verbrennung durch den zu dem Gasstrom-Brenngas-Gemisch zugegebenen Sauerstoff benötigten stöchiometrischen Menge beträgt.


6. Verfahren nach Anspruch 5, wobei die Sauerstofflanzendüse in oder auf einem Rohr positioniert ist, welches das Gasstrom-Brenngas-Gemisch unmittelbar vor der Einblasstelle des Gesamtgasstromgemischs in die Brennzone führt.

7. Verfahren nach Anspruch 6, wobei die Sauerstofflanzendüse zwischen 0,7 und 3 Rohrränden durchmessen vor der Einblasstelle des Gesamtgasstromgemischs in die Brennzone positioniert ist.

8. Verfahren nach Anspruch 6 oder 7, wobei das Brenngas in den Gasstrom mittels einer Gasdüse eingeleitet wird, die innerhalb oder auf dem Gasstrom führenden Rohr endigt und zwischen 0,7 und 3 Rohrränden durchmessen vor der Einblasstelle des Gesamtgasstromgemischs in die Brennzone positioniert ist.


10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Brenngas ein Kohlenwasserstoff ist.

Revendications

1. Procédé pour la destruction par combustion des substances nocives d'un courant gazeux, qui comprend l'injection du courant gazeux et d'un gaz combustible ajouté, sous forme d'un mélange, dans une zone de combustion qui est entourée par une surface de sortie d'un brûleur à gaz foraminé et la fourniture simultanée d'un mélange comprenant un gaz combustible et de l'air et/ou de l'oxygène au brûleur à gaz foraminé pour réaliser la combustion à la surface de sortie, et la décharge du courant de produit de combustion en résultant hors de la zone de combustion, caractérisé en ce que de l'oxygène est ajouté au mélange du courant gazeux et du gaz combustible ajouté, donnant un courant gazeux total, avant l'introduction dudit mélange dans la zone de combustion, et caractérisé en ce que le mélange du courant gazeux total brûle au point d'injection.

2. Procédé selon la Revendication 1, dans lequel la quantité d'oxygène ajoutée audit mélange du courant gazeux et du gaz combustible ajouté est telle que la concentration en oxygène du mélange du courant gazeux total injecté dans la zone de combustion est comprise entre 10 et 40 % en volume.

3. Procédé selon la Revendication 2, dans lequel la quantité d'oxygène ajoutée audit mélange du courant gazeux et du gaz combustible ajouté est telle que la concentration en oxygène du mélange du courant gazeux total injecté dans la zone de combustion est comprise entre 15 et 25 % en volume.

4. Procédé selon l'une quelconque des Revendications précédentes, dans lequel la concentration du gaz combustible du mélange du courant gazeux total entrant dans la zone de combustion est comprise entre 80 et 150 % de la quantité stoechiométrique nécessaire pour la combustion par l'oxygène ajouté au mélange courant gazeux/gaz combustible.

5. Procédé selon l'une quelconque des Revendications précédentes, dans lequel l'oxygène est ajouté au mélange courant gazeux/gaz combustible au moyen d'une lance à oxygène.

6. Procédé selon la Revendication 5, dans lequel la buse de la lance à oxygène est positionnée dans ou sur un tuyau amenant le mélange courant gazeux/gaz combustible, immédiatement avant le point d'injection du mélange du courant gazeux total dans la zone de combustion.

7. Procédé selon la Revendication 6, dans lequel la buse de la lance à oxygène est positionnée entre 0,7 et 3 fois le diamètre interne du tuyau avant le point d'injection du mélange du courant gazeux total dans la zone de combustion.

8. Procédé selon la Revendication 6 ou la Revendication 7, dans lequel le gaz combustible est introduit dans le courant gazeux au moyen d'une buse à gaz qui aboutit dans ou sur le tuyau amenant le courant gazeux et positionnée entre 0,7 et 3 fois le diamètre du tuyau avant le point d'injection du mélange du courant gazeux total dans la zone de combustion.

9. Procédé selon l'une quelconque des Revendications précédentes dans lequel le courant gazeux comprend au moins une substance nocive dans un gaz vecteur azote.

10. Procédé selon l'une quelconque des Revendications précédentes, dans lequel le gaz combustible est un hydrocarbure.

11. Procédé selon la Revendication 10, dans lequel le combustible gazeux est le méthane, le propane ou le butane.