The use of a gonadotropin releasing hormone analog or mime thereof for the preparation of a pharmaceutical composition as an adjunctive for the invasive treatment of carcinomas

Verwendung von Gonadotropin releasing Hormon Analogen oder ähnlichen Verbindungen zur Herstellung von pharmazeutischen Zubereitungen als Zusatz für invasiver Behandlung von Karzinomen

Utilisation d'analogues d'hormone libérant la gonadotropine ou leurs mimes pour la préparation de compositions pharmaceutiques comme adjuvant pour le traitement invasif de carcinomes

References cited:
- TETSU YANO ET AL.: "INHIBITION OF GROWTH OF OV-1063 HUMAN EPITHELIAL OVARIAN CANCER XENOGRAFTS IN NUDE MICE BY TREATMENT WITH LUTEINIZING HORMONE-RELEASING HORMONE ANTAGONIST SB-75" PROC.NATL.ACAD.SCI., vol. 91, no. 15, 1994, USA, pages 707090-7094, XP002088622
- HIROSHI TAKAGI ET AL.: "EVIDENCE FOR TIGHT COUPLING OF GONADOTROPIN-RELEASING HORMONE RECEPTORS TO PHOSPHATIDYLINOSITOL KINASE IN PLASMA MEMBRANE FROM OVARIAN CARCINOMAS" GYNECOLOGIC ONCOLOGY, vol. 58, no. 1, July 1995, USA, pages 110-115, XP002088626
BACKGROUND OF THE INVENTION

[0001] Almost 100 years ago it was recognized that breast cancer exhibited a degree of hormone dependency. Disease regression was achieved through estrogen ablation.

[0002] Studies of normal breast tissue indicate that endogenous hormones of the menstrual cycle influence rates of cell division and cell death. Speroff, The Breast, in: Speroff, Ed., Clinical Gynecologic Endocrinology & Infertility, Fourth Edition, Baltimore Williams & Williams: 1989: 629:91-119. Estrogen levels rise sharply and then fall in the absence of progesterone during the follicular phase of the cycle. Following ovulation, levels of these hormones increase and then decline before the onset of menses. The pattern of cyclic hormone concentration has been shown to influence both immune parameters and growth factors.


[0004] Cancer cells may be released into the circulation during surgery or other invasive procedures. It has therefore been suggested that a short, preoperative course of tamoxifen may be beneficial. McGuire, The Optical Timing of Mastectomy: Low Tide or High Tide?, Ann. Intern. Med. 1991, 115:401-403, Editorial. Some clinicians have proposed administering progesterone at the time of surgery to enhance prognosis by interrupting metastatic seeding.

[0005] The present invention contemplates the acute administration of a GnRH analog (or mime) as a pretreatment to invasive procedures such as surgery for breast, prostate or other cancers in order to decrease the reoccurrence rate. Administration results in the suppression of gonadal steroidal dependent growth factors and neovascular processes that contribute to metastasis or recurrence in situ.

[0006] It is accordingly the object of the present invention to provide an adjunctive method to be employed in conjunction with the excision of a neoplasm, cysts or portion thereof. This and other objects of the invention will become apparent to those of ordinary skill in this from the following detailed description.

DESCRIPTION OF THE INVENTION

[0007] This invention relates to the use of a gonadotropin releasing hormone analog or mime thereof for the prepartization of a pharmaceutical composition for decreasing the reoccurrence rate of carcinomas. Said pharmaceutical composition is to be administered as a therapy adjunctive to an invasive procedure and more particularly, is to be administered to a person prior to a procedure such as excising a growth or portion thereof.

[0008] In accordance with the present invention, the conventional invasive procedure for excising a growth (or portion thereof) is carried out but additionally, a gonadotropin releasing hormone analog or other inhibitor of ovarian steroidal supply impact ("mime") is administered before that procedure is effected.

[0009] The gonadotropin releasing hormone is a small polypeptide produced in the hypothalamus and is sometimes termed gonadotropic releasing hormone, luteinizing hormone releasing hormone, GnRH or LHRH. Analogs in the form of antagonists and agonists are known and either can be used. The present invention preferably employs the gonadotropin releasing hormone antagonist. A GnRH antagonist acts by classical competitive receptor occupancy at the level of the GnRH receptor in the anterior pituitary. The effect is realized quickly and the more active antagonists can extinguish bioactive gonadotropin secretion within minutes, and in turn deplete gonadal estrogen, progesterone and androgen synthesis and secretion to castrate levels within the first day of treatment without a "flare effect" (stimulation of the receptor system), and in turn, without a delay in therapeutic exacerbation and without a transient exacerbation by temporary elevations of estrogen and androgen.


[0011] Examples of such antagonists include Antide™ (a decapeptide represented by the formula D-Ac-D-2-Nal1-DpClPhe2-D-3-Pal3-Ser4-NIllys5-D-NicLys6-Leu7-Lys8-Pro9-D-Ala10). [Ac-D4ClDPhe1, D4ClDPhe2, DTrp3, DArg6, DAla10] GnRH, [Ac-4ClDPhe2, D3Pal3, Arg5, D2Na16, DAla10] GnRH, [Ac-D2-Nal1, 4ClDPhe2, DTrp3, DArg6, DAla10]

Further, a substitute for the gonadotropin releasing hormone antagonist or agonist can be employed. The inhibitors of steroid production or action are entities which mimic the activity of the antagonist sufficiently to reversibly inactivate gonadal response or impact of ovarian steroids, including the blockade of gonadotropin stimulated steroidogenesis. Examples include recombinant DNA derived gonadotropins, desialated gonadotropins whether natural or DNA derived, antibodies to gonadotropins, gonadotropic subunit parts, inhibitors of gonadotropin receptor activations (i.e., cell messengers), inhibit/activin and their analogs, and the like.

The gonadotropin releasing hormone antagonists or other inhibitors employed in the present invention can be administered in the form of pharmaceutically acceptable non-toxic salts or complexes. The salts include acid addition salts such as for instance hydrochloride, hydrobromide, sulfate, phosphate, nitrate, oxalate, fumarate, gluconate, tannate, maleate, acetate, benzoate, succinate, alginate, malate, ascorbate, tartrate and the like. The complexes can be with metals such as for example zinc, barium, calcium, magnesium, aluminum and the like.

Any known gonadotropin releasing hormone analog or other inhibitor can be employed. Also any mode of administration heretofore employed for such agents can also be employed in the practice of the present invention. Thus, the route of administration can be any conventional route where the analog is active, for instance orally, intravenously, subcutaneously, intramuscularly, sublingually, percutaneously, rectally, intranasally or intravaginally. Similarly, the administration form can be a tablet, dragee, capsule, pill, nasal mist, aerosol, solutions suspensions, suppositories and the like.

As a rule of thumb, the amount of gonadotropin releasing hormone analog or inhibitor administered is that sufficient to adjust the circulating estrogen to a value below about 20 pg/ml and preferably below about 10 pg/ml. Depending on the particular active agent employed, the dose administered is generally about 0.001 to 5 mg/kg, preferably about 0.05 to 5 mg/kg when administered intramuscularly. Also depending upon the particular agent employed, a single administration may suffice, although one or more additional administrations can be employed over a time period of about one week or up to 30 days, including daily, weekly or monthly. Since the effects of the administration last for several days, it is preferred that the initial gonadotropin releasing hormone antagonist or mime administration occur at least one day before the surgical procedure. The excising of the growth or a portion thereof (e.g. a biopsy) is carried out in conventional fashion before endogenous estrogen or progesterone production has been restored spontaneously and causes reversion to preadministration condition.

In order to demonstrate the present invention, an individual is administered the gonadotropin releasing hormone antagonist specified below intramuscularly or subcutaneously. One day later, a biopsy is effected. The antagonist and amount, which is administered after suspension in sesame oil, are:

<table>
<thead>
<tr>
<th>Analog or Mime</th>
<th>Dose mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antide™</td>
<td>0.3</td>
</tr>
<tr>
<td>Azalone B™</td>
<td>0.05</td>
</tr>
<tr>
<td>[Ac-D4CIDPhe1, D4CIDPhe2, DTrp3, DArg6, DAla10] GnRH</td>
<td>0.5</td>
</tr>
<tr>
<td>[Ac-4CIDPhe2, D3Pal3, Arg5, D2Nal6, DAla10] GnRH</td>
<td>0.5</td>
</tr>
<tr>
<td>[Ac-D2-Nal1, 4CIDPhe2, DTrp3, DArg6, DAla10] GnRH</td>
<td>0.5</td>
</tr>
<tr>
<td>[Ac-Nal1, DME4CIPhe2, DPal3, Ser4, Tyr5, DArg6, Leu7, IlyS8, Pro9, DAla10] GnRH</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Application of the components, compositions and methods of this invention for the medical and/or pharmaceutical use which are described in this text may be accomplished by any clinical, medical or pharmaceutical methods or techniques as are presently or prospectively known to those skilled in the art.

Claims

1. Use of a gonadotropin releasing hormone analog or mime thereof for the preparation of a pharmaceutical composition for decreasing the reoccurrence rate of carcinomas, wherein the pharmaceutical composition is to be administered as an adjunctive by the invasive treatment of said carcinomas.

2. The use according to claim 1, wherein the gonadotropin releasing hormone analog is a GnFH antagonist.
3. The use according to claim 2, wherein the antagonist is Antide™.

4. The use according to claim 2, wherein the antagonist is Azaline B™.

5. The use according to any one of claims 1 to 4, wherein the dosage is about 0.001 to 5 mg/kg, preferably about 0.5 to 5 mg/kg.

Patentansprüche


3. Verwendung gemäß Anspruch 2, wobei der Antagonist Antide™ ist.

4. Verwendung gemäß Anspruch 2, wobei der Antagonist Azaline B™ ist.

5. Verwendung gemäß einem der Ansprüche 1 bis 4, wobei die Dosierung etwa 0,001 bis 5 mg/kg, vorzugsweise etwa 0,5 bis 5 mg/kg ist.

Revendications

1. Emploi d'un analogue de gonadolibérine ou d'une substance le mimant, en vue de la préparation d'une composition pharmaceutique servant à faire baisser le taux de récidive de cancers, ladite composition pharmaceutique étant destinée à être administrée en tant que traitement d'appoint lors du traitement invasif desdits cancers.

2. Emploi conforme à la revendication 1, dans lequel l'analogue de gonadolibérine est un antagoniste de la gonadolibérine.

3. Emploi conforme à la revendication 2, dans lequel l'antagoniste est de l'Antide®.

4. Emploi conforme à la revendication 2, dans lequel l'antagoniste est de l'Azaline B®.

5. Emploi conforme à l'une des revendications 1 et 2, dans lequel la dose vaut à peu près de 0,001 à 5 mg/kg, et de préférence, à peu près de 0,5 à 5 mg/kg.