

A pharmaceutical tablet characterized by showing a high volume increase when coming into contact with biological fluids

Eine pharmazeutische Tablette charakterisiert durch hohen Volumenzuwachs bei Kontakt mit biologischen Flüssigkeiten

Tablette pharmaceutique caractérisée par augmentation de la volume en cas de contact avec des fluides biologiques

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] A pharmaceutical tablet characterized by a showing high volume increase when coming into contact with biological fluids

Prior art

[0002] The development of ever more perfected active ingredient release systems, capable of liberating same according to release kinetics and procedures suitably designed to produce optimal medicinal effects has lately made considerable progress in pharmaceutical technology.

[0003] Compared with conventional pharmaceutical forms, almost all controlled release systems (or depot forms) contain a much larger quantity of drug. It follows that the number of daily administrations may be drastically reduced and the posologic scheme simplified, i.e. instead of two, three or even more administrations/day, a single daily administration of a pharmaceutical form (or therapeutic system) containing a much larger dose of active ingredient can meet the daily drug requirements.

[0004] Preparations of this type have been used for a long time and may be easily found in commerce: among them, mention may be made of chronoids, microcapsules, tablets generally defined as "sustained release" type, enteric coated tablets and more complex preparations, such as erodible and/or swellable hydrophilic matrices.

[0005] More sophisticated therapeutic systems were recently developed, such as the so-called "reservoir" systems, the "push-pull" systems, osmotic pumps ("OROS") as disclosed in US patent No. 4,160,020 (1979).

[0006] Geomatrix systems as disclosed in US patents No. 4,839,177 (1989) and No. 5,422,123 (1995). Said therapeutic systems have been thoroughly studied and amply used in the pharmaceutical field.

[0007] GB-A-2203338 describes a laminated drug delivery system comprising at least 30 weight percent cellulose ether in a first and second lamina. EP-A-0598309 describes a multilayer drug delivery system comprising at least one swelling layer and at least one erodible and/or soluble layer. WO-A-9406416 describes a pharmaceutical tablet capable of delivering drugs at different release rates.

[0008] Now, most of said new systems can release the active ingredient contained therein at a constant rate (i.e. according to zero order kinetics), until complete release of same, independently of the pH of the gastrointestinal tract. It follows that said systems may find wide application only if the drugs may be uniformly absorbed in the gastrointestinal tract. However, serious troubles may arise when the active ingredients contained in said systems exhibit a small absorption window in said tract. In this case, only an extremely small amount of active ingredient may be absorbed and, therefore, produce the desired medicinal action, while most of the drug released cannot be absorbed since in some portions of the gastrointestinal tract, the substrate that is generally deputed to absorption, is unable to let the drug pass through the biological barriers.

[0010] In fact, the controlled release of active ingredients exhibiting a small absorption window in the first portion of the gastrointestinal tract, i.e. of substances that may be more effectively absorbed only in the stomach, duodenum and in the first portion of the small intestine, raises great difficulty since said active ingredients are to be released only in the portion capable of absorbing them.

Summary

[0011] The pharmaceutical form of the present patent application is designed for a controlled release of the active ingredients that exhibit a small absorption window in the first portion of the gastrointestinal tract, including the small intestine and the large intestine. The knowledge of the biopharmaceutical characteristics of the active ingredient and of the time of gastrointestinal transit of the pharmaceutical form is of major importance to provide formulations securing the desired medicinal effects in vivo.

[0012] The tablet claimed herein basically consists of two or three or more layers, i.e.

a) a layer made by compression, which may optionally contain an active ingredient, generally consisting of erodible and/or gellable and/or swellable hydrophilic polymers. This layer besides acting as a barrier for drug release control is characterized in that it can rapidly swell, i.e. can markedly and rapidly increase in volume. Furthermore, said layer may have particular bioadhesive properties allowing the adhesion of the pharmaceutical form to the mucosa of the gastrointestinal tract or, by swelling, may also cause the floating of the pharmaceutical form on the gastric juice;
b) a layer containing the active ingredient to be administered. This layer, applied by compression to layer a), is made out of biodegradable and biocompatible polymeric materials, and other adjuvants whereby the formulation can be formed by compression and the active ingredient may be released within a time interval that may be predetermined by appropriate tests in vitro;

c) a third layer, if any, applied by compression to one of the aforementioned layers. Said third layer, which may optionally contain active ingredients, generally consists of erodible and/or gelable and/or swellable hydrophilic polymers, and acts as a barrier, i.e. is partially impermeable to the active ingredient contained in layer b).

[0013] As will be illustrated in detail in the examples reported hereinafter, layers a) and c) may have an identical composition and identical functional characteristics, i.e. may have the swelling properties described under a) and, at the same time, the drug release modulation properties described under c). The rapid swelling of the swellable layer (a) is assisted by the use of adjuvants classifiable as anionic, cationic and non-ionic surfactants selected from the group consisting of sodium lauryl sulphate, sodium ricinoleate, sodium tetradecyl sulphate, dioctyl sulphosuccinate, cetomacrogol poloxamer, glycercyl monostearate, polysorbates, sorbitan monolaurate and lecithins.

[0014] A characteristic of the present invention is that, owing to the rapid and considerable swelling of layer a) and optionally also of layers c) and b), the pharmaceutical form, by contact with the gastric juice, increases in volume, which results in an increased residence time of same on the gastric level. It follows that the greater part of active ingredient contained therein may be released at a controlled rate in this portion of the gastrointestinal tract, where the absorption efficiency is the highest.

[0015] The claimed pharmaceutical form, designed for a controlled release of the active ingredients, is preferably cylindrical or lenticular in shape and consists of 2, 3 or more layers, of which at least one contains the active ingredient, while the other layer(s) does(do) not generally contain active ingredients, but consists(consist) of erodible and/or gelable and/or swellable hydrophilic polymers, either alone or in association with other adjuvants, whereby said pharmaceutical form can rapidly swell.

[0016] The formulation of said layers may also include polymeric substances allowing either the bioadhesion of the pharmaceutical form to the stomach or upper digestive tract, or the floating of the tablet in the gastric juice, which causes an increase in the tablet residence time in the stomach.

[0017] At least one of the two layers, a) and c), acts as a barrier, i.e. is partially impermeable, for a predeterminable time, to the active ingredient contained in layer b), and at least one of the two layers, a) and c), is characterized in that it can rapidly swell, i.e. can rapidly increase in volume, and have particular bioadhesive properties allowing the pharmaceutical form positioning and adhesion to the mucosa of the first portion of the gastrointestinal tract.

[0018] According to a further embodiment of the present invention, the three-layers tablet consists of layer b), which contains a dose of active ingredient, of layer a) as described above, and of layer c), which contains a dose of active ingredient formulated for immediate release by contact with the gastric juice.

[0019] A benefit of the present invention is that said two- or three-layers pharmaceutical tablet is obtained by established compression procedures, well known to those skilled in the art.

Description of the figures

[0020]

Figure 1 represents a front view of a cylindrical three layers tablet and a perspective view of a convex three layers tablet, wherein layers a) and c) contain highly swellable polymers;

Figure 1A represents a front view of the cylindrical three layers tablet and a perspective view of the convex tablet of figure 1 after swelling;

Figure 2 represents a front view of a cylindrical tablet and a perspective view of the convex tablet, wherein layer a) contains highly swellable polymers and layer b) contains swellable polymers;

Figure 2A represents a front view of the cylindrical tablet and a perspective view of the convex tablet of figure 2 after swelling;

Figure 3 represents a front view of a cylindrical tablet and a perspective view of a convex tablet wherein layer a) contains highly swellable polymers and layers b) and c) contain essentially erodible polymers;

Figure 3A represents a front view of the cylindrical tablet and a perspective view of the convex tablet of figure 3 after swelling;

Figure 4 represents a front view of a cylindrical tablet and a perspective view of a convex tablet, wherein layer a) contains highly swellable polymers, layer b) contains erodible and swellable polymers, layer c) contains the active principle and hydrophobic diluents, easily favouring the disgregation of this layer;

Figure 4A represents a front view of the cylindrical tablet and a perspective view of the convex tablet of figure 4 after swelling.
Detailed description of the invention

[0021] An object of the present invention is to provide a particular type of compressed tablet that, by contact with
5 biological fluids, considerably increases in volume and exhibits a high residence time in the stomach and/or in the first
portion of the gastrointestinal tract as defined in claim 1. The claimed tablet, intended for oral administration to humans
and animals, consists of two or three or more layers, of which at least one contains an active ingredient exhibiting a
small absorption window in the gastrointestinal tract or having to exert its action mostly at the gastric level.

[0022] A fundamental characteristic of the system is that at least one of the layers has such a composition that, when
10 the pharmaceutical form comes into contact with the gastric juice, a considerable increase in the tablet volume takes
place.

[0023] The structure of the new pharmaceutical form is schematically represented in Figg. 1 - 4 and may be described
as follows:

a) a first layer generally consisting of erodible and/or gellable and at least partially swellable hydrophilic polymers,
15 optionally in combination with other adjuvants. This layer, which is formed by compressing the ingredients in the
powdered or granular form, can rapidly swell, i.e. rapidly increase in volume, and may have bioadhesive properties
securing a prolonged adhesion to the mucosa of the first portion of the gastrointestinal tract. Otherwise, by swelling,
20 this layer may optionally cause the floating of the pharmaceutical form on the gastric juice or defer the transfer of
the pharmaceutical form to the duodenum through the pylorus until the increased volume of the layer is at least
partially compensated by the partial dissolution and/or erosion of the tablet;
b) a second layer, adjacent to the first and containing the active ingredient, is made out of biodegradable and
25 biocompatible polymeric materials and other adjuvants whereby the formulation can be formed by compression
and the active ingredient may be released within a time interval that may be predetermined by preliminary tests
in vitro;
c) an optional third layer formed by compression and adjacent to the second layer b). This layer generally consists
30 of erodible and/or gellable and/or swellable hydrophilic polymers and, being initially impermeable to the active
ingredient, acts as a barrier modulating the release of the active ingredient contained in adjacent layer b).

[0024] Layer c) may be identical with layer a) in composition and functional characteristics, i.e. may considerably
35 swell by contact with the gastric juice and therefore contribute to the volume increase of the pharmaceutical form.
[0025] Layer c) too may contain the active ingredient, whose release differs from that of main layer b), to which layer
30 c) is thus complementary.
[0026] A characteristic of all possible embodiments of the invention is that the pharmaceutical form considerably
increases in volume by contact with the gastric juice, due to the rapid and remarkable swelling of at least one of the
aforesaid layers, a) and c), and to the optional swelling of layer b).
[0027] This results in a much increased residence time of the tablet in the stomach and in the active ingredient
absoption optimization.

[0028] The claimed pharmaceutical form, designed for a controlled release of the active ingredients, is preferably
cylindrical or lenticular in shape and consists of 2 or 3 or more layers, of which at least one contains the active ingredient,
while the other layers do not generally contain the active ingredients, but consist of erodible and/or gellable and/or
swellable hydrophilic polymers, either alone or in association with other adjuvants, whereby said pharmaceutical form
can rapidly swell by at least 50% and preferably 100% of its initial volume. The formulation of said layers may also
include polymeric substances allowing either the tablet bioadhesion to the stomach or its floating on the gastric juice,
which results in an increased residence time in the stomach and, therefore, in an improved release of the active ingre-
dient at the gastric level.

[0029] At least one of the two layers, a) and c), may act as a barrier, i.e. may initially be impermeable to the active
ingredient contained in layer b), and at least one of the two layers, a) and c), may rapidly swell, i.e. rapidly and con-
siderably increase in volume, and may have bioadhesive properties securing a prolonged adhesion to the the mucosa
of the first portion of the gastrointestinal tract.

[0030] A more rapid medicinal effect may be favoured by another pharmaceutical form of the invention, consisting
of layer b), which contains a dose of active ingredient to be released within a time interval that may be predetermined
by preliminary tests in vitro, layer a), as described above, which has the function rapidly to increase the volume of the
pharmaceutical form, and a third layer, which contains a dose of active ingredient combined with suitable excipients
for its immediate release by contact with the gastric juice.

[0031] The two- or three-layers tablet of the invention is obtained by well established compression procedures known
to those skilled in the art.

[0032] In any case, the pharmaceutical form described above, when coming into contact with the gastric juice and/
or the fluids of the gastrointestinal tract, rapidly increases in volume and is structured as shown in Figg. 1A - 4A.
This increase in volume may involve one or more layer(s) of the tablet. The enlargement in size and the rate thereof may be followed and accurately evaluated by direct measurements or by a videomicroscope interfaced with a personal computer. The image is processed by an appropriate video image analysis dedicated programme.

In fact, said technique makes it possible to study the in vitro behaviour of the formulations and, consequently, accurately to design pharmaceutical forms capable of meeting the morphological requirements, as well as to optimize the formulation of each layer to obtain a morphological behaviour answering the set target. By said technique, it is therefore possible accurately to predetermine which is the behaviour in vivo of the pharmaceutical form coming into contact with organic fluids. Furthermore, on the basis of appropriate tests in vitro, it is possible to schedule the release of the active ingredient contained in said pharmaceutical form within a prefixed time interval.

In fact, the determination of the morphological variations and of the active ingredient release profile (which may be obtained, e.g., by tests envisaged in pharmacopoeias) allows a very accurate prediction of the in vivo behaviour of the pharmaceutical form.

The polymeric substances used to prepare layers a) and c) - which however may also be included in layer b) - are hydrophilic and slowly soluble and/or slowly gellable and/or erodible and/or at least partially swellable, either rapidly or at different rates, in aqueous fluids and are selected from the group consisting of hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropyl methylcellulose having molecular weight from 1,000 to 4,000,000, hydroxypropyl cellulose having molecular weight from 2,000 to 2,000,000, carboxyvinyl polymers, polyvinyl alcohol, alginates, gellan, xanthan gums, carrageenin and carrageenans, amyllose, alginic acid and salts and derivatives thereof, acrylates, methacrylates, acrylic/methacrylic copolymers, polyalcohols, polyaminosaccharides, methyl vinyl ethers/maleic anhydride copolymers, carboxymethylcellulose and derivatives thereof, ethylcellulose, methylcellulose and cellulose derivatives in general.

The amount of said polymeric substances, in respect of the layer total weight, is of from 5% to 90% by wt. and preferably of from 20% to 85% by wt.

Layer a) and sometimes, but not necessarily, layer c) comprise hydrophilic polymeric substances facilitating the interaction between the components of the layer and the biological fluids with which said layer comes into contact, thus favouring a rapid and considerable volume increase of the pharmaceutical form.

These hydrophilic polymeric substances are selected from the group comprising the so-called "superdisintegrating polymers", i.e. cross-linked polyvinylpyrrolidone, hydroxypropylcellulose and hydroxypropyl methylcellulose having molecular weight up to 150,000, cross-linked sodium carboxymethylcellulose, carboxymethyl starch, sodium carboxymethyl starch, potassium methacrylate-divinylbenzene copolymer, polyvinyl alcohols, amyllose, cross-linked amyllose, starch derivatives, microcrystalline cellulose and cellulose derivatives, alpha-, beta- and gamma-cyclodextrin and dextrin derivatives in general.

Said substances, in respect of the layer total weight, amount to 1% to 90% by wt. and preferably to 5% to 70% by wt.

As defined in claim 1 substances from the group of surfactants (anionic, cationic and non-ionic) are used selected from the group consisting of sodium lauryl sulphate, sodium ricinoleate, sodium tetradeциl sulphate, dioctyl sulphosuccinate, cetomacrogl poloxamer, glyceryl monostearate, polyoxyethylene sorbitan monolaurate and lecithins. By facilitating wettability, said substances allow a more immediate interaction between the dissolution medium (or gastric juice) and the tablet, i.e. they cause a more rapid wetting and swelling of the pharmaceutical form and especially of the layer containing them.

The formulation of said layers may include absorbent hydrophilic substances, such as colloidal silica, starch, etc., which, due to their affinity for water or fluid, enhance the wettability and rapid swelling of the structure containing same.

It is possible to use the so-called effervescent mixtures capable of producing a rapid interaction of the tablet or, in the specific case, of the layer with aqueous fluids and, preferably, with the gastric juice with which they come into contact.

Said substances fall into several groups, including the carbonates and bicarbonates of sodium and of other alkali or alkaline-earth metals, glucocoll sodium carbonate and other salts, either alone or in combination with pharmacetically acceptable acids, such as citric, tartaric, adipic, ascorbic acids, capable of causing effervescence when said mixtures come into contact with aqueous fluids or an acid medium. By contact with the gastric juice and depending on the per cent amount of the disgregating agent (or of another adjuvant) and on the per cent amount of the gellable and/or erodible hydrophilic polymer present in the layer composition, said effervescence causes a rapid and considerable increase in the layer volume.

It is also possible to use other adjuvants selected from the group including classes of substances currently used in the pharmaceutical field, such as diluents, gliding substances, buffers, binding agents, adsorbers, etc., and in particular starch, pregelled starch, calcium phosphate, mannitol, lactose, xylitol, saccharose, glucose, sorbitol, microcrystalline cellulose; binding agents, such as gelatin, polyvinylpyrrolidone, methylcellulose, starch solution, ethylcellulose, arabic gum and tragacanth gum; lubricants, such as magnesium stearate, stearic acid, talc, colloidal silica, glyceryl...
monostearate, polyoxyethylene glycols having molecular weight from 400 to 60,000, hydrogenated castor oil, glyceryl behenate, waxes and mono-, bi-, and trisubstituted glycerides.

For example hydrophobic diluents such as glyceryl monostearate glyceryl behenate, hydrogenated castor oil, waxes and mono-, bi- and trisubstituted glycerides are used when water and/or aqueous fluids penetration into the medicated or barrier type layers has to be slowed down or alternatively the three layers tablets of the present invention may contain hydrophilic diluents favouring water penetrations such as mannitol, lactose, starch of various origin, sorbitol, xylitol, microcrystalline cellulose, colloidal silica.

The pharmaceutical form of the invention may also contain active ingredients exerting a medicinal action at the gastric level, such as antiacids (aluminium hydroxide, magnesium carbonate, magnesium oxide), sucralfate, sodium carboxymethylcellulose, magnesium stearate, stearic acid, talc, sodium benzoate, boric acid, polyoxyethylene glycols, colloidal silica and plasticizers used to provide said barrier type layers with the elasticity required and to improve the compressibility, adhesion and cohesion of the tablet such as hydrogenated castor oil, cetyl alcohol, cetylstearyl alcohol, fatty acids, glycerides and triglycerides as are or variously substituted, polyoxyethylene glycols and derivatives thereof having a molecular weight, ranging from 400 to 60,000.

The second layer b) of the pharmaceutical tablet according to the present invention may contain hydrophilic and soluble and/or gelable and/or erodible and/or swellable polymers at a different rate such as hydroxyethylcellulose, hydroxypropyl methylcellulose having molecular weight of from 1,000 to 4,000,000, hydroxypropyl cellulose having molecular weight of from 2,000 to 2,000,000, carboxyvinyl polymers, chitosans, mannanes, galactomannans, xanthan gums, carrageenins and carrageenans, amylose, alginic acid, salts and derivatives thereof, pectins, acrylates, methacrylates, acrylic/methacrylic copolymers, polyanhydrides, polyamino acids, methyl vinyl ethers/maleic anhydride copolymers, polyvinyl alcohols, glucans, scleroglucans, carboxymethylcellulose and derivatives thereof, ethylcellulose, methylcellulose and polyvinylpyrrolidone.

These materials are contained in said second layer in amount generally comprised between 5 and 90% preferably between 20 and 85%.

Among the active ingredients that may be advantageously administered with the pharmaceutical form of the present invention the active agent may be made of all active ingredients exhibiting a small absorption window, preferably in the first portion of the gastrointestinal tract, such as for example: the calcium blockers: prazosin, ketanserin, guanabenz acetate, captopril, captopril hydrochloride, enalapril, enalapril maleate, lasix, hydralazine, methyldopa, methyldopa hydrochloride, levodopa, carbidopa, benserazide, amiodipine, nifedipine, nicardipine, verapamil, or substances exerting an antiarrhythmic action, such as acyclovir, inosine, pronabex, tribavirine, vidarabine, zidovudine or AZT.

Furthermore, the pharmaceutical form of the invention may also contain active ingredients exerting a medicinal action at the gastric level, such as antacids (aluminium hydroxide, magnesium carbonate, magnesium oxide), sucralfate, sodium carboxymethylcellulose, pirenzepin, loperamide, cimetidine, ranitidine, famotidine, misoprostol, omeprazol.

The tablets of the invention can be prepared from powder and/or granular mixtures by conventional techniques: therefore, their production on an industrial scale is easily available.

For example, they may be obtained by rotary presses suitable for producing multi-layer tablets, e.g. Layer-Press, Manesty, Liverpool, UK.

The thickness of the layers may range from 0.2 mm to 8 mm and preferably from 1 mm to 4 mm, depending on the quantity of active ingredient contained therein. The aforesaid presses usually operate at a pressure of from 1,000 to 5,000 kg/cm2 and produce, depending on the procedures adopted, which will be illustrated in detail in the examples conveyed hereinafter, cylindrical-, lenticular-, spheroid-, ovoid-shaped three-layer tablets suitable for easy swallowing.

Furthermore, the pharmaceutical form may be coated with a polymeric film merely to provide protection or to slow down the active ingredient release starting phase. Said coating may be either soluble in an acid medium or permeable to allow the system activation (active ingredient release) only after a time interval that may be predetermined by in vitro tests.

Example 1 - Preparation of a set of 5,000 compressed tablets, as per Fig. 3), containing zidovudine (or AZT) as an active ingredient (100 mg).

1.a - Preparation of the granular mass for the swellable layer (layer a)

The quantity of granular mass prepared was as necessary for the production of No. 5,000 swellable barrier-type layers (layer a) of Fig. 3) having the following per cent composition:

| Scleroglucan (Actigum CS 11b, Sanofi, Paris, F) | 86.0 |
| Cross-linked sodium carboxymethylcellulose (AcDiSol, Type SD 711, FMC Corp., Philadelphia, USA) | 7.5 |
The granular mass was prepared by mixing scleroglucan, cross-linked sodium carboxymethylcellulose and sodium laurylsulphate in a sigma-type mixer, Mod. Erweka, type K5, Frankfurt a. M., D. The homogeneous powder mixture was wetted with a 10% w/v alcohol solution of polyvinylpyrrolidone and the uniformly wet mass was forced through a 25 mesh gauze (710 µm) to give uniformly sized granules. The granular mass was dried in an air oven at 40-45°C to constant weight, fed to a mixer for powders (Turbula, Mod. T2A), added with magnesium stearate and colloidal silica and mixed for 20'. The granular mass was compressed as described hereinafter.

1.b - Preparation of the granular mass containing the active ingredient

A granular mass for layer b) of Fig. 3) was prepared according to the procedure described hereinafter. Each layer contained 100 mg of active ingredient and had the following unitary composition:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zidovudine (or AZT)</td>
<td>100.0 mg</td>
</tr>
<tr>
<td>Mannitol (USP grade, C.Erba, Milan, I)</td>
<td>100.0 mg</td>
</tr>
<tr>
<td>Hydroxypropyl methylcellulose (Methocel® K4M, Colorcon, Orpington, UK)</td>
<td>50.0 mg</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone (Plasdone® K30, ISP, Wayne, NY, USA)</td>
<td>15.0 mg</td>
</tr>
<tr>
<td>Magnesium stearate (USP grade, C.Erba, Milan, I)</td>
<td>2.5 mg</td>
</tr>
<tr>
<td>Colloidal silica (Syloid 244, Grace GmbH, Worms, D)</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>Total</td>
<td>268.0 mg</td>
</tr>
</tbody>
</table>

1.c - Preparation of the granular mass for the barrier-type layer (layer c)

The quantity of granular mass as necessary for the production of No. 5,000 barrier-type layers (layer c) of Fig. 3) was prepared having the following per cent composition:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxypropyl methylcellulose (Methocel® E5 Premium, Colorcon, Orpington, UK)</td>
<td>26.7</td>
</tr>
<tr>
<td>Lactose (USP grade, C.Erba, Milan, I)</td>
<td>56.7</td>
</tr>
<tr>
<td>Glyceril behenate (Compritol 888 ATO-Gattefossé, FR)</td>
<td>10.0</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone (Plasdone® K29-32, ISP, Wayne, NY, USA)</td>
<td>5.0</td>
</tr>
<tr>
<td>Yellow lake (Eingemann Veronelli, Milan, I)</td>
<td>0.1</td>
</tr>
<tr>
<td>Magnesium stearate (USP grade, C.Erba, Milan, I)</td>
<td>1.0</td>
</tr>
<tr>
<td>Colloidal silica (Syloid 244, Grace GmbH, Worms, D)</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The granular mass was prepared by mixing hydroxypropyl methylcellulose (Methocel® E5, apparent viscosity 5 cps), lactose, glyceryl behenate and yellow lake in a sigma-type mixer, Mod. Erweka, type K5, Frankfurt a. M., D. The homogeneous powder mixture was wetted with a 10% w/v solution of polyvinylpyrrolidone in a 1:1 water/ethanol mixture and the uniformly wet mass was forced through a 25 mesh gauze (710 µm) to give pale yellow uniformly sized...
granules. The granular mass was dried in an air oven at 40-45°C to constant weight, fed to a mixer for powders (Turbula, Mod. T2A), added with magnesium stearate and colloidal silica and mixed for 20'. The granular mass was compressed as described hereinafter.

1.d - Preparation of three-layer tablets (by compression)

[0063] The granular masses obtained as reported in the previous sections and according to schemes well known to those skilled in the art were loaded into three feed hoppers of a rotary press fit for producing three-layers tablets (e.g. Layer-press, Manesty, Liverpool, UK). In particular, the first hopper was fed with the granular mass as per point 1.a, the second hopper was fed with the granular mass as per point 1.b and the third hopper was fed with the granular mass as per point 1.c.

[0064] The press was equipped with circular flat punches, 10 mm in diameter and set to produce three-layer tablets, i.e. a first 150 mg barrier-type layer (this being the quantity necessary to obtain a thickness of approx. 1.3 mm), a second layer consisting of 268 mg of granular mass containing the active ingredient (equalling 100 mg ATZ), and a third 100 mg barrier-type layer (this being the quantity necessary to obtain a thickness of approx. 1.0 mm). The three-layers tablets obtained by operating as described above, at a pressure of 2,000 kg/cm², averagely weighed 518 mg and contained 100 mg of active ingredient.

1.e - Dissolution test

[0065] The tablet release characteristics were evaluated by apparatus 2 (paddle) disclosed in USP XXIII, operating at 100 rpm. The dissolution fluid was deionized water at 37°C. Drug release was controlled by UV spectrophotometer set at 266 nm, using an automatic sampling and reading system (Spectracomp 602, Advanced Products, Milan, Italy).

[0066] The results obtained are shown in Table 1.

![Table 1](image)

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>Release (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.6</td>
</tr>
<tr>
<td>2</td>
<td>27.2</td>
</tr>
<tr>
<td>3</td>
<td>40.3</td>
</tr>
<tr>
<td>4</td>
<td>52.0</td>
</tr>
<tr>
<td>5</td>
<td>62.2</td>
</tr>
<tr>
<td>6</td>
<td>72.1</td>
</tr>
<tr>
<td>7</td>
<td>81.5</td>
</tr>
<tr>
<td>8</td>
<td>90.8</td>
</tr>
<tr>
<td>9</td>
<td>98.6</td>
</tr>
<tr>
<td>10</td>
<td>100.1</td>
</tr>
</tbody>
</table>

[0067] The above data provide evidence of a controlled drug release from the systems so prepared over a period of approx. 9-10 hrs.

1.f - Swelling test

[0068] The test was conducted under the same experimental conditions as adopted for the dissolution test. At adequate time intervals, the tablets were collected from the dissolution medium. The tablets volume and the sizes of the different layers were measured by a videomicroscope (VS-90, interfaced with a video image analysis dedicated system, CV 9000, FKV, Sorisole, Bergamo, I). The results obtained are shown in Table 2.

![Table 2](image)

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>Nucleus+barrier volume (layers 1.b+1.c) %*</th>
<th>Swellable layer volume (layer 1.a) %*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>0.5</td>
<td>213.8</td>
<td>241.4</td>
</tr>
<tr>
<td>1</td>
<td>124.9</td>
<td></td>
</tr>
</tbody>
</table>

* % volume of the initial volume
As may be seen, in the systems prepared, the size of the swellable layer increases considerably, i.e. up to 5 times its initial volume.

This phenomenon is particularly evident from a comparison with the volume increase of the other two layers: the nucleus and barrier total swelling comes to two times and a half the initial volume.

Furthermore, compared with the other two layers, the swellable layer increases in volume at a much higher rate. Said behaviour fully matches the goals of the present invention.

Claims

1. A pharmaceutical tablet wherein the active ingredients are released at a controlled rate selectively in the first portion of the gastrointestinal tract, said tablet having a multi-layer structure and comprising:

 (a) a first layer, which considerably and rapidly swells in the presence of biological aqueous fluids, said swelling resulting in an increase by at least 50% of the total volume of the tablet when coming into contact with the gastric juice, said layer being formed by a compressed granular mixture of biocompatible hydrophilic polymers and at least one highly swellable polymer selected from the group consisting of cross-linked polyvinylpyrrolidone, hydroxypropylcellulose and hydroxypropyl methylcellulose having molecular weight up to 150,000 cross-linked sodium carboxymethylcellulose, carboxymethyl starch, sodium carboxymethyl starch, potassium methacrylate-divinylbenzene copolymer, polyvinyl alcohols, amylose, cross-linked amylose, starch derivatives, microcrystalline cellulose and cellulose derivatives, alpha-, beta- and gamma-cyclodextrin and dextrin derivatives in general, said substances amounting to 1% to 90% of the layer weight.

 (b) a second layer, adjacent to the first and containing the active ingredient, made out of biodegradable and biocompatible polymeric materials and other adjuvants whereby the formulation can be formed by compression and the active ingredient may be released within a time interval that may be predetermined by preliminary tests in vitro;

 (c) an optional third layer, formed by compression and applied to the second layer, comprising erodible and/or gellable and/or swellable, hydrophilic polymers, and being initially impermeable to the active ingredient, acting as a barrier modulating the release of the active ingredient contained in the adjacent second layer, said third layer optionally being identical with the first layer in composition and functional characteristics,

wherein the rapid swelling of the swellable layer (a) is assisted by the use of adjuvants classifiable as anionic, cationic and non-ionic surfactants selected from the group consisting of sodium lauryl sulphate, sodium ricinoleate, sodium tetradecyl sulphate, dioctyl sulphanesuccinate, cetomacrogol, poloxamer, glyceryl monostearate, polysorbates, sorbitan monolaurate and lecithins.

2. The pharmaceutical tablet as claimed in claim 1, wherein the first layer besides increasing rapidly in volume exhibits bioadhesion properties whereby the pharmaceutical tablet is maintained in contact with the epithelium of the first portion of the gastroduodenal tract for a long time.

3. The pharmaceutical tablet as claimed in claim 1, wherein the active ingredients may be contained not only in layer (b), but also in layers (a) and/or (c) so that said active ingredients may be released at different times.

Table 2 (continued)

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>Nucleus+barrier volume (layers 1.b+1.c) %*</th>
<th>Swellable layer volume (layer 1.a) %*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>139.5</td>
<td>253.5</td>
</tr>
<tr>
<td>2</td>
<td>178.5</td>
<td>287.8</td>
</tr>
<tr>
<td>2.5</td>
<td>184.7</td>
<td>322.3</td>
</tr>
<tr>
<td>3</td>
<td>190.9</td>
<td>346.8</td>
</tr>
<tr>
<td>4</td>
<td>209.6</td>
<td>363.1</td>
</tr>
<tr>
<td>5</td>
<td>232.8</td>
<td>408.2</td>
</tr>
<tr>
<td>6</td>
<td>257.0</td>
<td>436.9</td>
</tr>
<tr>
<td>7</td>
<td>255.2</td>
<td>461.5</td>
</tr>
<tr>
<td>8</td>
<td>259.1</td>
<td>478.9</td>
</tr>
</tbody>
</table>

* % volume of the initial volume
4. The pharmaceutical tablet as claimed in claim 1, wherein the active ingredients exhibit a small absorption window in the gastrointestinal tract i.e. are more effectively absorbed in the stomach, duodenum and in the first portion of the small intestine.

5. The pharmaceutical tablet as claimed in claim 1, wherein the active ingredients contained in the system exert their action mostly at the gastroduodenal level and in the first portion of the small intestine.

6. The pharmaceutical tablet as claimed in claim 1, wherein the active ingredients are selected from the group consisting of prazosin, ketanserin, guanabenz acetate, captopril, captopril hydrochloride, enalapril, enalapril maleate, lisinopril, hydralazine, methyl dopa, methyl dopa hydrochloride, levodopa, carbipoda, benserazide, amiodipine, nitrendipine, nefedipine, nicardipine, verapamil, acyclovir, inosine, pranobex, tribavirine, vidarabine, zidovudine or AZT.

7. The pharmaceutical tablet as claimed in claim 1, wherein the active ingredients contained in the systems are those exerting a medicinal action at the gastric level, selected from the group consisting of aluminum hydroxide, magnesium carbonate, magnesium oxide, sucralfate, sodium carbenoxolone, pirenzepin, loperamide, cimetidine, ranitidine, famotidine, misoprostol, omeprazol.

8. The pharmaceutical tablet as claimed in claim 1, wherein the polymeric substances used to prepare the second layer, which contains the active ingredient, are hydrophilic and soluble and/or gelable and/or erodible and/or swellable at a different rate in aqueous fluids, and are selected from the group consisting of hydroxyethylcellulose, hydroxypropyl methylcellulose having molecular weight of from 1,000 to 4,000,000, hydroxypropyl cellulose having molecular weight of from 2,000 to 2,000,000 carboxyvinyl polymers, chitosans, mannans, galactomannans, xanthan gums, carrageenin and carrageenans, amylose, alginic acid, salts and derivatives thereof, pectins, acrylates, methacrylates, acrylic/methacrylic copolymers, polyhydridres, polyamino acids, methyl vinyl ethers/maleic anhydride copolymers, polyvinyl alcohol, glucans, scleroglucans, carboxymethylcellulose and derivatives thereof, ethylcellulose, methylcellulose and polyvinylpyrrolidone.

9. The pharmaceutical tablet as claimed in claim 8, wherein said polymeric substances amount to 5% to 90% by wt. and preferably from 20% to 85% by wt.

10. The pharmaceutical tablet as claimed in claim 1, wherein the thickness of the layers of said tablet may range from 0.2 mm to 8 mm.

11. The pharmaceutical tablet as claimed in claim 1, wherein the layer containing the active ingredient and the barrier-type layers further contain diluents, binding agents, gliding agents, disintegrating agents, colouring agents, or lubricants.

12. The pharmaceutical compressed tablet as claimed in claim 1, wherein water and/or aqueous fluids penetration into the various layers is favoured by including in the formulation hydrophilic diluents, selected from the group consisting of mannitol, lactose, starch of various origin, sorbitol, xylitol, microcrystalline cellulose, colloidal silica.

13. The pharmaceutical tablet as claimed in claim 1, wherein hydrophobic diluents, such as glyceryl monostearate, glyceryl behenate, hydrogenated castor oil, waxes and mono-, bi- and trisubstituted glycerides, are used when water and/or aqueous fluids penetration into the medicated or barrier-type layers has to be slowed down.

14. The pharmaceutical tablet as claimed in claim 1, wherein the adjuvants used for the preparation of said barrier-type layers are selected from the group consisting of glyceryl monostearate and derivative thereof, semisynthetic triglycerides, semisynthetic glycerides, hydrogenated castor oil, glycerylpalmitostearate, glyceryl behenate, cetyl alcohol, polyvinylpyrrolidone, glycerin, ethylcellulose, methylcellulose, sodium carboxymethylcellulose, magnesium stearate, stearic acid, talc, sodium benzoate, boric acid, polyoxyethylene glycols, colloidal silica.

15. The pharmaceutical tablet as claimed in claim 1, wherein the plasticizers used to provide said barrier-type layers with the elasticity required and to improve their compressibility, adhesion and cohesion, are selected from the group consisting of hydrogenated castor oil, cetyl alcohol, cetylstearyl alcohol, fatty acids, glycerides and triglycerides as are or variously substituted, polyoxyethylene glycols and derivatives thereof having a molecular weight ranging from 400 to 60,000.
Patentansprüche

1. Pharmazeutische Tablette, bei welcher die aktiven Inhaltsstoffe mit einer kontrollierten Geschwindigkeit selektiv im ersten Abschnitt des Magen-Darmtrakts freigesetzt werden, wobei die Tablette eine mehrschichtige Struktur aufweist und enthält:

(a) eine erste Schicht, welche in Gegenwart von biologischen, wässerigen Flüssigkeiten beträchtlich und schnell quillt, wobei das Quellen zu einem Anstieg des Gesamtvolumens der Tablette um mindestens 50 % führt, wenn die Tablette mit dem Magensaft in Kontakt kommt, wobei die Schicht durch ein komprimiertes, granulares Gemisch aus biokompatiblen, hydrophilen Polymeren und mindestens einem stark quellbaren Polymer gebildet wird, das aus der Gruppe ausgewählt ist, die aus quervernetztem Polyvinylpyrrolidon, Hydroxypropylzellulose und Zellulose der typischen Polymeren, Alpha- und Beta- und Gamma-Cyclodextrin und Dextrin der Gruppe ausgewählt ist, wobei die Substanzen 1 % bis 90 % des Gewichts der Schicht ausmachen;

(b) eine zweite Schicht, die zur ersten Schicht benachbart ist und den aktiven Inhaltsstoff enthält und aus biologisch abbaubaren und biokompatiblen Polymeren und anderen Hilfsstoffen hergestellt ist, wobei die Formulierung durch Kompression gebildet wird und der aktive Inhaltsstoff innerhalb eines Zeitintervalls freigesetzt werden kann, das durch vorherige Tests in vitro vorbestimmt werden kann;

(c) eine optionale dritte Schicht, die durch Kompression gebildet und auf die zweite Schicht aufgetragen ist und die erodierbare und/oder gelierbare und/oder quellbare, hydrophile Polymere aufweist und anfänglich dem aktiven Inhaltsstoff gegenüber undurchlässig ist, wobei sie als eine Barriere wirkt, welche die Freigabe des aktiven Inhaltsstoffes, der in der benachbarten zweiten Schicht enthalten ist, moduliert,

wobei die dritte Schicht optional mit der ersten Schicht in Bezug auf Aufbau und funktionelle Eigenschaften identisch ist;

wobei das schnelle Quellen der quellbaren Schicht (a) durch die Verwendung von Hilfsstoffen unterstützt wird, die als anionische, kationische und nicht-ionische Oberflächenaktive Stoffe klassifizierbar sind, die aus der Gruppe ausgewählt sind, die aus Natriumlaurylsulfat, Natriumricinoleat, Natriumtetradecylsulfat, Dioctylsulfosuccinat, Cetomacrogol, Poloxamer, Glycerylmonostearat, Polysorbaten, Sorbitanmonolaurat und Lecithinen besteht.

2. Pharmazeutische Tablette nach Anspruch 1, wobei die erste Schicht zusätzlich zum schnellen Volumenzuwuchs Bioadhesionseigenschaften aufweist, wo durch die pharmazeutische Tablette mit dem Epithelium des ersten Abschnitts des Magen-Duodenum-Trakts lange Zeit in Kontakt gehalten wird.

3. Pharmazeutische Tablette nach Anspruch 1, wobei die aktiven Inhaltsstoffe nicht nur in der Schicht (b), sondern auch in den Schichten (a) und/oder (c) enthalten sein können, so dass die aktiven Inhaltsstoffe zu unterschiedlichen Zeiten freigesetzt werden können.

4. Pharmazeutische Tablette nach Anspruch 1, wobei die aktiven Inhaltsstoffe ein kleines Absorptionsfenster im Magendarmtrakt aufweisen, d. h. im Magen, Duodenum und im ersten Abschnitt des Dünndarms effektiver absorbiert werden.

5. Pharmazeutische Tablette nach Anspruch 1, wobei die aktiven Inhaltsstoffe, die im System enthalten sind, ihre Wirkung großteils auf gastroduodenaler Ebene und im ersten Abschnitt des Dünndarms ausüben.

7. Pharmazeutische Tablette nach Anspruch 1, wobei die aktiven Inhaltsstoffe, die in den Systemen enthalten sind, jene Inhaltsstoffe sind, die eine medizinische Wirkung auf Gastroebene ausüben, ausgewählt aus der Gruppe, die aus Aluminiumhydroxid, Magnesiumcarbonat, Magnesiumoxid, Sucralfat, Natriumcarbonoxolon, Pirenzepin, Loperamid, Citmetin, Ranitidin, Famotidin, Misoprostol, Omeprazol besteht.

8. Pharmazeutische Tablette nach Anspruch 1, wobei die polymeren Substanzen, die zur Herstellung der zweiten
Schicht verwendet werden, welche den aktiven Inhaltsstoff enthält, in wässerigen Flüssigkeiten mit unterschiedlichen Geschwindigkeiten hydrophil und löslich und/oder gelierbar und/oder erodierbar und/oder quellbar sind und aus der Gruppe ausgewählt sind, die aus Hydroxymethylzellulose, Hydroxyethylzellulose, Hydroxypropylmethylzellulose mit einem Molekulargewicht von 1.000 bis 4.000.000, Hydroxypropylzellulose mit einem Molekulargewicht von 2.000 bis 2.000.000, Carboxyvinopolymeren, Chitosanen, Mannanen, Galactomananen, Xantan, Carragheen und Carrageenanen, Amylose, Alginsäure, Salzen und Derivaten davon, Pectinen, Acrylaten, Methacrylaten, Acryl-/Methacryl-Copolymeren, Polyanhydriden, Polymänsauen, Methyvinylethern/Malein-an-hydrind-Copolymeren, Polyvinylalkoholen, Glucanscleroglucanen, Carboxymethylzellulose und Derivaten davon, Ethylzellulose, Methylzellulose und Polyvinylpyrrolidon besteht.

9. Pharmazeutische Tablette nach Anspruch 8, wobei die polymeren Substanzen 5 bis 90 Gewichtsprozent und vorzugsweise 20 bis 85 Gewichtsprozent ausmachen.

10. Pharmazeutische Tablette nach Anspruch 1, wobei die Dicke der Schichten der Tablette von 0,2 mm bis 8 mm reichen kann.

11. Pharmazeutische Tablette nach Anspruch 1, wobei die Schicht, welche den aktiven Inhaltsstoff enthält, und die barriere-artigen Schichten ferner Verdünnungsmittel, BindemitTEL, Gleitmittel, Aufbrechmittel, Färbemittel oder Schmiermittel enthalten.

12. Pharmazeutische Tablette nach Anspruch 1, wobei das Eindringen von Wasser und/oder wässerigen Flüssigkeiten in die verschiedenen Schichten dadurch begünstigt ist, dass in die Formulierung hydrophil Verdünnungsmittel aufgenommen sind, die aus der Gruppe ausgewählt sind, die aus Mannitol, Lactose, Stärke verschiededer Ursprungs, Sorbitol, Xylitol, mikrokristalliner Zellulose, kolloidaler Kieselsäure besteht.

13. Pharmazeutische Tablette nach Anspruch 1, wobei hydrophobe Verdünnungsmittel wie Glycerylmmonostearat, Glycerylbehenaten, hydriertes Rizinusöl, Wachse und einfach, zweifach und dreifach substituierte Glyceride verwendet werden, wenn das Eindringen von Wasser und/oder wässerigen Flüssigkeiten in die mit Arzneistoffen versehenen oder barriere-artigen Schichten verlangsamt werden muss.

14. Pharmazeutische Tablette nach Anspruch 1, wobei die Hilfsstoffe, die für die Herstellung der barriere-artigen Schichten verwendet werden, aus der Gruppe ausgewählt sind, die aus Glycerylmmonostearat und Derivaten davon, semisynthetischen Triglyceriden, semisynthetischen Glyceriden, hydriertem Rizinusöl, Glycerylmonostearat, Glycerylbehenaten, Cetylalkohol, Polyvinylpyrrolidon, Glycerin, Ethylzellulose, Methylzellulose, Natriumarboxymethylzellulose, Magnesiumstearat, Stearinsäure, Talk, Natriumbenzoat, Borsäure, Polyoxymethyenglycolen, kolloidal Kieselsäure besteht.

15. Pharmazeutische Tablette nach Anspruch 1, wobei die Weichmacher, die verwendet werden, um den barriere-artigen Schichten die erforderliche Elastizität zu verleihen und um ihre Komprimierbarkeit, Haftung und Kohäsion zu verbessern, aus der Gruppe ausgewählt sind, die aus hydriertem Rizinusöl, Cetylalkohol, Cetylstearylalkohol, Fettsäuren, Glyceriden und Triglyceriden in unverändertem Zustand oder unterschiedlich substituiert, Polyoxyethylene glycolen und Derivaten davon mit einem Molekulargewicht von 400 bis 60.000 besteht.

Revendications

1. Comprimé pharmaceutique dans lequel les ingrédients actifs sont libérés à une vitesse contrôlée sélectivement dans la première portion du tractus gastro-intestinal, ledit comprimé ayant une structure à couche multiple et comprenant :

(a) une première couche, qui gonfle considérablement et rapidement en présence de fluides aqueux biologiques, ledit gonflement conduisant à une augmentation d'au moins 50% du volume total du comprimé quand il arrive en contact avec le suc gastrique, ladite couche étant formée par un mélange granulaire compressé de polymères hydrophiles biocompatibles et d'au moins un polyamide hautement gonflable choisi parmi le groupe constitué de polyvinylpyrrolidon réticulé, d'hydroxypropylcellulose et d'hydroxypropylmethylcellulose ayant un poids moléculaire allant jusqu'à 150 000, de carboxyméthylcellulose de sodium réticulée, de carboxyméthylamidon, de carboxyméthylamidon de sodium, de copolymère de méthacrylate de potassium-dimethénylbenzène, de poly(alcools de vinyle), d'amyllose, d'amyllose réticulée, de dérivés d'amidon, de cellulose...
microcristalline et de dérivés de cellulose, d'alpha-, bêta- et gamma-cyclodextrines et de dérivés de dextrine en général, lesdites substances représentant 1% à 90% du poids de la couche ;

(b) une seconde couche, adjacente à la première et contenant l'ingrédient actif, constituée de matériaux polymères biodégradables et biocompatibles et d'autres adjuvants par quoi la formulation peut être formée par compression et l'ingrédient actif peut être libéré dans un intervalle de temps qui peut être prédéterminé par des tests préliminaires in vitro ;

(c) une troisième couche facultative, formée par compression et appliquée à la seconde couche, comprenant des polymères hydrosphériques érodables et/ou gélifiables et/ou gonflables et étant initialement imperméable à l'ingrédient actif, agissant comme une barrière modulant la libération de l'ingrédient actif contenu dans la seconde couche adjacente, ladite troisième couche étant facultativement identique à la première couche en composition et en caractéristiques fonctionnelles,

dans lequel le gonflement rapide de la couche gonflable (a) est aidé par l'utilisation d'adjuvants classifiables comme tensioactifs anioniques, cationiques et non ioniques, choisis parmi le groupe constitué du laurylsulfate de sodium, du ricinoléate de sodium, du tétradécylsulfate de sodium, du sulfosuccinate de dioctyle, du céтомacrocol, de poloxamères, du monostéarate de glycéryle, de polysorbates, du monolaurate de sorbitan et de lécithines.

2. Comprimé pharmaceutique selon la revendication 1 dans lequel la première couche, à côté de l'accroissement rapide de volume, montre des propriétés de bioadhérence par lesquelles le comprimé pharmaceutique est maintenu en contact avec l'épithélium de la première portion du tractus gastroduodénal pendant longtemps.

3. Comprimé pharmaceutique selon la revendication 1, dans lequel les ingrédients actifs peuvent être contenus monalement dans la couche (b), mais aussi dans les couches (a) et/ou (c) si bien que lesdits ingrédients actifs peuvent être libérés à des moments différents.

4. Comprimé pharmaceutique selon la revendication 1, dans lequel les ingrédients actifs montrent une petite fenêtre d'absorption dans le tractus gastro-intestinal à savoir qu'ils sont plus efficacement absorbés dans l'estomac, le duodénum et dans la première portion de l'intestin grêle.

5. Comprimé pharmaceutique selon la revendication 1 dans lequel les ingrédients actifs contenus dans le système exercent leur action principalement au niveau gastroduodénal et dans la première portion de l'intestin grêle.

6. Comprimé pharmaceutique selon la revendication 1 dans lequel les ingrédients actifs sont choisis parmi le groupe constitué de la prazosine, de la kétansérine, de l'acétate de guanabenz, du captopril, du chlorhydrate de captopril, d'enalapril, du maléate d'enalapril, du lysinopril, du méthyldopa, du chlorhydrate de méthyldopa, de la lévodopa, de la carbénoxolone de sodium, de la pirenzépine, du lopéramide, de la cimétidine, de la ranitidine, de la famotidine, du misoprostol, de l'oméprazole.

7. Comprimé pharmaceutique selon la revendication 1 dans lequel les ingrédients actifs contenus dans les systèmes sont ceux exerçant une action médicinale au niveau gastrique, choisis parmi le groupe constitué de l'hydroxyde d'aluminium, du carbonate de magnésium, de l'oxyde de magnésium, du sucralfate, de la carbénoxolone de sodium, de la pirenzépine, du lopéramide, de la cimétidine, de la ranitidine, de la famotidine, du misoprostol, de l'oméprazole.

8. Comprimé pharmaceutique selon la revendication 1 dans lequel les substances polymères utilisées pour préparer la seconde couche, qui contient l'ingrédient actif, sont hydrophiles et solubles et/ou gélifiables et/ou érodables et/ou gonflables à une vitesse différente dans des fluides aqueux et sont choisies parmi le groupe constitué de l'hydroxyéthylcellulose, de l'hydroxyéthylcellulose de l'hydropropylméthyl-cellulose, ayant un poids moléculaire de 1 000 à 4 000 000, de l'hydroxypropylcellulose ayant un poids moléculaire de 2 000 à 2 000 000, des polymères de carboxyvinyle, des chitosanes, des mannanes, des gommes de xanthane, de la carraghénone et des dérivés de carraghénone, de l'amyllose, de l'acide alginique, des sels et dérivés de ceux-ci, des pectines, des acrylates, des méthacrylates, des copolymères acryliques/méthacryliques, des polyamides, des poly(acides aminés), des copolymères de méthyléthyléthers/anhydride maléique, des poly(alcools de vinyle), des glycans, des scéroglycans, des carboxyméthylcellulose et des dérivés de celle-ci, l'éthylcellulose, la méthylcellulose et la polyvinylpyrrolidone.

9. Comprimé pharmaceutique selon la revendication 1 dans lequel lesdites substances polymères représentent 5%
à 90% en poids et de préférence 20% à 85% en poids.

10. Comprimé pharmaceutique selon la revendication 1 dans lequel l'épaisseur des couches dudit comprimé peut varier de 0,2 mm à 8 mm.

11. Comprimé pharmaceutique selon la revendication 1 dans lequel la couche contenant l'ingrédient actif et les couches de type barrière contiennent en outre des diluants, des agents de liaison, des agents de glissement, des agents de désintégration, des agents colorants ou des lubrifiants.

12. Comprimé pharmaceutique compressé selon la revendication 1 dans lequel la pénétration de l'eau et/ou des fluides aqueux dans les diverses couches est favorisée en incluant dans la formulation des diluants hydrophiles, choisis parmi le groupe constitué du mannitol, du lactose, de l'amidon d'origine diverse, du sorbitol, du xylitol, de la cellulose microcristalline, de la silice colloïdale.

13. Comprimé pharmaceutique selon la revendication 1 dans lequel des diluants hydrophobes comme le monostéarate de glycéryle, le béhénate de glycéryle, l'huile de castor hydrogénée, des cires et des glycérides mono-, bi- et trisubstitués, sont utilisés quando la pénétration de l'eau et/ou des fluides aqueux dans les couches contenant le principe actif ou de type barrière doit être ralentie.

14. Comprimé pharmaceutique selon la revendication 1 dans lequel les adjuvants utilisés pour la préparation desdites couches de type barrière sont choisies parmi le groupe constitué du monostéarate de glycéryle et des dérivés de celui-ci, de triglycérides semi-synthétiques, de glycérides semi-synthétiques, d'huile de castor hydrogénée, de glycérylpalmitostéarate, de béhénate de glycéryle, d'alcool cétyle, de polyvinylpyrrolidone, de glycérine, d'émulsion, de méthylcellulose, de carboxyméthylcellulose de sodium, de stéarate de magnésium, d'acide stéarique, de talc, de benzoate de sodium, d'acide borique, de polyoxyéthylène glycol, de silice colloïdale.

15. Comprimé pharmaceutique selon la revendication 1 dans lequel les plastifiants utilisés pour fournir lesdites couches de type barrière avec l'élasticité requise et pour améliorer leur compressibilité, adhérence et cohésion, sont choisis parmi le groupe constitué d'huile de castor hydrogénée, d'alcool cétyle, d'alcool cétystéarylique, d'acides gras, de glycérides et de triglycérides tels quels ou substitués de manière diverse, de polyoxyéthylène glycols et des dérivés de ceux-ci ayant un poids moléculaire de 400 à 60 000.