EUROPEAN PATENT SPECIFICATION

FODDER AND METHOD FOR PRODUCTION OF FODDER CONTAINING LIPIDS OF LOW MELTING TEMPERATURE, IN PARTICULAR FODDER FOR AQUATIC ORGANISMS

FUTTER UND VERFAHREN ZUR HERSTELLUNG VON FUTTER, DAS LIPIDE MIT NIEDRIGER SCHMELZTEMPERATUR ENTHÄLT, INSBSONDERE FUTTER FÜR WASSERORGANISMEN

PRODUIT D’ALIMENTATION ANIMALE ET PROCEDE DE PRODUCTION D’UN TEL PRODUIT CONTENANT DES LIPIDES A BASSE TEMPERATURE DE FUSION, ET NOTAMMENT PRODUIT D’ALIMENTATION ANIMALE DESTINES AUX ORGANISMES AQUATIQUES

Designated Contracting States:
BE DE DK ES FR GB GR IE IT NL SE

Priority: 06.09.1993 NO 933160

Date of publication of application: 10.09.1997 Bulletin 1997/37

Proprietor: NUTRECO AQUACULTURE RESEARCH CENTRE AS
4033 Forus (NO)

Inventors:
- LADSTEIN, Kirsti
 4017 Stavanger (NO)
- THORSEN, Fred
 4085 Hundvag (NO)

Representative: Lawrence, Malcolm Graham et al
Hepworth, Lawrence, Bryer & Bizley
Merlin House
Falconry Court
Baker’s Lane
Epping Essex CM16 5DQ (GB)

References cited:
EP-A- 0 425 213
JP-A- 3 108 454
US-A- 4 053 646
GB-A- 2 217 175
US-A- 3 129 102

Fat Crystal Networks and their Strength in Fat Continuous Foods, Mrssr. Johansson et al, 17th Nordic Lipid Symposium, June 1993 and published with the proceedings of the symposium.

Description

[0001] The invention relates to a fodder containing lipids having a low melting temperature, particularly a fodder for aquatic organisms, and a method for making such a fodder.

[0002] Fodder for aquatic organisms such as e.g. fish, is to contain energy, micronutrients and proteins in a proportion varying from species to species. It has been found that salmonids need a fodder relatively rich on energy. Energy may come from proteins, lipids and hydrocarbons, but lipids are preferred both with regard to nutrition and with regard to fodder economy.

[0003] In order to achieve a fodder having a combination of lipids and proteins giving good growth, having the lowest possible raw material price as well as the desired physical properties such as e.g. low sinking speed in water, liquid lipids are supplied to a dry, porous pellet. The lipids are absorbed and kept in the pores of the pellet.

[0004] Marine oils have been found to be nutritional favourable. The ordinarily used oils are liquid at normal ambient temperature. Oils leaks out from the pores, and the leakage increases with temperature. The nutritional value is reduced and at the same time, the oil both pollutes and can cause feeding equipment and other farm equipment to malfunction. Leakage of oil may appear even in the manufacturing process and is, thus, also a disadvantage for the feed producer.

[0005] Recently, there has been a development towards increasingly more lipid-rich fodder for salmonids. Leakage of oil restricts the amount of lipid having a low melting temperature that the fodder can contain, and this fact has restrained the product development in the field in question. How much oil a pellet can hold depends primarily on the porosity, the nature of the oil and the ambient temperature.

[0006] In order to be capable of using the preferred marine oils having a low melting point, the fodder producers have taken several measures in order to prevent leakage. One approach has been to try various solid materials in order to improve the structure and porosity of the dry pellet, thus increasing the ability to absorb oil. The addition of oil has been tried at various stages in the production process, and the production equipment has been modified. Also a thickener such as lecithin has been added the oil. Up to now, none of these measures have reduced leakage of oil to an acceptable level, while still maintaining important fodder properties such as taste, nutritional value and digestibility.

[0007] JP 3-108454 discloses an extrudable composition and method for the production of fish food pellets. Liquid oil and a glycerol fatty add ester or a polyglycerol fatty acid ester is added to the raw food powder in the heated barrel of an extruder. The mixture is then extruded and dried to form the pellets.

[0008] US 3,129,102 concerns peanut butters and their stabilisation by addition of particular vegetable oil materials.

[0009] GB 2 221 175A discloses dry, particulate compositions of lipid encapsulated in caseinate. These compositions are employed as components in pelleted fish food prior to extrusion. The compositions are made by drying an aqueous emulsion of caseinate and lipid.

[0010] EP 0 425213A concerns compositions of GB 2 217 175A but with the addition of a starch, e.g. dextrin.

[0011] US 4,053,646 discloses dry, particulate compositions of lipid encapsulated in starch. The compositions are made by drying an aqueous suspension of starch and lipid material.

[0012] The object of the invention is to provide a fodder containing lipids having a low melting point, at the same time reducing the risk for leakage. Also, a further objective is to provide a method for making such a fodder.

[0013] Accordingly, the present invention provides a fodder comprising pellets and lipids having a low melting point which are in the form of oils characterized in that the said lipids are added to the pelletized fodder and carried within a crystalline structure formed by other lipids, emulsifiers or a mixture of lipids and emulsifiers.

[0014] The crystalline structure may be formed by a tempered oil, preferably tempered rape seed oil.

[0015] The crystalline structure may also be formed by a mono-glyceride, di-glyceride, tri-glyceride, or a mixture thereof.

[0016] In a preferred embodiment, the crystalline structure may be formed by a tempered oil mixed with a mono-glyceride, a di-glyceride and/or a tri-glyceride.

[0017] The invention also provides a fodder comprising a fodder material in pelletised form, the fodder material containing (i) lipids having a low melting point and which are in the form of oils and (ii) another lipid or lipids, an emulsifier or a mixture thereof, characterised in that the other lipid(s), emulsifier or mixture thereof forms a crystalline structure within the pellets of the fodder material so that the said lipids (i) are carried within said crystalline structure and immobilised therein.

[0018] In preferred embodiments of the fodders of the invention, said lipids having a low melting point and which are in the form of an oil is a marine oil.

[0019] The invention further provides a method for making a fodder as hereinbefore described, comprising mixing (i) the other lipid(s), emulsifier or mixture thereof into (i) lipids having a low melting point and which are in the form of oils, (i) and (ii) being interactive to form a mixture which is at least partly crystallized at the fodder's highest temperature of use and storage, heating the mixture of (i) and (ii) to a liquid state, and adding said liquid and the porous pellets one to the other, the pellets, after having absorbed a desired amount of the mixture, being then cooled to ambient temperature.
In preferred embodiments said lipids having a low melting point and which are in the form of an oil is a marine oil.

In the following, the invention is firstly described in general, and then through three embodiments.

The main principle of the invention is related to the fact that lipids which have a low melting point, i.e. in the form of an oil, are bound in a crystalline structure formed upon the addition of an additive component of lipid nature, and which normally has a higher melting temperature than the oil.

The crystalline structure is stable at temperatures above the normal use and storage temperature of the fodder. The additive + oil is applied in a liquid state at elevated temperature to porous pellets and, following cooling, the crystallized mixture stays, as well demonstrated, within pores in the pellets, but in a solid or jelly-like form. Experiments have shown that lipids having a melting point above fifty degrees Celsius and containing more than five percent fatty acids having twenty carbon atoms or more, are well suited to function as the additive component. Also, good results have been achieved with mono- and di-glyceride emulsifiers, as well as tri-glyceride.

Lipids having a lower melting point remain liquid within the crystalline structure, but it is assumed that a portion of these lipids are included in the crystalline structure as well. Provided that the additive component forms a crystalline structure capable of accommodating the actual lipids, the mixture appears in a solid or jelly-like form at relatively high ambient temperature. In order for the mixture to penetrate well into the porous pellet, it may be necessary to keep both the mixture and the pellet at an elevated temperature for a period. Additive components containing mono-, di-, tri-glyceride seem to give an improved penetration into the pores.

That a crystallized additive component can serve as a carrier for liquid lipids, may be explained by the fact that the additive component forms a crystalline structure consisting of many small crystals rather than a few and large crystals, thus forming many microscopic crystal boundaries with spaces for liquid lipids.

The ability of a crystallized additive component to hold on to oil at a given temperature can be measured by keeping a mixture of oil and additive component in a measuring glass at the actual temperature. A crystallized sediment is formed, carrying a larger or smaller part of the oil, and free oil becomes floating on top of the sediment. After e.g. one day, the level of the sediment, called the crystallization height, and the total height to the liquid surface is read. The proportion between the two levels/heights is a measure of the ability of the additive component to hold on to oil at the actual temperature. Experiments have shown that in order to achieve a satisfactory binding of oil within the fodder, the additive component - at the fodder's highest storage or use temperature - should give a crystallization height (level) corresponding to at least half the total height, when measured as described.

The table below represents measurements of achieved percentage crystallization height with varying concentrations of different additive components in a marine oil at a temperature of forty degrees Celsius.

<table>
<thead>
<tr>
<th>Additive component</th>
<th>Concentration in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempered rape seed oil (A)</td>
<td>1-2 2-3 3-4 4-5 6-7 8</td>
</tr>
<tr>
<td>Mono-glyceride (B)</td>
<td>25 75 -- 85 -- 95</td>
</tr>
<tr>
<td>Mono-di-glyceride (C)</td>
<td>-- -- 65 -- 95 --</td>
</tr>
<tr>
<td>Mixture A + B</td>
<td>45 65 95 95 100 --</td>
</tr>
<tr>
<td>Mixture A + C</td>
<td>50 40 60 100 95 --</td>
</tr>
</tbody>
</table>

In the table, three additive components are indicated by name and, additionally, denoted through a capital letter A, B and C. Also, measurements from experiments using mixtures of the additive components A and B as well as A and C are recorded. The table shows that a satisfactory binding of oil is achieved, i.e. corresponding to approximately fifty percent crystallization height, when two to four percent of the shown additive components are added into the oil.

In a first example of embodiment of the invention, melted, fully tempered rape seed oil having a melting point of about sixty degrees Celsius is added to marine fish oil. This corresponds to additive component A in the table. Thus, the additive component as well as the marine oil are lipids. The liquid mixture of tempered rape seed oil and marine fish oil are applied to, and absorbed by, the dry pellet at elevated temperature, so that crystallization does not start before the mixture is absorbed. The capelin oil should have a temperature of at least forty degrees Celsius, in order to achieve a homogenous mixture and in order to avoid that the rape seed oil crystalizes immediately. Crystallization occurs at twenty five to thirty five degrees Celsius, dependent on the cooling speed and the percentage amount of rape seed oil added.

In a second example of embodiment, a mono-glyceride of a saturated vegetable oil was used, the oil having a melting point of about seventy two degrees Celsius. When adding three percent mono-glyceride into marine fish oil, more than fifty percent crystallization height is achieved, such as indicated for additive component B in the table. The
mixture is supplied to the porous pellet at elevated temperature as described above.

[0031] As a third example of embodiment, it should be mentioned that a mono-di-glyceride lacking a defined melting point and containing about fifty percent mono-glyceride of a vegetable oil, crystalizes together with capelin oil and gives satisfactory crystallization height when the concentration exceed three percent, such as indicated in the table for additive component C. Also this mixture is added to the porous pellet at elevated temperature.

[0032] In other respects, experiments have shown that a mixture of tempered rape seed oil and mono-di- and/or tri-glyceride functions well a crystalizing additive components in capelin oil, such as indicated for the mixtures A+B and A+C in the table. When mixing mono-, di-, tri-glyceride into the tempered rape oil, the amount of the latter may be reduced, effecting a better penetration into porous pellets. Additionally, some improvement in the digestibility of the fodder may be expected. No substantial loss of nutritional value, digestibility or palatability of fish fodder made in accordance with the invention has been found, where as leakage and loss of lipids have been greatly reduced.

Claims

1. A fodder comprising pellets and lipids having a low melting point and which are in the form of an oil characterized in that the said lipids are added to the pelletized fodder and carried within a crystalline structure formed by other lipids, emulsifiers or a mixture of lipids and emulsifiers.

2. A fodder as claimed in claim 1, wherein the crystalline structure is formed by a tempered oil.

3. A fodder as claimed in claim 2, wherein the tempered oil is tempered rape seed oil.

4. A fodder as claimed in claim 1, wherein the crystalline structure is formed by a mono-glyceride, di-glyceride, tri-glyceride, or a mixture thereof.

5. A fodder as claimed in claim 1, wherein the crystalline structure is formed by a tempered oil mixed with a mono-glyceride, a di-glyceride and/or a tri-glyceride.

6. A fodder comprising a fodder material in pelletised form, the fodder material containing (i) lipids having a low melting point and which are in the form of an oil and (ii) another lipid or lipids, an emulsifier or a mixture thereof, characterised in that the other lipid(s), emulsifier or mixture thereof forms a crystalline structure within the pellets of the fodder material so that the said lipids (i) are carried within said crystalline structure.

7. A fodder as claimed in any of claims 1 to 6, wherein said lipids having a low melting point and which are in the form of an oil is a marine oil.

8. A method for making a fodder as claimed in any preceding claim, comprising mixing (ii) the other lipid(s), emulsifier or mixture thereof into (i) the lipids having a low melting point and which are in the form of an oil, (i) and (ii) being interactive to form a mixture which is at least partly crystallized at the fodder's highest temperature of use and storage, heating the mixture of (i) and (ii) to a liquid state, and adding said liquid and the porous pellets one to the other, the pellets, after having absorbed a desired amount of the mixture, being then cooled to ambient temperature.

9. A method as claimed in claim 8, wherein said lipids having a low melting point and which are in the form of an oil is a marine oil.

Patentansprüche

1. Futtermittel, das Pellets und Lipide umfasst, die einen niedrigen Schmelzpunkt aufweisen und in Form eines Öls vorliegen, dadurch gekennzeichnet, dass die Lipide dem pelletierten Futtermittel zugesetzt sind und von einer kristallinen Struktur getragen werden, die von anderen Lipiden, Emulgatoren oder einem Gemisch aus Lipiden und Emulgatoren gebildet ist.

2. Futtermittel nach Anspruch 1, bei dem die kristalline Struktur durch ein gehärtetes Öl gebildet ist.

3. Futtermittel nach Anspruch 2, bei dem das gehärtete Öl gehärtetes Rapssamenöl ist.
4. Futtermittel nach Anspruch 1, bei dem die Kristallstruktur durch ein Mono-, Di- oder Triglycerid oder ein Gemisch davon gebildet ist.

5. Futtermittel nach Anspruch 1, bei dem die Kristallstruktur durch ein gehärtetes Öl im Gemisch mit einem Mono-, einem Di- und/oder einem Triglycerid gebildet ist.

6. Futtermittel, das einen Futterstoff in pelletierter Form umfasst, der (i) Lipide, die einen niedrigen Schmelzpunkt aufweisen und in Form eines Öls vorliegen, und (ii) ein weiteres Lipid oder weitere Lipide, einen Emulgator oder ein Gemisch davon enthält, **dadurch gekennzeichnet, dass** das weitere Lipid bzw. die weiteren Lipide, der Emulgator oder das Gemisch daraus in den Pellets des Futterstoffes eine kristalline Struktur bilden, so dass die Lipide (i) von dieser Kristallstruktur getragen werden.

7. Futtermittel nach einem der Ansprüche 1 bis 6, bei dem die Lipide, die einen niedrigen Schmelzpunkt aufweisen und in Form eines Öls vorliegen, ein aus Meerestieren gewonnenes Öl darstellen.

8. Verfahren zur Herstellung eines Futtermittels nach einem der vorhergehenden Ansprüche, welches das Mischen des (ii) weiteren Lipids bzw. der weiteren Lipide, des Emulgators oder des Gemisches daraus mit den (i) Lipiden, die einen niedrigen Schmelzpunkt aufweisen und in Form eines Öls vorliegen, wobei (i) und (ii) interaktiv ein Gemisch ergeben, das bei der höchsten Gebrauchs- und Lagerungstemperatur des Futtermittels zumindest teilweise kristallisiert, die Erwärmung des Gemisches aus (i) und (ii) bis zur Verflüssigung und die Vereinigung der Flüssigkeit mit den porösen Pellets umfasst, wobei die Pellets nach Absorption einer gewünschten Menge des Gemisches auf Raumtemperatur abgekühlt werden.

9. Verfahren nach Anspruch 8, bei dem die Lipide, die einen niedrigen Schmelzpunkt aufweisen und in Form eines Öls vorliegen, ein aus Meerestieren gewonnenes Öl darstellen.

Revendications

1. Fourrage comprenant des granulés et des lipides ayant un point de fusion bas et se présentant sous la forme d’une huile, **caractérisé en ce que** lesdits lipides sont ajoutés dans le fourrage condensé et supportés à l’intérieur d’une structure cristalline formée par d’autres lipides, émulsifiants, ou par un mélange de lipides et d’émulsifiants.

2. Fourrage selon la revendication 1, dans lequel la structure cristalline est formée par une huile tempérée.

3. Fourrage selon la revendication 2, dans lequel l’huile tempérée est de l’huile de colza tempérée.

4. Fourrage selon la revendication 1, dans lequel la structure cristalline est formée par un monoglycéride, diglycéride, triglycéride, ou un mélange de ceux-ci.

5. Fourrage selon la revendication 1, dans lequel la structure cristalline est formée par une huile tempérée mélangée avec un monoglycéride, un diglycéride et/ou un triglycéride.

6. Fourrage comprenant une matière fourragère sous forme condensée, la matière fourragère contenant (i) des lipides ayant un point de fusion bas et se présentant sous la forme d’une huile et (ii) un ou plusieurs autres lipides, un émulsifiant ou un mélange de ceux-ci, **caractérisé en ce que** le(s) autre(s) lipide(s), l’émulsifiant ou le mélange de ceux-ci forme une structure cristalline à l’intérieur des granulés de la matière fourragère, de sorte que lesdits lipides (i) sont supportés à l’intérieur de ladite structure cristalline.

7. Fourrage selon l’une quelconque des revendications 1 à 6, dans lequel lesdits lipides ayant un point de fusion bas et se présentant sous la forme d’une huile sont une huile marine.

8. Procédé de préparation d’un fourrage selon l’une quelconque des revendications précédentes, comprenant les étapes consistant à mélanger (ii) le(s) autre(s) lipide(s), l’émulsifiant ou un mélange de ceux-ci dans (i) les lipides ayant un point de fusion bas et se présentant sous la forme d’une huile, (i) et (ii) interagissant pour former un mélange qui est au moins partiellement cristallisé à la température la plus élevée d’utilisation et de stockage du fourrage, chauffer le mélange de (i) et (ii) à un état liquide, et ajouter ledit liquide et les granulés poreux l’un dans l’autre, les granulés, après avoir absorbé une quantité souhaitée du mélange, étant ensuite refroidis à la tempé-
rature ambiante.

9. Procédé selon la revendication 8, dans lequel lesdits lipides ayant un point de fusion bas et se présentant sous la forme d'une huile sont une huile marine.