Date of publication and mention of the grant of the patent: 17.07.2002 Bulletin 2002/29

Application number: 97301155.4

Date of filing: 21.02.1997

Device for holding a vehicle sliding door at full-open position
Vorrichtung zum Halten einer Fahrzeugschiebetür in voll geöffneter Stellung
Dispositif pour tenir une portière coulissante dans une position complètement ouverte

Designated Contracting States: DE FR GB

Priority: 23.02.1996 JP 6170196

Date of publication of application: 27.08.1997 Bulletin 1997/35

Proprietors:
- MITSUI KINZOKU KOGYO KABUSHIKI KAISHA Chuo-ku Tokyo-To (JP)
- TOYOTA JIDOSHA KABUSHIKI KAISHA Aichi-ken 471-8571 (JP)

Inventors:
- Mizuki, Tetsuro Kofu-shi, Yamanashi-ken (JP)
- Dowling, Patrick Nirasaki-shi, Yamanashi-ken (JP)
- Katoh, Yukihide Toyota-shi, Aichi-ken 471 (JP)
- Kobashi, Kenji Toyota-shi, Aichi-ken 471 (JP)

Representative: Bubb, Antony John Allen et al Wilson Gunn Gee, Chancery House, Chancery Lane London WC2A 1QU (GB)

References cited:
- GB-A- 1 178 671
- JP-U- 2 121 571
- US-A- 4 835 997

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] This invention relates to a device for holding a vehicle sliding door, which is slidably attached to a vehicle body, at the full-open position.

[0002] A conventional vehicle sliding door has rollers which slidably engage with a guide rail attached to a side surface portion of a vehicle body, and moves substantially in parallel with the side surface of the vehicle between its full-open and full-close positions.

[0003] The above sliding doors include a device for holding a sliding door at the full-close position, and a device for holding a sliding door at the full-open position. The present invention relates to the latter holding device.

[0004] The latter holding device is comprised of a blade spring having a sufficient resiliency, which is disposed on an end portion of the guide rail. When the sliding door moves up to the full-open position, rollers of the sliding door deform the blade spring to climb over it, and then the sliding door is held at the full-open position by the resiliency of the blade spring.

[0005] In the holding device which employs a blade spring, a force required for holding the sliding door at the full-close position is proportional to the force of the blade spring. However, a strong blade spring causes more friction between the rollers and the blade spring, which disadvantageously accelerates abrasion of both the rollers and the blade spring. Moreover, a strong blade spring disadvantageously causes a jerky movement of the sliding door when the rollers climb over the blade spring.

[0006] Figs. 1 and 2 show another type of holding device which is described in Japanese Utility Model Laid Open (Kokai) No. 2-121571. In Figs. 1 and 2, reference symbol A designates a guide rail, disposed on a vehicle body, with which a plurality of rollers B are slidably engaged. The rollers B are rotatably supported on a roller bracket C which is rotatably attached by a shaft E to a connecting bracket D fixed to the sliding door.

The holding device 10 has a coil spring 19 which is called the over center spring. An upper end portion or upward-bent leg 20 of the spring coil 19 is inserted into a small engaging hole 21 of the latch 15, and a lower end portion or downward-bent leg 22 is inserted toward the closed position, which is inconvenient.

As shown in Fig.3, a vehicle body 1 has a sliding door 2 which is slidably supported on a guide rail 4 fixed to a rear outer side panel 3 of the vehicle body 1. The sliding door 2 moves substantially in parallel with a side surface portion of the vehicle body 1 between a full-open position opposite the side panel 3 and a full-closed position closing an entrance 5 of the vehicle body 1.

[0007] The holding device shown in Figs. 1 and 2 exhibits an extremely high holding force since an engagement between the latch G and the striker J is held by the ratchet H, but has a disadvantage that unless the opening handle for the sliding door is operated, the latch G and the striker J cannot be disengaged. In other words, the sliding door cannot be closed when a portion other than the opening handle of the sliding door is pushed toward the closed position, which is inconvenient.

[0008] It is, therefore, an object of the present invention to provide a device for holding a vehicle sliding door at a full-open position, which resolves the above-mentioned problems.

[0009] This object is achieved by the features of Claim 1.

[0010] Further preferred features and advantages of the present invention will become apparent from the detailed description of the preferred embodiments found below with reference to the accompanying drawings in which:

Fig. 1 is a side view showing a relation between a vehicle body and a sliding door;

Fig. 3 is a side view showing a relation between a vehicle body and a sliding door;

Fig. 4 is a plan view of a holding device according to an embodiment of the present invention, in a state in which a latch is at the disengaged position;

Fig. 5 is a plan view of the holding device of Fig.4 in a state in which the latch is at the engaged position;

Fig. 6 is an exploded view of the holding device; and

Fig. 7 is a plan view of a holding device according to another embodiment of the present invention.

As shown in Fig.3, a vehicle body 1 has a sliding door 2 which is slidably supported on a guide rail 4 fixed to a rear outer side panel 3 of the vehicle body 1. The sliding door 2 moves substantially in parallel with a side surface portion of the vehicle body 1 between a full-open position opposite the side panel 3 and a full-closed position closing an entrance 5 of the vehicle body 1.

A connecting bracket 6 is, as shown in Figs.4 to 6, fixed to the sliding door 2. A roller bracket 8 is rotatably attached to a leading end portion of the connecting bracket 6 by a shaft 7 and has a plurality of rollers 9 which slidably engage with the guide rail 4.

A holding device 10 for holding the sliding door 3 at the full-open position is provided on the connecting bracket 6. The holding device 10 includes a base plate 12 fixed to the bracket 6 by a fastener 11 such as a screw or a rivet, a cover plate 14 fixed to the base plate 12 through a fastener 13 such as a screw or a rivet, and a latch 15 disposed between the base plate 12 and the cover plate 14. The latch 15 is rotatably attached to the plates 12 and 14 through a shaft 16.

The holding device 10 has a coil spring 19 which is called the over center spring. An upper end portion or upward-bent leg 20 of the spring coil 19 is inserted into a small engaging hole 21 of the latch 15, and a lower end portion or downward-bent leg 22 is inserted...
into a small engaging hole 23 of the base plate 12. The coil spring 19 is compressed to the maximum when the upward-bent leg 20 is superposed on a straight line connecting the downward-bent leg 22 and the shaft 16 of the latch 15. Therefore, the latch 15 is held by the resiliency of the coil spring 19 at both the disengaged position shown in Fig. 4 and the engaged position shown in Fig. 5 with respect to the straight line, i.e. the dead-center position.

[0014] The latch 15 has a U-shaped groove 18 with which a striker 17 fixed to the vehicle body 1 is engageable. When the sliding door 2 moves toward the full-open position and then the striker 17 is engaged with the U-like groove 18, although the latch 15 is once held at the disengaged position shown in Fig. 4 by the resiliency of the coil spring 19, it is rotated over the dead-center point against the resiliency of the coil spring 19, thereby being displaced to the engaged position shown in Fig. 5. In the state shown in Fig. 5, the latch 15 is held at the engaged position by the resiliency of the coil spring 19, and therefore the sliding door 2 is held at the full-open position. When the sliding door 2 moves up to the full-open position, an abutting portion 24 of the connecting bracket 6 engages a stop 25 fixed to the vehicle.

[0015] According to the above-mentioned construction, the sliding door 2 is prevented from jerking as it moves to the full open position since the resilient force of the coil spring 19 for holding the sliding door 2 at the full-open position merely acts to provide a rotational resistance of the latch 15, and further the roller 9 is not subject to abrasion as compared with that of the above-mentioned device using the conventional blade spring since the roller 9 does not slidably engage a spring. Furthermore, the holding force of the holding device 10 can easily be raised by increasing the resilient force of the coil spring 19 since the there is no fear that the roller 9 will become worn thereby.

[0016] When the sliding door 2 is closed, the latch 5 is merely held by the resiliency of the coil spring 19, and therefore when external force is applied to a desired portion of the sliding door 2 in the door closing direction, the latch 15 is rotated in the disengaging direction, whereby the sliding door 2 slides in the door closing direction.

[0017] There is shown in Fig. 7 another embodiment of the present invention which uses a blade spring 19a instead of the coil spring 19. The blade spring 19a is fixed to the cover case 14 at one end thereof by a fastener 26. The blade spring 19a is formed with a bent portion 27 at the other end thereof, and the bent portion 27 engages with a recess portion 28 of the latch 15a when the latch 15a is at the engaged position, thereby holding the latch 15a at the engaged position.

[0018] In the above description, two kinds of springs are exemplified as a resilient member for holding the latch at the engaged position. However, other resilient members of various kinds may be employed.

[0019] The foregoing discussion discloses and describes merely exemplary embodiment of the present invention only. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the scope of the invention as defined in the following claims.

Claims

1. A device for holding a vehicle sliding door at full-open position, comprising:
 a striker (17) fixable to a vehicle body;
 a latch (15;15a) rotatably mountable on the sliding door, said latch having a U-shaped groove (18) for receiving the striker when the sliding door is fully opened, and said latch having a first position in which the U-shaped groove may be disengaged from the striker and a second position in which the U-shaped groove (18) may be engaged with the striker;
 characterised in that the device includes resilient means (19,19a) disposed, in use, at a location between the latch and the sliding door for holding the latch (15,15a) in each of the first and the second positions by the resilient force thereof, whereby the latch is required to overcome the force of the resilient means in order to move between the said positions.

2. A device according to Claim 1, characterised in that said resilient means (19) is an overcentre spring mechanism, the arrangement being such that the spring mechanism is caused to pass through a dead centre position upon movement of the latch (15) between the first and second positions.

3. A device according to Claim 1 or 2, characterised in that said resilient means comprises a coil spring (19) having an upward-bent leg (20) and a downward-bent leg (22), said upward-bent leg (20) is connected to the latch (15), and said downward-bent leg (22) is connectable to the sliding door.

4. A device according to claim 1 or 2, characterised in that said resilient means comprises a blade spring (19a) having a bent portion (27), and said latch is formed at its outer periphery with a recess (28) in which the bent portion (27) is resiliently engaged when the latch is in the second position.
Halterung einer Fahrzeugschiebetür

1. Vorrichtung zum Halten einer Fahrzeugschiebetür in voll geöffneter Stellung, umfassend:

 ein an einer Fahrzeugkarosserie befestigbares Anschlagstück (17);
 einen Riegel (15; 15a), drehbar an der Schiebetür befestigbar, der Riegel weist eine U-förmige Nut (18) zum Aufnehmen des Anschlagstücks auf, wenn die Schiebetür vollständig geöffnet ist, und der Riegel besitzt eine erste Stellung, in der die U-förmige Nut von den Anschlagstücks auf, wenn die Schiebetür vollständig geöffnet ist, und der Riegel besitzt eine erste Stellung, in der die U-förmige Nut (18) mit dem Anschlagstück gekoppelt sein kann und eine zweite Stellung, in der die U-förmige Nut (18) mit dem Anschlagstück gekoppelt sein kann; dadurch gekennzeichnet, dass das Gerät ein elastisches Mittel (19, 19a) einschließt, das während der Benutzung eine Lage zwischen dem Riegel und der Schiebetür zum Halten des Riegels (15, 15a) in allen ersten und zweiten Stellungen durch seine elastische Kraft einnimmt, wobei der Riegel die Kraft des elastischen Mittels überwinden muss, um sich zwischen den Stellungen zu bewegen.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Gerät ein elastisches Mittel (19, 19a) einschließt, das während der Benutzung eine Lage zwischen dem Riegel und der Schiebetür zum Halten des Riegels (15, 15a) in allen ersten und zweiten Stellungen durch seine elastische Kraft einnimmt, wobei der Riegel die Kraft des elastischen Mittels überwinden muss, um sich zwischen den Stellungen zu bewegen.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gerät ein elastisches Mittel (19) ein Über- totpunktfedermechanismus ist, wobei die Anordnung derart ist, dass der Federmechanismus nach der Bewegung des Riegels (15) zwischen den ersten und zweiten Stellungen veranlasst wird, eine mittlere Totpunktstellung zu durchlaufen.

4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gerät ein elastisches Mittel eine Spiralfeder (19) mit einem aufwärts gebogenen Schenkel (20) und einem abwärts gebogenen Schenkel (22) besitzt und der aufwärts gebogene Schenkel (20) mit dem Riegel (15) verbunden ist und der abwärts gebogene Schenkel (22) mit der Schiebetür verbindbar ist.

5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gerät ein elastisches Mittel eine Blattfeder (19a) mit einem gebogenen Abschnitt (27) umfasst, an dem Außenrand des Riegels ist eine Ausnehmung (28) angeformt, in die der gebogene Abschnitt (27) elastisch eingreift, wenn der Riegel in der zweiten Stellung ist.

Revendications

1. Dispositif pour tenir une porte coulissante de véhicule en position complètement ouverte, comprenant :

 - un taquet (17) susceptible d'être fixé à une carrosserie de véhicule ;
 - un verrou (15 ; 15a) susceptible d'être monté de façon rotative sur la portière coulissante, le dit verrou ayant une rainure en forme de U (18) pour recevoir le taquet lorsque la portière coulissante est complètement ouverte et le dit verrou ayant une première position, dans laquelle la rainure en forme de U peut être dégagée du taquet, et une deuxième position, dans laquelle la rainure en forme de U (18) peut recevoir le taquet ; caractérisé en ce que le dispositif comporte des moyens élastiques (19, 19a) disposés, pendant l'utilisation, en un emplacement entre le verrou et la portière coulissante afin de tenir le verrou (15, 15a) dans chacune des première et deuxième positions, grâce à la force élastique de ceux-ci, grâce à quoi le verrou doit dépasser la force des moyens élastiques pour se déplacer entre lesdites positions.

2. Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens élastiques (19) sont un mécanisme à ressort décentré, l'agencement étant tel que le mécanisme à ressort est fait passer par une position de point mort lors du déplacement du verrou (15) entre les première et deuxième positions.

3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que lesdits moyens élastiques comprennent par un ressort hélicoïdal (19) ayant une extrémité courbée vers le haut (20) et une extrémité courbée vers le bas (22), ladite extrémité courbée vers le haut (20) étant connectée au verrou (15) et ladite extrémité courbée vers le bas (22) étant susceptible d'être connectée à la portière coulissante.

4. Dispositif selon la revendication 1 ou 2, caractérisé en ce que lesdits moyens élastiques comprennent par un ressort à lame (19a), ayant une partie courbée (27), et le dit verrou est muni, à sa périphérie extérieure, d'une cavité (28) dans laquelle la partie courbée (27) est engagée, de façon élastique, lorsque le verrou est dans la deuxième position.