EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 15.03.2000 Bulletin 2000/11

Application number: 96810857.1

Date of filing: 09.12.1996

CLOSED RECYCLING SYSTEM FOR CHROMIUM PLATING

GESCHLOSSENES RECYCLING-SYSTEM FÜR CHROMPLATTIERUNGS-VERFAHREN

SYSTEME DE RECYCLAGE DANS UN PROCEDE DE CHROMAGE

Designated Contracting States: DE GB NL SE

Priority: 15.12.1995 JP 32736795

Date of publication of application: 02.07.1997 Bulletin 1997/27

Proprietor: Nichiei Hard Chrome Industrial Company Sapporo-shi, Hokkaido (JP)

Inventor: Iida, Hideomi Sapporo-shi, Hokkaido (JP)

Representative: Hug Interlizenz AG Nordstrasse 31, Postfach 127 8035 Zürich (CH)

References cited:

- CHEMICAL ABSTRACTS, vol. 100, no. 10, 5 March 1984 Columbus, Ohio, US; abstract no. 76319q, page 510; XP002029192 & BR 8 200 127 A (COMPANHIA SIDERURGICA) 13 September 1983

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

[0001] The present invention concerns an improvement for treating means for chromium plating solution, solution wastes from chromium plating and chromic acid cleaning water in chromium plating.

2. Description of Related Art

[0002] Treating means for chromium plating solution, solution wastes from chromium plating or the like is generally classified into the following three types:

1. Hexavalent chromium is reduced into trivalent chromium (Cr\(^{3+}\)) by various kinds of reducing means and then precipitating to remove the same as chromium hydroxide by an alkaline chemical.

2. Chromates with less solubility such as barium salt (BaCrO\(_4\)) or lead salt (PbCrO\(_4\)) in metal chromates are formed and removed by precipitation.

3. Chromic acid is recovered by ion exchanging means, that is, by using free base type or strongly basic anion exchange resins.

[0003] Among the treating means described above, the second method of forming insoluble chromates is scarcely utilized at present since barium salt and lead salt used are expensive, such salts are toxic, a stoichiometrically exact addition amount is required and the addition amount has to be changed currently in accordance with the fluctuation of discharged liquid, flow rate and chromic acid concentration, thereby causing various problems with a view point of operation control.

[0004] The third ion exchange means requires control for the upper limit of the chromic acid concentration and desorption of strongly basic anion exchange resin upon treating discharged chromic acid solution. When hexavalent chromium is reduced into trivalent chromium after pH adjustment and then chemicals are added, chromium hydroxides are formed and precipitated to form wastes, which however result in public pollution.

[0005] In each of the treating means described above, reduction and neutralization are applied to form sludges, which are treated so as not to violate legal regulations defining poisons and deadly chemicals.

[0006] Under such circumstances, various costs such as installation cost, chemical cost for intoxifying treatment and treating cost for public pollution (sludge treating cost) are enormous and, in addition, highly skilled techniques are required for the operation control, so that it often goes beyond the cost bearing performance and technical faculty of minor enterprises.

[0007] It is accordingly an object of the present invention to overcome the foregoing problems in the prior art, intend for convenient and economical effective utilization of liquid wastes containing toxic materials formed in a great amount, for example, in chromium plating factories, to establish a closed recycle system for entire chromium plating process through elimination of public pollution, resource saving and energy saving and, thereby, prevent formation of materials leading to public pollution.

SUMMARY OF THE INVENTION

[0008] The foregoing object can be attained in accordance with the present invention by technical means of providing, in a chromium plating chamber for conducting chromium plating operation, a recovery vessel for not flowing a chromium plating solution, solution wastes from chromium plating and chromic acid cleaning water out of the chromium plating chamber, a chromium plating vessel for applying chromium plating to a work to be plated, a filtering device in communication with the recovery vessel used for a chromium plating solution having strong oxidizing power, an impurity recovering electrolysis vessel in communication with the chromium plating vessel and the filtration device, respectively, for precipitating iron ions as impurities in the form of iron hydroxide by reduction and converting trivalent chromium into hexavalent chromium of chromic acid by oxidation and providing, to the chromium plating chamber, a chromic acid mist recovery device in communication with the recovery vessel for recovering and liquefying chromic acid mist formed upon chromium plating, and a chromic acid mist cleaning tower in communication with the recovery vessel for cleaning chromic acid mists flowing from the chromic acid mist recovery device.

[0009] For constitution of a closed recycle system, construction of the recovery vessel underground of the chromium plating chamber and provision of the chromium plating vessel at the inside of the recovery vessel are preferred.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Fig. 1 is an explanatory view for a closed recycle system for use in chromium plating solution, solution waste from chromium plating and chromic acid cleaning water according to the present invention; Fig. 2 is an explanatory view for a closed recycle system with temperature control for the chromium plating solution; Fig. 3 is a schematic explanatory view for the inside of an impurity recovering electrolysis vessel; Fig. 4 is a schematic explanatory view for the inside of the chromic acid mist recovery device; and Fig. 5 is a cross sectional view taken along line (5)- (5) in Fig. 4.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0011] Preferred embodiments of the present invention will be explained with reference to Fig. 1.
[0012] A chromium plating chamber 1 for conducting chromium plating operation has various facilities required for chromium plating such as a recovery vessel 2, a chromium plating vessel 3, a filtration device 4, an impurity recovering electrolysis vessel 5, a chromic acid mist recovery device 6 and a chromic acid mist cleaning tower 7 in which the filtration device 4, the chromic acid mist recovery device 6, the chromic acid mist cleaning tower 7 and the like are in communication with the recovery vessel 2, and the impurity recovering electrolysis vessel 5 is in communication with the chromium plating vessel 3. Further, the chromium plating vessel 3 is disposed in the recovery vessel 2, so that the chromium plating solution, the solution wastes from chromium plating and the chromic acid cleaning water are entirely recovered to the recovery vessel 2, to constitute a closed recycle system not flowing them out of the chromium plating chamber.

[0013] The recovery vessel 2 recovers the chromium plating solution, solution wastes from chromium plating and chromic acid cleaning water entirely and does not discharge them at all to the outside of the chromium plating chamber. An underground chamber constructed to the chromium plating chamber 1 is used as the recovery vessel 2.

[0014] The recovery vessel 2 has a water permeable lid 8 (for example, grating) at an opening portion so that the chromium plating solution, the solution wastes from chromium plating and chromic acid cleaning water leaked to the inside of the chromium plating solution 1 are recovered.

[0015] The chromium plating vessel 3 is provided for applying chromium plating to the article a to be plated (hereinafter referred to as a plated article), which is disposed in the recovery vessel 2. By the disposition in the recovery vessel 2, if chromium plating solution leakage accident should occur, the leaked solution can be recovered in the recovery vessel 2, as well as aqueous chromic acid formed upon raising the chromium plated article A on the chromium plating vessel 3 and washing by shower can be recovered to the recovery vessel 2.

[0016] The chromium plating vessel 3 is disposed in the recovery vessel 2 at a lower position because large sized plated article a, a heavy weight plated article a or a large and heavy weight plated article a can be easily put into and taken out of the chromium plating vessel 3, as compared with the case of providing the chromium plating vessel 3 above the ground, as well as operators can conduct chromium plating operation safely on the ground without climbing up to a high place upon chromium plating, which can contribute to assurance of safety in the plating operation.

[0017] Since chromium plating is conducted by electrolysis, chromium plating is conducted by disposing an anode at a vacant opposed portion in the space in the chromium plating vessel 3 and putting the plated article a between the electrodes.

[0018] The filtration device 4 is used for separation by filtration of solid suspended matters (1.7 to 7.0 μ grain size) contained, for example, in the chromium plating solution, solution wastes from chromium plating and chromic acid cleaning water in the recovery vessel 2 and the device sucks the chromium plating solution, the chromic acid cleaning water, the solution wastes from chromium plating and the like in the recovery vessel 2 by way of a suction tube 9, filters solid suspended matters through a filtration cylinder disposed at the inside (not illustrated) and then sends them for the removal of impurities into the impurity recovering electrolysis vessel 5.

[0019] The impurity recovering electrolysis vessel 5 is used mainly for reducing and precipitating to remove impurities (for example, ions of metals such as iron, copper or zinc and trivalent chromium). It has a structure as shown in Fig. 3 in which a vessel 22 itself is formed as a double walled vessel comprising an outer vessel and an inner vessel. The outer vessel is made of iron and lined with a front sheet, while the inner vessel is made of a rigid vinyl chloride resin, and the inside of the inner vessel is partitioned with a partition membrane 23 into an anode chamber 24 and a cathode chamber 25.

[0020] The impurity recovering electrolysis vessel 5 has positive and negative bus-bars in the upper portion of the vessel 22 itself, from which a lead alloy anode 26 and an iron cathode 27 are suspended and opposed to each other by way of the partition membrane 23.

[0021] A chromium plating solution, solution wastes from chromium plating or chromic acid cleaning water is transferred to the anode chamber 24 and the cathode chamber 25 respectively (liquids separated with solid suspended matters by filtration are transferred from the filtration vessel 4). When electrolysis is started, three types of reactions proceed in parallel with each other to form a chromic acid (hexavalent chromium) regeneration solution with less impurity and at high concentration is formed.

[0022] That is, when electrolysis is started in the anode chamber 24 and the cathode chamber 25, electrodialysis of chromic acid occurs from the cathode chamber 25 to the anode chamber 24 passing through the permeation membrane 23, in which dialysis of chromic acid and electrolytic oxidation of trivalent chromium (\(\text{Cr}^{3+}\)) into chromic acid (\(\text{Cr}^{3+} \rightarrow \text{CrO}_3\)) proceeds in the anode chamber 24 and, as a result, the concentration of chromic acid in the anode chamber 24 is increased and the amount of trivalent chromium is decreased, and a regenerated solution which can be used as it is as the chromium plating solution can be obtained upon completion of the electrolysis.

[0023] On the other hand, in the cathode chamber 25 of the impurity recovering electrolysis vessel 5, metal ions of impurities (metal ions such as of iron, copper and zinc) are precipitated as hydroxides and removed.

[0024] The chromium acid mist recovery device 6 is a dry type device which is intended for recovering and liquefying formed chronic acid mists with oxygen and
hydrogen generated upon electrolysis of chromium plating and transferring the mists to the recovery vessel 2.

[0025] In the inner structure of the dry chromic acid mist recovery device 6, as shown in Fig. 4 and Fig. 5, a plurality of chromic acid mist liquefying plates 27 each at 45° relative to the flowing direction of the chromic acid mists are arranged in the vertical direction. When the chromic acid mists collide against the plates by inertia and rotational force, the mists are liquefied and deposited and flow along the liquefying plate and collected by the collecting grooves 28 and then flow as the chromic acid solution from the recovery liquid receiving vessel 29 by way of the flowing tube 11 to the recovery vessel 2.

[0026] The size of the chromic acid mist recovery device 6 may sometimes be changed depending on the amount of the mists and, the size and the number of the chromic acid mist liquefying plates 27 may also be changed depending on the amount of the mists.

[0027] The chromic acid mist liquefying plate 27 is constituted not by disposing a flat plate at an angle of 45° relative to the flowing direction of the chromic acid mists, but by bending one end of a plate member into a generally U-shape, bending the other end at an angle of 45° and further bending at an angle of 45° substantially in parallel with the U-shaped portion. The thus fabricated plate members are disposed each by an equal number on the mist inlet (portion on the chromium plating vessel)and the mist exit (portion on the chromic acid mist cleaning tower) and in vertically opposed directions in the device main body.

[0028] The chromic acid mist cleaning tower 7 is a wet type device which is used for the purpose of cleaning to remove the chromic acid mist which can not be liquefied in the dry chromic acid mists, recovery device 6.

[0029] The chromic acid mist cleaning tower 7 has such a structure in which a shower 12 is disposed in the upper portion of the tower, a chromic acid discharging concentration measuring/inspection hole 13 is perforated at a duct intermediate portion above the shower and a discharge blower 14 is disposed above the inspection hole, and a discharge window 15 is opened above the discharge.

[0030] When the chromic acid mist cleaning tower 7 is constituted as described above and the discharge blower 14 is operated, the chromic acid mists that can not be liquefied by the dry chromic acid recovery device 6 are sucked into the chromic acid mist tower and cleaned and removed into the recovery vessel 2 by the cleaning water injected from the shower 12.

[0031] Referring to the cleaning water for the shower 12 of the chromic acid mist cleaning tower 7, the concentration of chromic acid in air discharged from the cleaning tower is measured by a discharged chromic acid concentration measuring/inspection hole 13 and then old cleaning water is discharged to the recovery vessel 2 and replaced with fresh cleaning water before the measured value shows a standard value determined by the environmental criterion, so that the cleaning and eliminating efficiency for the chromic acid mists is not lowered.

[0032] The concentration of the chromic acid is measured by utilizing the discharged chromic acid concentration measuring/inspection hole 13 by capturing a liquid in air sucked by the blower 14 in a collecting device (collection time for about 20 min, sucking flow rate of 3.0 l/min) and inspected by an atomic absorption photometer.

[0033] On the other hand, detoxified air after cleaning and elimination of chromic acid mists is discharged from the discharge window 15.

[0034] As described above, the chromic acid mists generated during chromium plating are recovered into the recovery vessel 2 by the combined use of a dry type eliminating means and recycling of cleaning water by the wet removing means, while minimizing the amount of water used and at a numerical value determined by the environmental criterion.

[0035] Chromium plating product A prepared by applying chromium plating to a work a is pulled up from the chromium plating vessel 3 after the end of the chromium plating, washed with shower above the plating vessel, removed with electrodes and coating in the chromium plating chamber 1, washed with shower again to remove chromium plating solution and then delivered out of the chromium plating chamber 1. Aqueous chromic acid formed by water washing above the chromium plating vessel 3 by the shower is recovered to the recovery vessel 2.

[0036] Description will be made to a temperature control closed recycling system for the chromium plating solution used in the chromium plating described above with reference to Fig. 2.

[0037] In the recycling system, a circulation type heating/cooling tube 16 and a temperature sensor 17 used for temperature control of the chromium plating solution are attached in the chromium plating vessel 3, and the heating/cooling pipe 16 is connected by way of two direction switching solenoid valves 18-1, 18-2 to well known heat pump 19, cooling water tank 20 and a heat accumulation vessel 21. Then, a pipe line is formed from the heat pump 19 by way of the pump to the cooling water vessel 20, while a pipe line is formed by way of another pump to the heat accumulation vessel 21, and a heat accumulation vessel temperature sensor 30 is disposed for the heat pump 19 and the heat accumulation vessel 21.

[0038] The operation of the closed recycle system is to be explained.

[0039] The liquid temperature in chromium plating is detected by the temperature sensor 17 set to an optimum temperature required for chromium plating, and the direction switching solenoid valve 18-1 or 18-2 switches the flow to either to cold water or warm water depending on the temperature. The operation of the direction switching solenoid valve 18-1 or 18-2 is conducted by a signal from the temperature sensor 17 that detects the temperature of the chromium plating solution.
[0040] When the temperature of the chromium plating solution is elevated above a predetermined temperature, cold water (at 15°C) flows by the actuation of the pump P1 from the cold water vessel 20 by way of the direction change solenoid valve 18-1 to the heating/cooling tube 16 (refer to dotted line and dotted chain in Fig. 2), and warmed water formed from cooling water warmed by the chromium plating solution and returned is sent by way of the heat pump 19 to a predetermined set temperature of cold water (15°C) and sent to the cold water vessel 20 by the pump P1, and separated warm water and heat are accumulated by the pump P2 in the heat accumulation vessel 21.

[0041] If the temperature of the chromium plating solution falls lower than the set temperature, warm water flowing to the heating/cooling tube 16 is switched to the warm water from the a heat accumulation vessel 21 sent from the cold water vessel 20 by the direction change solenoid valve 18-1 by the detection of the temperature sensor 17, the warm water flows in the heating/cooling tube 16 to elevate the temperature of the chromium plating solution. Then, with the other direction switching solenoid valve 18-2, the cold water circuit is switched to a warm water returning heat pump circuit for sending warm water to the heat pump 19.

[0042] Having described specific preferred embodiments of the invention with reference to the accompanying drawings, it will be appreciated that the present invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one of ordinary skill in the art without departing from the scope of the invention as defined by the appended claims.

Claims

1. A closed recycle system used for chromium plating solution, solution wastes from chromium plating and chromic acid cleaning water in chromium plating wherein a chromium plating chamber for conducting chromium plating operation is provided with recovery vessel for not flowing a chromium plating solution, solution wastes from chromium plating and chromic acid cleaning water out of the chromium plating chamber, a chromium plating vessel for applying chromium plating to a work to be plated, a filtering device in communication with the recovery vessel used for a chromium plating solution having strong oxidizing power, an impurity recovering electrolysis vessel in communication with the chromium plating vessel and the filtration device, respectively, for precipitating iron ions as impurities in the form of iron hydroxide by reduction and converting trivalent chromium into hexavalent chromium of chromic acid by oxidation, and wherein the chromium plating chamber is provided with a chromic acid mist recovery device in communication with the recovery vessel for recovering and liquefying chromic acid mists formed upon chromium plating, and a chromic acid mist cleaning tower in communication with the recovery vessel for cleaning chromic acid mists flowing from the chromic acid mist recovery device.

2. A closed recycle system used for chromium plating solution, solution wastes from chromium plating and chromic acid cleaning water as defined in claim 1, wherein the recovery vessel is disposed underground of the chromium plating chamber.

3. A closed recycle system used for chromium plating solution, solution wastes from chromium plating and chromic acid cleaning water as defined in claim 1, wherein the chromium plating vessel is disposed at the inside of the recovery vessel.

Patentansprüche

2. Geschlossenes Recycling-System für Verchromungslösung, bei der Verchromung anfallende Lösungsabfälle und Chromsäurereinigungswasser nach Anspruch 1, bei dem der Rückgewinnungsbe-
hälter unterirdisch unterhalb der Verchromungskammer angeordnet ist.

Revendications

1. Système de recyclage clos utilisé pour une solution de chromage, des solutions résiduelles provenant du chromage, l’eau d’épuration d’acide chromique pour le chromage, dans lequel une enceinte de chromage destinée à la réalisation d’une opération de chromage est pourvue d’un vase de récupération pour éviter l’écoulement d’une solution de chromage, de solutions résiduelles provenant du chromage et de l’eau d’épuration d’acide chromique hors de l’enceinte de chromage, un vase de chromage destiné à l’application d’un chromage sur une pièce destinée à être plaquée, un dispositif de filtration en communication avec le vase de récupération utilisé pour une solution de chromage ayant un fort pouvoir oxydant, un vase d’électrolyse pour la récupération d’impuretés en communication avec le vase de chromage et le dispositif de filtration, respectivement, pour la précipitation d’ions fer en tant qu’impuretés sous la forme d’hydroxyde de fer, par réduction et transformation du chrome trivalent en chrome hexavalent de l’acide chromique par oxydation, et dans lequel l’enceinte de chromage est pourvue d’un dispositif de récupération de brouillard d’acide chromique en communication avec le vase de récupération, pour la récupération et la liquéfaction de brouillards d’acide chromique formés par chromage, et d’une colonne d’épuration de brouillards d’acide chromique en communication avec le vase de récupération, pour l’épuration de brouillards d’acide chromique s’écoulant du dispositif de récupération de brouillard d’acide chromique.

2. Système de recyclage clos utilisé pour une solution de chromage, des solutions résiduelles provenant du chromage et l’eau d’épuration d’acide chromique, comme défini à la revendication 1, dans lequel le vase de récupération est enterré sous l’enceinte de chromage.

3. Système de recyclage clos utilisé pour une solution de chromage, des solutions résiduelles provenant du chromage et l’eau d’épuration d’acide chromique, comme défini à la revendication 1, dans lequel le vase de chromage est disposé à l’intérieur du va-