EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 19.04.2000 Bulletin 2000/16

Application number: 96420361.6

Date of filing: 24.12.1996

Ink jet recording sheet containing silica
Tintenstrahlaufzeichnungsschicht die Kieselerde enthält
Feuille pour l’enregistrement par jet d’encre contenant de la silice

Designated Contracting States: DE FR GB

Date of publication of application: 02.07.1997 Bulletin 1997/27

Proprietor: TOMOE-GAWA PAPER CO. LTD. Chuo-ku, Tokyo 104 (JP)

Inventors:
- Iwamoto, Kiyoshi Shizuoka-shi, Shizuoka-ken (JP)
- Yoshizawa, Senichi Shizuoka-shi, Shizuoka-ken (JP)

Representative: Vuillermoz, Bruno et al Cabinet Laurent & Charras B.P. 32 20, rue Louis Chirpaz 69131 Ecullly Cédex (FR)

References cited:
- EP-A- 0 685 344
- PATENT ABSTRACTS OF JAPAN vol. 12, no. 346 (M-742), 16 September 1988 & JP 63 104878 A (CANON K.K.), 10 May 1988,
- PATENT ABSTRACTS OF JAPAN vol. 18, no. 526 (M-1683), 5 October 1994 & JP 06 183134 A (MITSUBISHI PAPER MILLS, LIMITED), 5 July 1994,
- PATENT ABSTRACTS OF JAPAN vol. 18, no. 453 (M-1662), 24 August 1994 & JP 06 143800 A (NEW OJI PAPER COMPANY LIMITED), 24 May 1994,
- PATENT ABSTRACTS OF JAPAN vol. 12, no. 116 (M-684), 13 April 1988 & JP 62 244689 A (MITSUBISHI PAPER MILLS, LIMITED), 26 October 1987,

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] The present invention relates in general to recording media, and relates in particular to an ink jet recording sheet having a long shelf life and excellent ink absorption and fixation properties, to provide clear high quality image suitable for use in ink jet printers.

Description of the Related Art

[0002] Increasing popularity of ink jet printers in recent years owes its success to the high quality of recorded images providing clarity, tonality and excellent color reproduction. [0003] Ink jet printers use inks which do not dry quickly to avoid plugging of the jet nozzles by dried ink particles. Because such inks are generally made by dissolving or dispersing such materials as binders, dyes, solvents and special purpose additives in water, recording sheets for use with ink jet printers are required to have an ability to absorb water. Therefore, receding sheets in use are provided with a quality to absorb water sufficiently and yet avoid the creation of unclear images.

[0004] To improve the receiving quality of water based ink into the recording sheet, i.e. ink absorption capability, there have been proposals to provide for an ink receiving layer in the recording sheet. The ink receiving layer is generally made by coating a base paper with an aqueous coating composed primarily of polyvinyl alcohol and containing materials having wetting affinity for the inks used in ink jet printers, such as lithiumchloride glycol, gelatin, hydroxyl ethylcellulose or carboxyl methylcellulose.

[0005] However, such conventional types of recording sheets, in practice, not only did not exhibit sufficient ink absorbing quality but presented an additional problem of inadequate drying (fixation) property. On the other hand, if an attempt is made to improve ink absorbability to a level sufficiently high to satisfy the fixation property, a problem of ink bleeding is created thus lowering the image clarity and degrading other recording qualities in general. It also causes associated problem of shelf-life such as bunching caused by the absorption of humidity and the resulting sticking of papers due to the formation of gooey surface.

[0006] It has further been proposed to include silica in one or more coating layers (see for example JP-A-63104878 or EP-A-0 685 344, or JP-A-6143800, JP-A-6183134).

SUMMARY OF THE INVENTION

[0007] It is an object of the present invention to provide a recording sheet exhibiting a good ink absorption property as well as offering image clarity and efficient fixation properties which is suitable for use with ink jet printers.

[0008] The object has been achieved in a recording sheet comprising a support member; a first ink receiving layer on said support member comprising first silica particles, and a second ink receiving layer on said first ink receiving layer comprising second silica particles, said first silica particles have a smaller average particles size than that of said second silica particles and said second silica particles have an average particles size in a range of 7.0 \(\mu m \) to 25.0 \(\mu m \).

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0009] The support member of the recording sheet for ink jet printers includes such opaque materials as papers, cloths, unwoven cloths and in addition includes such plastics materials as polyethylene telephthalate, diacetate cellulose, triacetate cellulose, acrylic polymers, cellophane, celluloid, polyvinyl chloride, polycarbonate, polyimide in the form of film, plate or as a coating on glass plates. The choice of the material for the support member is governed by considerations related to the purpose for recording, the applications of the recordings as well as technical considerations such as compatibility with the ink receiving layers.

[0010] The first ink receiving layer should comprise at least silica particles having an average particle size in the range of 1.0-10.0 \(\mu m \), preferably 1.0-6.0 and most preferably 3.0-6.0 \(\mu m \).

[0011] Moreover, it is preferable for the first ink receiving layer to disperse the silica particles in a binder resin. [0012] The ratio of silica particles of the first ink receiving layer is preferably 50 to 90 weight percent (w/o) or more preferably 60 to 80 w/o. When the silica particles concentration is less than 50 w/o, the beneficial effects as defined by the present invention is minimal. When the concentration of silica particles is increased beyond 90 w/o, there is a danger that such problems as lowering in the mechanical strength of the ink receiving layer and poor image quality caused by decrease in surface smoothness of the receiving layer may occur.

[0013] The second ink receiving layer comprises at least silica particles in different conditions from the conditions in the first receiving layer. The “different conditions from the conditions in the first receiving layer” means that a shape,
an average particle size, a surface treatment method, properties, an adding amount, and the like of the silica used in
the first ink receiving layer differ from those of the silica used in the second ink receiving layer.

An average particle size silica used in the second ink receiving layer is in the range of 7.0 to 25.0 μm, and
more preferably 12.0 to 20.0 μm, which are at the higher range of the first ink receiving layer. Such restrictions on the
silica particle size in the second ink receiving layer are effective in preventing permeation of the dye stuff into the layer
underneath, so that the dye is fixed within the second layer, thereby improving the color vividness and image clarity of the
printed impressions.

The proportion of the silica particles of the second ink receiving layer should be 50~80 w/o and more preferably
50 to 70 w/o. When the silica particles concentration is less than 50 w/o, there is insufficient benefit as defined by the
present invention. When the concentration of silica particles is increased beyond 80 w/o, there is a danger that such
problems as lowering in the mechanical strength of the ink receiving layer and poor image quality caused by ink bleeding
and decrease in surface smoothness of the receiving layer may occur.

In order to obtain excellent ink absorption, no ink bleeding, good color vividness, and clarity of the printed
impressions, it is preferable that the amount of silica in the first ink receiving layer is equal or larger than the amount
of silica in the second ink receiving layer.

The silica particles for use in the first and second ink receiving layers may be selected from any silica which
are produced by commonly known techniques so long as the requirements for the respective particle size are satisfied.
There are no particular restrictions as to the chemical composition and crystal structures of silica.

The average particle size referred to in the present invention is measured by Coulter counter, and is measured by
dispersing the particles in distilled water by ultrasonic agitating for thirty seconds, and is related to their volumetric
average particle size.

Regarding the binder resin used together with the silica particles in the first and second ink receiving layers,
conventional binders commonly used in ink receiving layer may be used. There is no particular restrictions regarding
the resin properties.

Binder resins may include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl butyral, polyvinyl acetate, water
soluble polyvinyl acetal, polyamide resins, oxidized starch, casein, gelatin, polyethylene oxide, polyethylene oxazo-
line, (meta)acryl resins, polyester resins, polyurethane resins, SBR and NBR, and the like. In particular, those water
soluble polyamers such as polyvinyl alcohol, polyvinyl pyrrolidone, water soluble polyvinyl acetal, casein, polyethylene
oxide, and the like are favored for their high quality fixation and storage properties.

In the second ink receiving layer, it is preferred to mix 10 to 60 w/o polyvinyl pyrrolidone in the binder resin
to obtain an effect of fixing the dye component material near surface of the ink receiving layer to produce an excellent
color vividness property.

In particular, by using 30~55 w/o polyvinyl pyrrolidone in the second ink receiving layer, ink jet recording
sheet having not only excellent color generation but high recording productivity (quick drying property) and resistance
to bunching can be produced.

It is preferable to configure the first and second ink receiving layers having the chemical compositions de-
scribed above such that the second ink receiving layer is directly mounted on top of the first ink reserving layer.

When the average particle size of the silica particles in the first ink receiving layer is smaller than that in the
second ink receiving layer, when the printing process is carried out on the second ink receiving layer, it results in leaving
the dye components in the second ink receiving layer while quickly absorbing other constituting components such as
solvents and the like into the first ink receiving layer underneath, thereby avoiding bleeding in the second ink receiving
layer and imparting high quality fixation and image clarity properties to the recording paper.

The first and second ink receiving layers of the present invention contains at least the binder resin and silica
particles, but other additives such as pigments, polymers and special agents may be added thereto, as needed.

Such pigments may include such fillers as clay, mica, talc, kaolin, diatomaceous earth, calcium carbonate,
barium sulfate, aluminum silicate, synthetic zeolot, alumina, zinc oxide, lithopone, satin white, aluminum hydroxide,
microparticles of acryl resins, microparticles of acryl-styrene resins, microparticles of silicone resins and microparticles
of phenol resins.

Special purpose additives may include water-resistant materials to improve resistance to water absorption
and ink bleeding such as melamine formaldehyde resins, urea formaldehyde resins, glyoxal, and zirconium-ammonium
carbonate.

Other special purpose additives to improve productivity, recording or storage properties may include dispersive
agents, fluoresce dyes, pH adjusting agents, defloculating agents, lubricating agents and preservative agents.

When the support member for the recording sheet is transparent, such special agents are added to the extent
that would not degrade the light transmission properties of the support member.

In the following, a method of making the first and second ink receiving layers will be explained. Manufacturing
of the ink receiving layers is carried out by applying a coating, an aqueous mixture or a mixture in a suitable solvent
made by dissolving or dispersing the constituents required for making the respective layers, on a support member by
such coating means as roll coater, blade coater, air knife coater or rod coater. Other coaters such as hot melt coater and laminate coater may also be utilized.

[0031] The quantity of coating to be applied to make the first ink receiving layer is preferably 8–30 g/m², and more preferably 10–20 g/m². The quantity of coating to be applied to make the second ink receiving layer is preferably 5–15 g/m², and more preferably 7–10 g/m². When the quantity of coating material is less than the ranges specified, there is a danger that the ink absorbing properties and fixation properties may not be sufficient, and on the other hand, when the quantity of coating exceed the ranges specified, the sheet production productivity may be reduced and the production cost may consequently be increased. Especially, when the coating weight exceeds 15 g/cm² in the second ink receiving layer, it becomes difficult for the ink to penetrate through the second ink receiving layer, thus leading to ink bleeding in the second ink receiving layer. This results in undesirable poor image clarity and should be avoided.

[0032] The value added attraction of the present ink jet recording sheet may be further enhanced by providing a glossy layer thereon. To provide such a glossy layer, different approaches may be taken such as by selecting the method of making the second ink receiving layer (laminating or making a glossy layer as described below) or the surface treatment method for the receiving surface of the second ink receiving layer by calendering or laminating a glossy layer on top of the second ink receiving surface.

[0033] It is preferable that such a glossy layer has a specular glossiness value of over 10 when measured according to the testing method for specular glossiness value by 60 degree (JIS Z8741).

[0034] The testing method for specular glossiness value by 60 degree (JIS Z8741) will be briefly explained below.

Measurement Apparatus

[0035] The specular glossiness value is determined using an apparatus shown in Figure 1, in which a light beam having a given angle of spread is directed to the mirror surface at a specified angle of incidence, and the reflected beam of light having a given angle of spread is received in a light receiving device.

[0036] The opening S1 of the light source is placed at the focal point of the lens L2, and the mirror is placed at the test piece T. The image of S1 is formed in the center of the opening S2 of the light receiving device. The angle of incidence θ is given by the angle between the line joining the center of the opening S1 and the center of the lens L2 (principal point of the lens) and the line normal to the test piece T. The angle of reception θ' is given by the angle between the line joining the center of the opening S2 and the center of the lens L3 (principal point of the lens) and the line normal to the test piece T. The spreading angles α, β are determined as the angles at the openings S1, S2 of the lens L2, L3. The spreading angles α' is determined as the angle of the image S1' of the opening S1 formed at the lens L3. The light axes of the incidence side and the light receiver side intersect on the surface of the test piece. The opening S1 may be replaced with a light filament of the light source placed at this point.

Measurement Conditions

[0037] For measuring the specular glossiness value, a light source which produces no polarization should be used, and the light source and the light receiving device should, in principle, use a light source which is equivalent to a combination of standard light and spectral luminous efficiency.

[0038] The light source should illuminate a width dimension of at least about 10 mm or more in the direction perpendicular to the incidence surface of the illuminated area of the test piece.

[0039] The measurement conditions are as follows:

<table>
<thead>
<tr>
<th>Angle of incidence (θ)</th>
<th>60±0.2°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of reception (θ')</td>
<td>θ ± 0.1°</td>
</tr>
<tr>
<td>Spreading angle at light source</td>
<td>0.75 ± 0.25°</td>
</tr>
<tr>
<td>plane of incidence (α 1)</td>
<td></td>
</tr>
<tr>
<td>plane of normal beam (β 2)</td>
<td>2.5 ± 0.5°</td>
</tr>
<tr>
<td>Spreading angle at light receiving device</td>
<td>4.40 ± 0.1°</td>
</tr>
<tr>
<td>plane of incidence (α 1)</td>
<td></td>
</tr>
<tr>
<td>plane of normal beam (β 2)</td>
<td>11.7 ± 0.2°</td>
</tr>
</tbody>
</table>

Method of Calculation

[0040] For a given angle of incidence θ, the luminous flux of the mirror reflection beam from the from the test piece and the reflected beam from the standard surface are measured, and the specular glossiness value is calculated as follows:
There is no particular restriction regarding the composition of the glossy layer, however, it is preferable that it should be made up of the silica and the binder resin used in making the second ink receiving layer.

A method of making the glossy layer is to employ a transfer material having a poor adhesion to the second ink receiving layer, such as polyolefin resin film, 4-fluoroethylene resin film, peelable silicone, fabricated resin film, and apply a glossy material on the transfer material. The transfer material is laid down so that the coating on the transfer material faces the second ink receiving layer, and after it is dried, the transfer material is peeled off. Other suitable method may be used so long as it introduces no structural damage to the surface of the second ink receiving.

The proportion of the binder resin and the silica particles in the glossy layer is preferably in a range of 5–50 w/o of binder resin, and more preferably 5–30 w/o of binder resin to the weight of silica particles. If a glossy layer of more than 10 specular glossiness value is required, colloidal silica may be used to produce a glossy layer having excellent brightness, in particular quick ink drying properties and definition of the printed impressions.

The thickness of the glossy layer is preferably 5–12 μm, more preferably 8–10 μm so as to produce excellent glossiness while not damaging the functions of the first and second ink receiving layers.

Brief Description of the Drawings

Figure 1 is a schematic figure for explaining the testing method of specular glossiness value by 60 degree (JIS Z 8741).

Experimental Examples

The present invention will be explained in detail hereinbelow with reference to examples. In the examples, and comparative examples, all "parts" and "%" mean "parts by weight" and "% by weight" respectively.

Example 1
Onto the wood free paper having a basic weight of 90 g/m², the coating solution having a following composition was coated. Then the first ink receiving layer was obtained by drying the coating solution. The solution was applied so that the amount of adhering solid was to 15 g/m² in dried state.

The composition of the coating solution for the first ink receiving layer

- Silica (trade name: CARPLEX BS-304 F, marketed by Shionogi & Co., Ltd., an average particle diameter: 5.3 μm) 150 parts
- Polyvinyl alcohol (trade name: GOHSENL T-33(), marketed by The Nippon Synthetic Chemical Industry Co., Ltd., 10% solution) 500 parts
- Melamine cross-linking agent (trade name: Sumirez Resin SR 613, marketed by Sumitomo Chemical Co., Ltd., solid component 80%) 4 parts

Example 2
Onto the obtained first ink receiving layer, the coating solution having a following composition was coated. Then the second ink receiving layer was obtained by drying the coating solution. The solution was applied so that the amount of adhering solid was to 7 g/m² in dried state. The ink jet recording sheet of this Example was obtained in this manner.

The composition of the coating solution for the second ink receiving layer

- Silica (trade name: CARPLEX BS-304 F, marketed by Shionogi & Co., Ltd., an average particle diameter: 19.3 μm) 100 parts
- Polyvinyl alcohol (trade name: GOHSENL T-330, marketed by The Nippon Synthetic Chemical Industry Co., Ltd., 10% solution) 400 parts
- Polyvinyl pyrrolidone (trade name: PVP K-90, marketed by GAF Co., Ltd., 10% solution) 600 parts
[0049] The ink jet recording sheet of this Example was obtained in a manner identical to that of Example 1 of the present invention. However, the compositions of the first ink receiving layer and the second ink receiving layer were different from those of Example 1.

[0050] The compositions of the first ink receiving layer and the second ink receiving layer in this Example listed below.

(The composition of the coating solution for the first ink receiving layer)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica (trade name: SILCRON G-100, marketed by SCM Chemicals, an average particle diameter: 4.5 μm)</td>
<td>200 parts</td>
</tr>
<tr>
<td>Polyvinyl alcohol (trade name: GOHSENOL T-330, marketed by The Nippon Synthetic Chemical Industry Co., Ltd., 10% solution)</td>
<td>500 parts</td>
</tr>
</tbody>
</table>

(The composition of the coating solution for the second ink receiving layer)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica (trade name: Mizusasil P-78D, marketed by Mizusawa Industrial Chemicals, Ltd., an average particle diameter: 12.2 μm)</td>
<td>150 parts</td>
</tr>
<tr>
<td>Polyvinyl alcohol (trade name: GOHSENOL T-330, marketed by The Nippon Synthetic Chemical Industry Co., Ltd., 10% solution)</td>
<td>300 parts</td>
</tr>
<tr>
<td>Polyvinyl pyrrolidone (trade name: PVP K-90, marketed by GAF Co., Ltd., 10% solution)</td>
<td>800 parts</td>
</tr>
</tbody>
</table>

(Example 3)

[0051] The ink jet recording sheet of this Example was obtained in a manner identical to that of Example 1 of the present invention. However, the compositions of the first ink receiving layer and the second ink receiving layer were different from those of Example 1.

[0052] The compositions of the first ink receiving layer and the second ink receiving layer in this Example are listed below.

(The composition of the coating solution for the first ink receiving layer)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica (trade name: SILCRON G-100, marketed by SCM Chemicals, an average particle diameter: 4.5 μm)</td>
<td>200 parts</td>
</tr>
<tr>
<td>Polyvinyl alcohol (trade name: GOHSENOL T-330, marketed by The Nippon Synthetic Chemical Industry Co., Ltd., 10% solution)</td>
<td>500 parts</td>
</tr>
</tbody>
</table>

(The composition of the coating solution for the second ink receiving layer)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica (trade name: CARPLEX BS-304 F, marketed by Shionogi & Co., Ltd., an average particle diameter: 19.3 μm)</td>
<td>150 parts</td>
</tr>
<tr>
<td>Polyvinyl alcohol (trade name: GOHSENOL T-330, marketed by The Nippon Synthetic Chemical Industry Co., Ltd., 10% solution)</td>
<td>250 parts</td>
</tr>
<tr>
<td>Polyvinyl pyrrolidone (trade name: PVP K-90, marketed by GAF Co., Ltd., 10% solution)</td>
<td>450 parts</td>
</tr>
</tbody>
</table>

(Example 4)

[0053] The ink jet recording sheet of this Example was obtained in a manner identical to that of Example 1 of the present invention. However, the composition of the second ink receiving layer was different from that of Example 1.

[0054] The composition of the second ink receiving layer in this Example is listed below.

(The composition of the coating solution for the second ink receiving layer)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica (trade name: CARPLEX BS-304, marketed by Shionogi & Co., Ltd., an average particle diameter: 19.3 μm)</td>
<td>150 parts</td>
</tr>
</tbody>
</table>
(Example 5)

[0055] The ink jet recording sheet of this Example was obtained in a manner identical to that of Example 1 of the present invention. However, the compositions of the second ink receiving layer were different from that of Example 1.

[0056] The composition of the second ink receiving layer in this Example is listed below.

(Examples 6 – 10)

[0057] The coating solution for glossy layer having following composition was coated on the polyethylene films. The obtained polyethylene films in wet condition were applied on the surface of the second ink jet receiving layers of Examples 1 to 5. The ink jet recording sheets of these Examples were obtained by drying the glossy layers of Examples 6 to 10 on polyethylene films, detaching the polyethylene films, and drying again.

[0058] The solution for glossy layer was applied so that the amount of adhering solid was to 5 g/m² in dried state. The specular glossiness value by 60 degree of the obtained glossy layer was 30.

(Example 11)

[0059] The ink jet recording sheet of this Example was obtained in a manner identical to that of Example 1 of the present invention. However, the second ink receiving layer was mounted on the wood free paper, and the first ink receiving layer was made on the second ink receiving layer in this Example.

(Comparative Example 1)

[0060] With the exception of omitting the first ink receiving layer, the ink jet recording sheet of this Comparative Example was obtained in the same manner as in Example 1.

(Comparative Example 2)

[0061] With the exception of omitting the second ink receiving layer, the ink jet recording sheet of this Comparative Example was obtained in the same manner as in Example 1.

(Comparative Example 3)

[0062] With the exception of omitting silica in the first ink receiving layer, the ink jet recording sheet of this Comparative Example was obtained in the same manner as in Example 1.
With the exception of omitting silica in the second ink receiving layer, the ink jet recording sheet of this Comparative Example was obtained in the same manner as in Example 1.

The ink jet recording sheet obtained in Examples 1 to 11, and Comparative Examples 1 to 4 were cut to A4 size. The following printing tests were carried out with using the A4 size ink jet recording sheet, ink jet printer (trade name: MJ-5000C, marketed by Seiko Epson Co., Ltd.), and ink for ink jet printer (trade name: MJIC2C, marketed by Seiko Epson Co., Ltd.).

(1) Ink absorption

After printing, the ink condition which was reminded in the printed face like beads was evaluated by eye. Evaluating standards were as follows:

A: condition of no remaining ink
B: condition of few remaining ink
C: condition that remaining ink can be confirmed
D: condition of remaining ink like beads

(2) Color vividness

The color vividness of the samples after printings were evaluated with eye. Evaluation standards were as follows:

A: very good
B: good
C: inferior
D: very inferior

(3) Bleeding

Reappearance of printed dots was evaluated with a stereo-microscope (40 times). Evaluating standards were as follows:

A: shapes of dots being circular or nearly circular
B: bleeding of dots can be rather confirmed, but the shape thereof is satisfactory
C: bleeding of dots can be confirmed
D: bleeding of dots is terrible, the shapes of dots is unsettle

(4) Fixation

Immediately after printing, a paper was lied on the printed ink jet recording sheet, and rubbed on the paper to the printed parts. Then, the transcribed condition of ink to paper was evaluated. Evaluating standards were as follows:

A: transcription of ink to paper can not be confirmed
B: transcription of ink to paper can not be almost confirmed
C: transcription of ink to paper can be confirmed, the fixation is inferior
D: a large quantity of ink is transcribed, the fixation is very inferior

(5) Ink drying properties

After printing, the duration (second) from the after-printing to a finger rubbed on the printed parts was not soiled was measured. Evaluating standards were as follows:

A: a finger is not soiled even if the printed parts rubbed with a finger immediately after printing (within 3 seconds)
B: a finger is soiled if the printed parts rubbed with a finger immediately after printing (within 3 seconds), but a finger is not soiled after 10 seconds after printing
C: a finger is soiled after 10 seconds after printing, but after 20 second a finger is not soiled
D: a finger is soiled after 20 seconds after printing

(6) Image density

[0070] Imaged parts of printed samples were evaluated with print density measuring instrument (trade name: Macbeth Density Meter RD-914, marketed by Macbeth Co., Ltd.)

[0071] The results of the above-mentioned tests are shown in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Example 1</td>
</tr>
<tr>
<td>Example 2</td>
</tr>
<tr>
<td>Example 3</td>
</tr>
<tr>
<td>Example 4</td>
</tr>
<tr>
<td>Example 5</td>
</tr>
<tr>
<td>Example 6</td>
</tr>
<tr>
<td>Example 7</td>
</tr>
<tr>
<td>Example 8</td>
</tr>
<tr>
<td>Example 9</td>
</tr>
<tr>
<td>Example 10</td>
</tr>
<tr>
<td>Example 11</td>
</tr>
<tr>
<td>Comparative Example 1</td>
</tr>
<tr>
<td>Comparative Example 2</td>
</tr>
<tr>
<td>Comparative Example 3</td>
</tr>
<tr>
<td>Comparative Example 4</td>
</tr>
</tbody>
</table>

[0072] As is clear from Table 1, the ink jet recording sheets of the Examples have good ink absorption, vividness, bleeding, fixation properties. Moreover, in particular, the excellent ink absorption can be obtained by mounting the glossy layer. In contrast, the ink jet recording sheets of the Comparative Examples have inferior image properties.

Claims

1. An ink jet recording sheet comprising:

 a support member;
 a first ink receiving layer on said support member comprising first silica particles; and a second ink receiving layer on said first ink receiving layer comprising second silica particles

 characterized in that said first silica particles have a smaller average particles size than that of said second silica particles and said second silica particles have an average particles size in a range of 7.0 µm to 25.0 µm.

2. An ink jet recording sheet according to Claim 1, characterized in that the content of the first silica particles comprised in the first ink receiving layer is in the range of 50 to 90 % by weight of the first ink receiving layer, and the content of the second silica particles comprised in the second ink receiving layer is in the range of 50 to 80 % by weight of the second ink receiving layer.
3. An ink jet recording sheet according to Claim 2, characterized in that the content of silica comprised in the first ink receiving layer is more than the content of silica comprised in the second ink receiving layer.

4. An ink jet recording sheet according to claim 1, characterized in that the average particle diameter of the first silica particles comprised in the first ink receiving layer is in the range of 1.0 to 6.0 µm.

5. An ink jet recording sheet according to one of claims 1 to 4, characterized in that the second ink receiving layer comprises at least polyvinyl pyrrolidone as a binder resin, the content of pyrrolidone to the binder resin being in the range of 10 to 60 % by weight.

6. An ink jet recording sheet according to one of claims 1 to 5, characterized in that a glossy layer is mounted on the second ink receiving layer, the specular glossiness value by 60 degree (JIS Z8741) of the glossy layer being more than 10.

Revendications

1. Feuille d'enregistrement pour jet d'encre, comportant :
 un élément de support,
 une première couche de réception d'encre située sur l'édit élément de support comportant des premières particules de silice, et
une seconde couche de réception d'encre située sur ladite première couche de réception d'encre comportant des secondes particules de silice caractérisée en ce que lesdites premières particules de silice ont une dimension moyenne de particules plus petite que celle desdites secondes particules de silice, et lesdites secondes particules de silice ont une dimension moyenne de particules dans la plage allant de 7,0 μm à 25,0 μm.

2. Feuille d'enregistrement pour jet d'encre selon la revendication 1, caractérisée en ce que la teneur en premières particules de silice comprises dans la première couche de réception d'encre se trouve dans la plage allant de 50 à 90 % en poids de la première couche de réception d'encre, et la teneur en secondes particules de silice comprises dans la seconde couche de réception d'encre se trouve dans la plage allant de 50 à 80 % en poids de la seconde couche de réception d'encre.

3. Feuille d'enregistrement pour jet d'encre selon la revendication 2, caractérisée en ce que la teneur en silice comprise dans la première couche de réception d’encre est supérieure à la teneur en silice comprise dans la seconde couche de réception d’encre.

4. Feuille d'enregistrement pour jet d'encre selon la revendication 1, caractérisée en ce que le diamètre moyen de particule des premières particules de silice comprises dans la première couche de réception d'encre se trouve dans la plage allant de 1,0 à 6,0 μm.

5. Feuille d'enregistrement pour jet d'encre selon l’une quelconque des revendications 1 à 4, caractérisée en ce que la seconde couche de réception d'encre comporte au moins du polyvinyl pyrrolidone en tant que résine liante, la teneur en pyrrolidone dans la résine liante étant dans la plage allant de 10 à 60 % en poids.

6. Feuille d'enregistrement pour jet d'encre selon l’une quelconque des revendications 1 à 5, caractérisée en ce qu'une couche brillante est montée sur la seconde couche de réception d'encre, la valeur de brillance spéculaire par 60 degrés (JIS Z8741) de la couche brillante étant supérieure à 10.