EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
22.03.2000 Bulletin 2000/12

Application number: 96117647.6

Date of filing: 04.11.1996

Bases for lubricating oils and process for their preparation
Schmierölbase und Verfahren zu ihrer Herstellung
Bases pour huiles lubrifiantes et procédé pour leur préparation

Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE LI LU NL PT SE
Designated Extension States:
LT LV SI

Priority: 30.11.1995 IT MI952501

Date of publication of application:
04.06.1997 Bulletin 1997/23

Proprietor: CONDEA AUGUSTA S.p.A.
90143 Palermo (IT)

Inventors:
• Ciali, Massimo
 Milano (IT)
• Ontano, Rosanna
 Milano (IT)
• Radici, Pierino
 Turate, (Como) (IT)
• Marcotullio, Armando
 S. Donato Mil.se, (Milano) (IT)
• D’Antona, Paolo
 Assago, (Milano) (IT)

Representative: De Gregori, Antonella et al
Ing. Barzano & Zanardo Milano S.p.A.
Via Borgonuovo 10
20121 Milano (IT)

References cited:
EP-A- 0 376 637
EP-A- 0 449 453
EP-A- 0 546 568
US-A- 3 780 128

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to bases for lubricating oils and the process for their preparation.
[0002] The possibility of obtaining bases for lubricating oils by the oligomerization and subsequent hydrogenation of internal olefins is described in literature.
[0003] In particular IT-A-20106 A/80 describes the oligomerization of internal olefins, particularly internal olefins having a number of carbon atoms between 12 and 20, preferably between 15 and 18.
[0004] The above oligomerization takes place in the presence of suitable catalysts, particularly adducts of AlCl₃ with esters, complexes of BF₃ with alcohols, organic and inorganic acids. As shown from mass spectrometry and bromometric titrations, the oligomers thus obtained generally have a double bond for each molecule. The oligomerization usually produces a mixture of dimers and trimers, the higher oligomers generally being less than 5-10%. The unsaturated oligomers are then hydrogenated in the presence of catalysts well known to experts in the field.
[0005] The products thus obtained, without any possible light products, are called PIO (poly internal olefins).
[0006] The main use of the above PIO, particularly those deriving from compositions mainly consisting of C15-C16 n-olefins, is as a base for synthetic or semi-synthetic lubricating oils.
[0007] A composition has now been found which, with the same viscosity at a high temperature, improves the already good viscosity characteristics at room temperature of the above PIO.
[0008] In accordance with this, the present invention relates to a composition of lubricating oil which comprises:

a) a greater portion of synthetic lubricating component or a mixture of synthetic lubricating component and a mineral base for lubricating oils, the synthetic lubricating component being prepared by the oligomerization and subsequent hydrogenation and the possible removal of low-boiling by-products, of a composition of olefins basically consisting of:

1) a mixture of n-olefins having a content of olefins from C₁₄ to C₁₇, preferably from C₁₅ to C₁₆, of at least 80%, preferably greater than 85%,
2) alpha olefins from C₁₅ to C₁₇, preferably basically C₁₆.

the content of the alpha olefin (2) being from 5 to 25% by weight, preferably from 10 to 20%, with respect to the sum of (1) + (2).
[0009] The term n-olefins means olefins in which the double bond is not solely present in position 1,2 (like alpha-olefins), but on the other hand is statistically distributed along the whole chain.
[0010] These n-olefins are preferably obtained with the process called PACOL-OLEX by the dehydrogenation of n-paraffins.
[0011] The composition of n-olefins (1) usually contains impurities mainly consisting of paraffins, aromatics and iso-paraffins, in a quantity however which is generally less than 10%, usually less than 8%.
[0012] The mixture of n-olefins (1) and alpha-olefins (2) will hereinafter be called olefins, for the sake of clarity.
[0013] As far as the oligomerization reaction is concerned, this can be carried out (see IT-A-20106 A/80) in the presence of adducts of AlCl₃ with esters or complexes of BF₃ with alcohols, organic and inorganic acids, dispersions of AlCl₃ on supports consisting of silica or alumina. It is preferably however to use complexes of BF₃ with inorganic acids, preferably selected from sulphuric acid, phosphorous acid, phosphoric acid. In a preferred embodiment the weight ratio BF₃/olefins is from 1.2 to 2.2, preferably from 1.4 to 1.7, grams of BF₃ per 100 grams of olefins; the ratio between inorganic acid and olefins is from 0.2 to 0.6, preferably from 0.3 to 0.5, grams of acid per 100 grams of olefins.
[0014] The oligomerization reaction is carried out at a temperature of between 0°C and 180°C, preferably between 20°C and 90°C, even more preferably between 50 and 70°C.
[0015] At the end of the oligomerization reaction it is preferable to neutralize the reaction raw product.
[0016] The reaction products consist of oligomers of the starting olefins, mainly dimers and trimers with small quantities of tetramers and pentamers, as shown by gaschromatographic analysis together with mass spectrometry.
[0017] With respect to the hydrogenation step, this can be carried out in the presence of suitable catalysts and under the usual conditions (in particular of pressure and temperature) for the hydrogenation of olefins.
[0018] The hydrogenation reaction is preferably carried out in the presence of catalysts based on Pd or Ni, as such or supported, at a temperature of between 150 and 240°C and a hydrogen pressure of between 10 and 40 kg/cm².
[0019] According to the oligomerization process described above, a conversion degree of the starting olefins of between 70 and 90% is usually obtained, making it necessary to have a step for eliminating the light fractions, normally by distillation.
[0020] This step can be carried out at the end of the oligomerization reaction or after the subsequent hydrogenation reaction, preferably after the hydrogenation step.
[0021] The bases for lubricating oils thus prepared can be used as a main component for synthetic lubricants or mixed with conventional mineral bases, together, obviously, with smaller quantities of additives.
The conventional mineral bases, which can be possibly used with the oligomerization and hydrogenation product of the present invention, can be of the paraffinic, naphthenic, or mixed paraffin-naphthenic type. In addition they can be distillates or distillation residues, or synthesis products.

In the case of the formulation of lubricants for engines, hydrocarbon fractions basically consisting of distillates of the paraffinic type are preferable.

Typical synthetic lubricating bases which can possibly be mixed with the composition of products of the present invention are esters of monocarboxylic aliphatic acids with polyhydroxylic alcohols, such as trimethyl propane and pentaerythritol; esters of dicarboxylic acids with monofunctional alcohols; synthetic hydrocarbons; polyglycols; thiols; siliconic fluids; polyphenyl ethers; thioethers.

As is known to experts in the field, compositions of lubricating oil contain additives suitable for improving the performance of the synthetic component of the present invention or of the mixture of the above synthetic component with other conventional mineral or synthetic bases.

The additives can therefore be the usual pour point depressants; viscosity index improvers; detergents dispersants; corrosion, oxidation and wear inhibitors; antifoaming agents, friction modifiers, etc.

The selection of additives to be included in the finished oil and relative quantities depend on the use and performances desired.

As an example, viscosity index improvers and pour point depressants are contained in the finished oil in a quantity of between 0.01 and 15% by weight; detergents dispersants, corrosion, oxidation and wear inhibitors in a quantity of between 0.01 and 3% by weight; antifoaming agents between 10 and 1000 ppm.

The following examples provide a better understanding of the present invention.

EXAMPLES

1 - COMPOSITION OF n-OLEFINS

The substrate subjected to oligomerization and hydrogenation consists of: (1) a mixture of C15-C16 n-olefins; (2) C16 \(\alpha \)-olefin.

The mixture of C15-C16 n-olefins has the following composition (Gaschromatographic analysis on a capillary column):

- n-Paraffins: 4.04 % by weight (of which C15 = 2.81%, C16 = 1.07%, C17 = 0.16%);
- n-Olefins: 92.68 % by weight (of which C15 = 70.68%, C16 = 19.55%, C17 = 2.45%);
- Aromatics + isoparaffins: 3.28%.

The C16 alpha-olefin is a product having a content of alpha-olefins of 94%. Of these alpha-olefins, the content of C16 alpha-olefin is 88%, the remaining 12% consisting of C14 and C18 alpha-olefins.

1 - SYNTHESIS OF THE BASES

The synthesis basically consists of an oligomerization step of the olefins, followed by neutralization and washing of the BF\(_3\) acid complex, a hydrogenation step of the oligomers thus obtained and then a stripping step of the light products.

For the oligomerization a 1 litre Brignole autoclave in AISI 316 is used, equipped with a magnetic stirrer, 4 valves of which one is a plunged pipe, a thermometric hole, a thermocouple and digital indicator for measuring the temperature, a manometer able to measure up to 12 kg/cm\(^2\).

For the hydrogenation of the oligomers a 1-litre Engeneering autoclave in Hastelloy C is used, equipped with a magnetic stirrer, 4 valves, thermometric hole, thermocouple, digital indicator for measuring the temperature, burst disk calibrated at 30 bars and manometer able to measure up to 25 kg/cm\(^2\).

For the stripping, or the distillation of the light products formed during the reaction and non-oligomerized products, a 1-inch adiabatic column (of the Oldershaw type) with 5 plates is used. The operation is carried out at reduced pressure (about 0.5-1 torr) and with a final temperature at the head of about 170-180°C until the head products have been completely removed, verified by gaschromatographic analysis on both the head products and residual tail products in the boiler.

The oligomerization of the olefins is carried out by charging the mixture of olefins and inorganic acid into the autoclave with the ceiling open. All the tests, including the comparative ones, were carried out with an almost constant
ratio BF₃/olefins (from 1.43 to 1.65 grams of BF₃ per 100 grams of olefinic composition) and with a constant ratio acid/olefins (0.40 grams of acid per 100 grams of olefins).

[0039] A seal test is carried out with nitrogen and the autoclave is flushed four times at 5 kg/cm², again with nitrogen.

[0040] The nitrogen is then degassed and BF₃ is fed from a previously weighed cylinder. The stirring is activated (760 rpm) and the temperature is brought to 60°C.

[0041] After the preset reaction time the BF₃ is degassed and sent to appropriate collection traps of NaOH + Ca(OH)₂; flushing is repeatedly carried out with nitrogen and the contents of the autoclave is discharged.

[0042] The oligomers are neutralized with an aqueous solution of sodium carbonate with the pH value under control and subsequently washed with distilled water.

[0043] The olefinic oligomers thus prepared are hydrogenated at 20-25 kg/cm² of pressure with temperatures of 170-180°C using Pd/C at 10% of Pd as catalyst. The reaction is carried out at 1500 rpm of stirring for 7-8 hours until the complete reduction of the starting oligomers. The catalyst is charged in a ratio of 4% with respect to the charge to be hydrogenated.

[0044] The oligomers thus hydrogenated are filtered from the catalyst and distilled.

[0045] Gaschromatographic analyses are carried out on the weighed distillate and boiler residue and the residue is rheologically characterized.

3 - RHEOLOGICAL CHARACTERIZATION

[0046] The rheological characterization of the bases is carried out at temperatures of 40 and 100°C using a series of capillaries of the Cannon Fenske type and a thermostatic bath with a control to a hundredth of degree centigrade.

[0047] For the Pour Point and viscosity at -30°C measurements a rotational rheometer is used with a strain rate range applied is 0.1-1000 sec⁻¹ and the relative viscosity value indicated refers to the value of the flow curve at 100 sec⁻¹. For the Pour Point measurements a frequency of 1Hz is used together with an amplitude of 0.001 mrad and a temperature increase of 1°C/min.

[0048] The results of the tests and analyses are shown in table 1. Examples 3C/95 and 5C/95 are comparative examples as they are carried out with 30% and 0% of alpha-olefin respectively.

<table>
<thead>
<tr>
<th>Test</th>
<th>%αC16</th>
<th>Yield</th>
<th>Rheological characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>100°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(cSt)</td>
</tr>
<tr>
<td>1/95</td>
<td>10</td>
<td>87.0</td>
<td>5.75</td>
</tr>
<tr>
<td>4/95</td>
<td>15</td>
<td>85.6</td>
<td>5.87</td>
</tr>
<tr>
<td>2/95</td>
<td>20</td>
<td>86.1</td>
<td>5.75</td>
</tr>
<tr>
<td>3C/95</td>
<td>30</td>
<td>88.0</td>
<td>5.86</td>
</tr>
<tr>
<td>5C/95</td>
<td>50</td>
<td>83.0</td>
<td>5.69</td>
</tr>
</tbody>
</table>

[0049] The results of table 1 clearly show the advantages, in terms of viscosity at -30°C, which can be obtained with the compositions containing from 10 to 20% of C16 alpha-olefin. In fact the viscosity values at 100°C are comparable, whereas the viscosities at -30°C are improved.

Claims

1. Composition of lubricating oil comprising of either synthetic lubricating oil or a mixture of synthetic lubricating oil and mineral oil, the synthetic lubricating component being prepared by the oligomerization and subsequent hydrogenation and the possible removal of low-boiling by-products, of a composition of olefins basically consisting of

 1) a mixture of n-olefins having a content of olefins from C₁₄ to C₁₇ of at least 80% by weight of the total n-olefins mixture;
 2) alpha olefins from C₁₅ to C₁₇,

 the content of the alpha olefin (2) being from 5 to 25% by weight with respect to the sum of (1) + (2).
2. Composition according to claim 1, characterized in that the mixture of n-olefins has a content of olefins from C\textsubscript{15} to C\textsubscript{16} of at least 80%.

3. Composition according to claim 1, characterized in that the mixture of n-olefins has a content of olefins from C\textsubscript{14} to C\textsubscript{17} of at least 85%.

4. Composition according to claim 2, characterized in that the mixture of n-olefins has a content of olefins from C\textsubscript{15} to C\textsubscript{16} of more than 85%.

5. Composition according to claim 1, characterized in that the content of alpha olefin (2) is from 10 to 20% with respect to the sum of (1) + (2).

6. Composition according to claim 1, characterized in that the alpha-olefin basically consists of C\textsubscript{16} alpha-olefin.

Patentansprüche

1. Schmierölzusammensetzung, umfassend entweder synthetisches Schmieröl oder ein Gemisch aus synthetischem Schmieröl und Mineralöl, wobei der synthetische, schmierende Bestandteil durch Oligomerisierung und nachfolgende Hydrierung sowie dem möglichen Entfernen von niedrigsiedenden Nebenprodukten einer Olefinmischung, die im wesentlichen besteht aus:

 1) einem Gemisch aus n-Olefinen, die einen Gehalt an C\textsubscript{14} - bis C\textsubscript{17} -Olefinen von mindestens 80 Gew.-% des gesamten n-Olefingemischs aufweist;
 2) C\textsubscript{15} - bis C\textsubscript{17} -alpha-Olefinen, wobei der Gehalt an alpha-Olefin (2) 5 bis 25 Gew.-% bezogen auf die Summe aus (1) und (2) beträgt,

 hergestellt wird.

2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das Gemisch aus n-Olefinen einen Gehalt an C\textsubscript{15} - bis C\textsubscript{16} -Olefinen von mindestens 80% aufweist.

3. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das Gemisch an n-Olefinen einen Gehalt von C\textsubscript{14} - bis C\textsubscript{17} -Olefinen von mindestens 85% aufweist.

4. Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, daß das Gemisch an n-Olefinen einen Gehalt von C\textsubscript{15} - bis C\textsubscript{16} -Olefinen von mehr als 85% aufweist.

5. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß sie einen Gehalt an alpha-Olefin (2) von 10 bis 20% bezüglich der Summe aus (1) und (2) aufweist.

6. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das alpha-Olefin im wesentlichen aus C\textsubscript{16} -alpha-Olefin besteht.

Revendications

1. Composition d’huile lubrifiante comprenant soit une huile lubrifiante synthétique, soit un mélange d’huile lubrifiante synthétique et d’huile minérale, le composant lubrifiant synthétique étant préparé par oligomérisation ethydrogéné nation ultérieure et élimination éventuelle des sous-produits à faible point d’ébullition d’une composition d’oléfines composée fondamentalement:

 1) d’un mélange de n-oléfines ayant une teneur en oléfines de C\textsubscript{14} à C\textsubscript{17} d’au moins 80% en poids du mélange total des n-oléfines;
 2) d’alpha-oléfines de C\textsubscript{15} à C\textsubscript{17},

 la teneur en l’alpha-oléfine (2) étant de 5 à 25% en poids par rapport à la somme de (1) + (2).
2. Composition selon la revendication 1, caractérisée en ce que le mélange de n-oléfines a une teneur en oléfines de C_{15} à C_{16} d’au moins 80%.

3. Composition selon la revendication 1, caractérisée en ce que le mélange de n-oléfines a une teneur en oléfines de C_{14} à C_{17} d’au moins 85%.

4. Composition selon la revendication 2, caractérisé en ce que le mélange de n-oléfines a une teneur en oléfines de C_{15} à C_{16} de plus de 85%.

5. Composition selon la revendication 1, caractérisée en ce que la teneur en alpha-oléfine (2) est de 10 à 20% par rapport à la somme de (1) + (2).

6. Composition selon la revendication 1, caractérisée en ce que l’alpha-oléfine se compose fondamentalement d’alpha-oléfine en C_{16}.