EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 15.11.2000 Bulletin 2000/46

(21) Application number: 95926310.4

(22) Date of filing: 29.06.1995

(54) SHAVING SYSTEM
RASIERVORRICHTUNG
SYSTEME DE RASAGE

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

(30) Priority: 01.07.1994 US 269495
20.06.1995 US 461318

(43) Date of publication of application: 14.05.1997 Bulletin 1997/20

(60) Divisional application: 99100307.0 / 0 916 459

(73) Proprietor: THE GILLETTE COMPANY
Boston, Massachusetts 02199 (US)

(72) Inventor: TSENG, Mingchih M.
Hingham, MA 02043 (US)

(74) Representative:
Hansen, Bernd, Dr. Dipl.-Chem. et al
Hoffmann Eitle,
Patent- und Rechtsanwälte,
Arabellastrasse 4
81925 München (DE)

(56) References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to an improved skin engaging member for use in razor blade cartridge assemblies and shaving systems of the wet shave type. The present invention resides broadly in providing the skin engaging cap and/or guard surfaces with configurations which reduce frictional drag of the razor across the skin and indicate to the user that this skin engagement member has reached its effective life.

In shaving systems of the wet shave type, factors such as the frictional drag of the razor across the skin, the force needed to sever hairs, and irritation of pre-existing skin damage can create a degree of shaving discomfort. Discomfort, and other problems accompanying wet shaving systems, can be alleviated by the application of shaving aids to the skin. Shaving aids may be applied prior to, during, or after shaving. A number of problems accompany the use of pre- and post-applied shaving aids. Pre-applied shaving aids can evaporate or can be carried away from the site of application by repeated strokes of the razor. Post-applied shaving aids are not present on the skin during shaving and thus their application may be too late to prevent an unwanted affect. Both pre-applied and post-applied shaving aids add additional steps to the shaving process.

Proposals have been made to incorporate a shaving aid e.g., lubricant, whisker softener, razor cleanser, medicinal agent, cosmetic agent or combination thereof, into a razor, e.g., by depositing a shaving aid in a recess on the razor, by incorporating a shaving aid directly into one or more molded polymeric components of the razor, by adhesively securing a shaving aid composite to the razor, and by use of a mechanical connection between a shaving aid composite and the razor as is the case of the devices disclosed in US 4 562 644 and US 4 875 287. A water-soluble shaving aid, e.g. polyethylene oxide, has been mixed with non-water-soluble material, e.g., a polystyrene polymer, to form an insoluble polymer/soluble shaving aid composite. The composite has been mounted on razor and shaving cartridge structures, adjacent the shaving edge or edges, of single or multiple blade shaving system. Upon exposure to water, the water-soluble shaving aid leaches from the composite onto the skin.

Extruded composites with relatively large amounts of shaving aid (up to 80% by weight) and relatively low amounts of water insoluble matrix material (as little as 20% by weight) are relatively weak and have a tendency towards mechanical failure, both in assembly and in use. Increase in mechanical strength can be obtained with increased amounts of the matrix material. However, such increase reduces the releasability of the shaving aid.

It is desired to provide a skin engaging member with improved mechanical strength. Also desired is to provide a skin engaging member with improved shaving aid material release characteristics. Further, it is desired to provide a wear indicating skin engaging member.

These problems are solved by a skin engaging member with the features of claim 1.

FIG. 1 is a perspective view of a razor unit in accordance with the invention;
FIG. 2 is a sectional view taken along the line 2-2 of FIG. 1;
FIG. 3 is a perspective view of another razor unit in accordance with the invention;
FIG. 4 is an enlarged perspective view of a skin engaging member of the present invention;
FIG. 5 is sectional view taken along the line 5-5 of FIG. 4;
FIG. 6-7 are sectional views in accordance with FIG. 5 wherein alternate core geometry’s are depicted;
FIG. 8 is yet another cross-sectional depiction;
FIG. 9 is a schematic cross-section diagram of an extrusion die suitable for manufacturing the skin engaging member of FIG. 4.

The shaving unit 10 shown in FIGS. 1 and 2 includes base or platform member 12 molded of high impact polystyrene that includes integral coupling groove structure 14 for attachment to a razor handle and guard structure 16 that defines a transversely extending forward skin engaging surface 18. On the upper surface of platform 12 are disposed steel leading blade 20 having a sharpened edge 22, steel following blade 24 having sharpened edge 26, and aluminum spacer member 28 that maintains blades 20 and 24 in spaced relation. Cap member 30 is molded of high impact polystyrene and has body portion 32 that defines skin engaging surface 34 that extends transversely between forwardly projecting end walls 36 and has a front edge 38 that is disposed rearwardly of blade edge 26. Integral rivet portions 40 extend downwardly from transversely extending body portion 32 and pass through holes in blades 20 and 24, spacer 28, and platform 12 to secure cap 30, blades 20, 24 and spacer 28 on platform 12. Adhesively affixed to skin engaging surface 34 is skin engaging member 42.

The shaving unit 50 shown in FIG. 3 is of the type shown in Jacobson U.S. Patent 4,586,255 and includes body 52 with front portion 54 and rear portion 56. Resiliently secured in body 52 are guard member 58, leading blade unit 60 and trailing blade unit 62. A shaving aid composite in the form of elongated insert member 64 is frictionally locked in opening 66 of rear portion 56.

FIG'S. 4-9 generally depict variations on the present invention. As used herein, the term "core" is a short designation of the internal portion of claim 1, which is an internal portion of a skin engaging member as examined at
the cross-section. The core typically runs throughout the skin engaging member along an axis. The axis need not be the central axis. The FIG's. designate the core as 70. Embodiments of the present invention have at least one core element. As used herein, the term "sheath" designates the outer coating layer(s) of Claim 1 over the core material 13. The FIG's. designate the sheath as 72.

[0012] Referring now to the drawings, and in particular to FIG. 4, there is shown an elongated skin engaging member 64. The member 64 has a skin engaging surface 74 and an elongated insert member 76. The insert member 76 is designed to frictionally lock in an opening 66 as shown in FIG. 3. The skin engaging member further comprises a rigid core material 70 which is surrounded by a sheath material made of a mixture of water insoluble matrix material and an effective amount of shaving aid material.

[0013] The sheath material includes from about 0% to about 30% by weight, preferably from about 5% to about 15%, of the water insoluble matrix material and from about 70% to about 100% by weight of the water-soluble shaving aid, preferably from about 85% to about 95% shaving aid material. Suitable water insoluble matrix materials include for example, nylon, ethylene-vinyl acetate copolymer, polyethylene, polypropylene, polystyrene, polyacetal and combinations. Suitable shaving aid materials include, for example, polyethylene oxide, polyvinyl pyrrolidone, polyacrylamide, hydroxypropyl cellulose, polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, methylcellulose, starch, water soluble vinyl polymers (Carbopol® brand sold by B.F. Goodrich), polyhydroxyethyl methacrylate, silicone copolymers, sucrose stearate, vitamin E, panthenol, aloes, essential oils such as menthol and combinations.

[0014] The sheath may include additional components such as: plastisizers, such as polyethylene glycol; beard softeners; additional lubricants, such as silicone oil, Teflon® polytetrafluoroethylene powders (manufactured by DuPont); and waxes; shaving aids, such as menthol, eugenol, eucalyptol, safron and methyl salicylate; fillers, such as calcium carbonate, mica and fibers; tackifiers such as Hercules Regalrez 1094 and 1126; fragrances; antipruritic/counterirritant materials; antimicrobial/keratolytic materials such as Resorcinol, anti-inflammatory agents such as Candilla wax and glycyrrhethinic acid; astringents such as zinc sulfate; surfactants such as pluronic and iconol materials; compatibilizers such as styrene-b-EO copolymers; and, blowing agents such as Uniroyal Celogen Aznp 130. These additives may leach from the surface to provide improved shaving. These components could be dispersed throughout the sheath or alternatively, a second, outer sheath containing the additional element could be extruded or merely coated over the primary sheath.

[0015] The present invention a wear indicating effect is produced because the sheath material and the core material are such that the skin engaging member has adequate mechanical strength, both as initially produced and after a significant amount of water soluble material has been leached out, the quantity of the water-soluble material being sufficient to provide effective shaving assistance, such as lubrication, for the entire expected life of the blade or blades. The function of the core material is not only to provide additional rigidity but to displace trapped shaving aid material. In conventional skin engaging members, such as those described in U.S. Pat. Nos. 5,063,667; 5,095,619; and 5,113,585, it is regarded on the most relevant prior art a significant amount of shaving aid material is trapped within the insoluble matrix. By displacing it closer to the skin engaging surface 74, diffusional paths are reduced and more efficient delivery is achieved. Furthermore, the core material provides additional mechanical strength for the attaching mechanism, if used.

[0016] The core material must have sufficient mechanical strength and rigidity to provide adequate mechanical strength to the entire skin engaging member, both as initially produced and after a significant amount of water soluble plastic resin or a blend consisting of at least about 50% of non-water soluble plastic resin to prevent the core from disintegrating. Water-soluble resins for use in such blends include polyethylene oxide, polyvinyl pyrrolidone; polyacrylamide, hydroxypropyl cellulose, polyvinyl imidazoline, polyethylene glycol, polyvinyl alcohol, methylcellulose, starch, water-soluble vinyl polymers (Carbopol® brand sold by B.F. Goodrich), polyhydroxyethyl methacrylate, and combinations thereof. Suitable insoluble polymers for use in the core include polystyrene, high impact polystyrene, polypropylene, filled polypropylene, nylon, and blends thereof, such as 70% nylon/30% polyethylene oxide, 60% polystyrene/40% polyethylene oxide.

[0017] Optionally, the core material can include additives such as lubricants foaming agents, microspheres, baby powders, fillers such as CaCO3, colorants such as TiO2 silicone copolymers, sucrose stearate, vitamin E, panthenol, aloes, essential oils, e.g. menthol, and combinations thereof.

[0018] In the present invention a wear indicating effect is produced because the sheath material and the core material are made of disparately colored materials (e.g. white colored sheath and blue colored core). Upon use, the sheath material over the skin engaging surface is typically worn off through use. With sufficient use, a second colored region represented by the core is exposed, thus, providing the user with an indication that the shaving unit and/or skin engaging surface have reached their effective life. In a preferred embodiment, the sheath material consists of a polyethylene oxide/polystyrene mixture which is white in color and the core consists of nylon and/or styrene which has been colored with a FD&C Blue #2 dye. Other suitable dyes or pigments include FD&C Red No. 40, Erythrosine (FD&C Red No. 3),
Brilliant Blue FCF (FD&C Blue No. 1), Indigotine (FD&C Blue No. 2), Tartrazine (FD&C Yellow No. 5), Sunset Yellow FCF (FD&C Yellow No. 6) and Fast Green FCF (FD&C Green No. 3) and Titanium Dioxide.

[0019] Figure 5 depicts a cross section of an alternate skin engaging member. The core material 70, follows the general contours of the surface defined by the outside of the sheath material. Figure 6 depicts a slight variation on that theme where a thicker sheath layer is provided along the skin engaging surface 74. Still further, Figure 7 provides a cross-section wherein a very high degree of sheath material is present along the skin engaging surface.

[0020] Finally, Figure 8 depicts the skin engaging member depicted in Figures 1 and 2 with sheath 72 and core 70. It is interesting to note that the core in this case provides mechanical strength to the unit yet is not vital to the mechanical locking of the unit. The skin engaging member of Figures 1 and 2 are affixed by adhesive. According to the present invention, the skin engaging members may be affixed by adhesive such as Loctite Super Bonder 499, mechanical locking mechanism, thermal welds.

[0021] Figure 9 is a schematic cross section diagram of an extrusion die suitable for manufacturing the skin engaging member of the present invention. Core material 80 is fed into the intrusion die 81 by an extrusion screw, hot melt or other suitable means. In the core inlet port 82 the tight core orifice 83 encounters the sheath material which has been fed into sheath inlet port 84, wherein the core becomes encapsulated by the sheath material when viewed in a transverse cross section to the flow of the die material. The encapsulated core then proceeds to the die outlet 55 wherein the continuous skin engaging members can be cured and/or drawn down to provide the appropriate dimensions. Also, it should be noted that the core material could consist of a solid wire or solid plastic-material which is fed in through a conventional die to produce an encapsulated skin engaging member. For general discussion of coextrusion technology see Levi, Plastics Extrusion Technology Handbook, Industrial Press Inc., pages 168-188(1981). After the continuous skin engaging members are produced, the strand is sent for further processing where it is typically drawn down to the correct size and cut to length suitable for implant into the body of a razor blade cartridge. This cutting can be achieved by knife edge cutting, lasers or water lasers. The skin engaging surfaces of the present invention typically are rectangular in shape with a width of from about 1.27 mm (0.05 inches) to about 2.54 mm (0.1 inches) and a length of about 30 mm (1.2 inches).

[0022] Equivalent embodiments within the scope of the claims are possible.

[0023] For example, non-rectangular skin engaging surface areas may be utilized (such as ovals) and non-flat surface patterns could be utilized. These and other equivalent embodiments are also contemplated by the present invention. The present invention and the manner of making and using the same should be evident from the following examples:

EXAMPLES

[0024] The following samples were coextruded with a cross-section as in FIG. 5. Examples 2 and 5 are incomplete and are thus inadequate to illustrate the scope of protection of the claims. The examples where the core and sheath material are not disparately colored are only illustrative of the structural composition and don't fall within the scope of the claims.
<table>
<thead>
<tr>
<th>No.</th>
<th>Core Material</th>
<th>Sheath Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nylon 70%</td>
<td>polystyrene 10%</td>
</tr>
<tr>
<td></td>
<td>blue pigment 0.5%</td>
<td>polyethylene oxide 76%</td>
</tr>
<tr>
<td></td>
<td>polyethylene oxide 29.5%</td>
<td>polyvinyl acetate 8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polyethylene glycol 5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white pigment 1%</td>
</tr>
<tr>
<td>2</td>
<td>25% polyethylene oxide</td>
<td>78% polyethylene oxide</td>
</tr>
<tr>
<td></td>
<td>25% nylon</td>
<td>14% polystyrene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3% polyethylene glycol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5% polyvinyl acetate</td>
</tr>
<tr>
<td>3</td>
<td>100% polystyrene</td>
<td>82% polyethylene oxide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14% polystyrene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3% polyethylene glycol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1% polyvinyl acetate</td>
</tr>
<tr>
<td>4</td>
<td>70% nylon</td>
<td>80% polyethylene oxide</td>
</tr>
<tr>
<td></td>
<td>29.5% polyethylene oxide</td>
<td>16% polystyrene</td>
</tr>
<tr>
<td></td>
<td>0.5% blue dye</td>
<td>4% polyvinyl acetate</td>
</tr>
<tr>
<td>5</td>
<td>98% polystyrene</td>
<td>73% polyethylene oxide</td>
</tr>
<tr>
<td></td>
<td>2% blue dye</td>
<td>5% Salsorb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5% polyvinyl acetate</td>
</tr>
<tr>
<td>6</td>
<td>100% polystyrene</td>
<td>74% polyethylene oxide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10% polystyrene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10% polyvinyl acetate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5% polyethylene glycol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1% white TiO₂ pigment</td>
</tr>
<tr>
<td>No.</td>
<td>Core Material</td>
<td>Sheath Material</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>-----------------------------------------------------------</td>
</tr>
<tr>
<td>7</td>
<td>98% polystyrene 2% blue dye</td>
<td>68% polyethylene oxide 15% polyvinyl acetate 10% polystyrene 5% polyethylene glycol 2% white TiO₂ pigment</td>
</tr>
<tr>
<td>8</td>
<td>100% polystyrene</td>
<td>67% polyethylene oxide 4% Salsorb 14% polyvinyl acetate 10% polystyrene 4% polyethylene glycol 1% white TiO₂ pigment</td>
</tr>
<tr>
<td>9</td>
<td>99% polystyrene 1% blue dye</td>
<td>68% polyethylene oxide 20% polyvinyl acetate 10% polystyrene 2% white TiO₂ pigment</td>
</tr>
<tr>
<td>No.</td>
<td>Core Material</td>
<td>Sheath Material</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>99% polystyrene, 1% blue dye</td>
<td>70% polyethylene oxide, 13% polyvinyl acetate, 15% polystyrene, 2% white TiO₂ pigment</td>
</tr>
<tr>
<td>11</td>
<td>99% polystyrene, 1% blue dye</td>
<td>65% polyethylene oxide, 15% polyvinyl acetate, 15% polystyrene, 3% Salsorb, 2% white TiO₂ pigment</td>
</tr>
<tr>
<td>12</td>
<td>99% polystyrene, 1% blue dye</td>
<td>65% polyethylene oxide, 10% polyvinyl acetate, 15% polystyrene, 3% Salsorb, 2% white TiO₂ pigment</td>
</tr>
</tbody>
</table>
Example 12

[0025] The following procedure can be used to produce a skin engaging member of the type depicted in Figure 4. The extrusion equipment includes two single-screw extruders, a die cross-head, a cooling channel, and a puller. The strip extruded from the extruders is pulled through a cooling tunnel by a Farris puller (a take-off machine) at a speed of approximately 10 feet per minute with minimum tension on the strip. The strip is air-cooled by blowing dry compressed air into the tunnel at approximately 10 CFM. The extrudate is kept in a cool, dry room.

[0026] The core blend (70% Zytel 330 brand amorphous nylon/blue pigment, 30% ethylene oxide/styrene blend 60/40) is extruded through the first 3/4" Haake extruder (barrel pressure of approx. 29.9·10⁶ Pa (4,343 psi), and temperature of 180°C.). The sheath blend (80% polyethylene oxide/styrene 60/40, 14% polystyrene/white color, 3% PEG, and 3% PVA 2025) is extruded through the second 3/4" Haake extruder (barrel pressure of approx. 42.2·10⁶ Pa (6,131 psi) and temperature of 180°C.). The two materials are then joined and are fed through a cross-head at a temperature of 180°C., die temperature of 180°C., and die pressure of approx. 24.8·10⁶ Pa (3,600 psi) to form a continuous lubricating strip. The line speed is approximately 5 mm/s (10 FPM).

Claims

1. A skin engaging member for use in a wet shaving unit, said skin engaging member comprising an elongated outer coating layer (72) overlying an internal portion (70) which is axially coextensive therewith, the internal portion and the outer coating layer being disparately colored, said outer coating layer (72) comprising mainly a water soluble shaving aid and additionally a water insoluble matrix, and said internal portion (70) having sufficient rigidity to provide adequate mechanical strength to the skin engaging member without disintegrating during use, wherein said outer coating layer (72) is adapted to erode at the skin engaging surface during use to expose said internal portion (70) to provide a user with an indication that the shaving unit and/or skin engaging member have reached their effective life.

2. The skin engaging member of claim 1, wherein said shaving aid comprises polyethylene oxide.

3. The skin engaging member of claim 2, wherein said polyethylene oxide is present in an amount of 65% to 82% by weight.

4. The skin engaging member of any of the preceding claims, wherein said water insoluble matrix comprises nylon, ethylene vinyl acetate copolymer, polyethylene, polypropylene, polystyrene, or polyacetal.

5. The skin engaging member of any of the preceding claims, wherein the internal portion (70) comprises a water insoluble polymer in an amount of at least 50% by weight.

6. The skin engaging member of claim 5, wherein said water insoluble polymer comprises polystyrene, high impact polystyrene, polypropylene, filled polypropylene or nylon.

7. The skin engaging member of any of the preceding claims, wherein said internal portion (70) additionally comprises a water soluble polymer.

8. The skin engaging member of claim 7, wherein said internal portion (70) additionally comprises polyethylene oxide.

9. A wet shaving unit (10) comprising a blade member (20, 24, 60, 62) and a skin engaging member (42, 64) according to any of the preceding claims adjacent said blade member.

Patentansprüche

1. Hautberührungselement zur Verwendung in einer Nassrasureinheit, wobei das Hautberührungselement eine längliche äussere Beschichtung (72) über einem inneren Teil (70) aufweist, die sich entlang der äusseren Oberfläche erstreckt, wobei der innere Teil und die äussere Beschichtung unterschiedlich gefärbt sind, wobei die äussere Beschichtung (72) hauptsächlich ein wasserlösliches, die Rasur unterstützendes Mittel und zusätzlich eine wasserunlösliche Matrix umfasst, und der innere Teil (70) eine ausreichende Steifheit aufweist, um dem Hautberührungselement eine entsprechende mechanische Festigkeit zu verleihen, ohne sich bei der Anwendung aufzulösen,
wobei die äussere Beschichtung (72) so angepasst ist, dass sie an der Hautberührungsoberfläche während der Verwendung abgetragen wird, wobei der innere Teil (70) freigelegt wird, um dem Anwender eine Anzeige zu geben, dass die Rasureinheit und/oder das Hauptberührungselement ihre Wirkebensdauer erreicht haben.

2. Hauptberührungselement gemäß Anspruch 1, in dem das wasserlösliche, die Rasur unterstützende Mittel Polyethylenoxid umfasst.

3. Hauptberührungselement gemäß Anspruch 2, in dem die Hülle 65 bis 82 Gew.% Polyethylenoxid umfasst.


5. Hauptberührungselement gemäß einem der vorhergehenden Ansprüche, in dem der innere Teil (70) mindestens 50 Gew.% wasserunlösliches Polymer umfasst.


7. Hauptberührungselement gemäß einem der vorhergehenden Ansprüche, in dem der innere Teil (70) zusätzlich ein wasserlösliches Polymer umfasst.

8. Hauptberührungselement gemäß Anspruch 7, wobei der innere Teil (70) zusätzlich Polyethylenoxid umfasst.

9. Rasiersystem (10), umfassend ein Klingenelement (20, 24, 60, 62) und ein Hauptberührungselement (42, 64) gemäß einem der vorhergehenden Ansprüche in Nachbarschaft zu dem Klingenelement.

Revendications

1. Elément s'appliquant contre la peau et destiné à être utilisé dans une unité de rasage à l'état humide, ledit élément destiné s'appliquant contre la peau comprenant une couche de revêtement extérieure allongée (72) recouvrant une partie intérieure (70) qui s'étend axialement sur la même étendue que cette partie, la partie intérieure et la couche de revêtement extérieure étant colorées différemment, ladite couche de revêtement extérieure (72) comprenant principalement un produit facilitant le rasage et soluble à l'eau et en outre une matrice insoluble dans l'eau, et ladite partie intérieure (70) possède une rigidité suffisante de manière à conférer une solidité mécanique adéquate à l'élément destiné à s'appliquer contre la peau, sans se désagréger en cours d'utilisation, et dans lequel ladite couche de revêtement extérieure (72) est adaptée pour s'éroder au niveau de la surface s'appliquant contre la peau pendant l'utilisation, pour exposer ladite partie intérieure (70) de manière à fournir à l'utilisateur une indication du fait que l'unité de rasage et/ou l'élément s'appliquant contre la peau ont atteint leur durée de vie effective.

2. Elément s'appliquant contre la peau selon la revendication 1, dans lequel ladite substance facilitant le rasage comprend de l'oxyde de polyéthylène.

3. Elément s'appliquant contre la peau selon la revendication 2, dans lequel ledit oxyde de polyéthylène est présent en une quantité comprise entre 65 % et 82 % en poids.

4. Elément s'appliquant contre la peau selon l'une quelconque des revendications précédentes, dans lequel ladite matrice insoluble dans l'eau comprend du nylon, un copolymère éthylène-acétate de vinyle, du polyéthylène, du polypropylène, du polystyrène ou du polyacétal.

5. Elément s'appliquant contre la peau selon l'une quelconque des revendications précédentes, dans lequel la partie intérieure (70) comprend un polymère insoluble dans l'eau en une quantité égale à au moins 50 % en poids.


7. Elément s'appliquant contre la peau selon l'une quelconque des revendications précédentes, dans lequel ladite
partie interne (70) comprend en outre un polymère soluble à l’eau.

8. Elément s’appliquant contre la peau selon la revendication 7, dans lequel ladite partie interne (70) comprend en outre de l’oxyde de polyéthylène.

9. Unité de rasage à l’état humide (10) comprenant un élément formant lame (20, 24, 60, 62) et un élément (42, 64) s’appliquant contre la peau selon l’une quelconque des revendications précédentes, disposé au voisinage dudit élément en forme de lame.