EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 26.06.2002 Bulletin 2002/26

Application number: 96912690.3

Date of filing: 10.04.1996

Designated Contracting States: DE ES FI FR GB SE

Priority: 10.04.1995 US 419135

Date of publication of application: 26.03.1997 Bulletin 1997/13

Proprietor: Rebus Technology, Inc.
Sunnyvale, CA 94086 (US)

Inventor: RANGARAJAN, Vijayakumar
c/o Parthasarathy,
San Jose, CA 95123 (US)

Representative: Liesegang, Roland, Dr.-Ing.
FORRESTER & BOEHMERT
Pettenkoferstrasse 20-22
80336 München (DE)

Int Cl.7: G06K 9/20

International application number: PCT/US96/05011

International publication number: WO 96/32691 (17.10.1996 Gazette 1996/46)

References cited:
- 8TH INT. CONF. ON PATTERN RECOGNITION, 27 October 1986, PARIS, FR, pages 745-8, XP002010093 J. HIGASHINO: "A knowledge-based segmentation method for document understanding"

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND

Field of Invention

[0001] This invention relates to the field of forms processing with optical scanners and optical character recognition, and more particularly, to systems and methods that automatically detect and compensate for page skew and translation.

Background of Invention

[0002] Optical character recognition ("OCR") is widely used to extract text from printed or handwritten documents and forms. Typically, a document is scanned on an optical scanner to produce bit mapped image data. An OCR software application processes the image data and extracts therefrom all of the text. A user then often reviews the resulting text file and either further processes it with other software to obtain only desired information or stores it in a useful form, such as in a word processing, database, spreadsheet, accounting system, or the like.

[0003] In forms processing, it is desirable to extract from a text based preprinted form only that text data that has been added to the form by a user. For example, on an invoice with existing text data such as a company's name, address, and descriptions of various text blocks such as "Customer Name," "Customer Address", "Item," "Quantity," and the like, it is desirable to extract only the information entered for such blocks, but not the descriptive text. This allows for more efficient processing of the text data, without the need to post-process all of the text to extract the useful information.

[0004] PROC. SPIE: REAL TIME IMAGE PROCESSING: CONCEPTS AND TECHNOLOGIES, vol. 860, November 1987, CANNES, FR, pages 89-94, XP002010095 A. DENGEL ET AL: "Model based segmentation and hypothesis generation for the recognition of printed documents" discloses a method for automatically identifying user defined zones in an image, in which key areas, like address or signature for a letter, or the abstract of a report are delineated in a document. This segmentation procedure uses a specific document layout model. The validity of this segmentation can be verified in a second step by using the results of more time-consuming procedures like text/graphic classification, optical character recognition and the comparison with more elaborate models for specific document parts. This segmentation is able to operate directly on the raster image of a document.

[0005] Previous systems for forms processing have used templates with user defined zones located in the template to identify locations on an input document image where the desired text is likely to be found. In these systems, the user defined zones in the template are located with respect to the identified boundaries of the image, that is, the top, bottom and sides of the image as defined in the bit map.

[0006] The problem with these conventional systems is that when a subsequent document is processed with the template, the user defined zones do not accurately register, or locate, on the image produced from the document. This occurs because when the document is scanned, the document may be rotated with respect to the scanner's bed, either because of misfeeding by a document feeder, or improper placement by a user. Additionally, the document may be displaced from the sides of the scanner's bed. In either case, the resulting bit mapped image will vary, possibly considerably, from the bit mapped image of the original template, and the user defined zones, will not map onto the correct portions of the image. As a result, the system will not be able to capture the correct text in each of the user defined zones.

[0007] Accordingly, it is desirable to provide a system and method that can correctly identify user defined zones from a template on an input image even in the presence of large amounts of skew or displacement.

SUMMARY OF THE INVENTION

[0008] The present invention overcomes the foregoing limitations by a method and system that automatically identifies the user defined zones within a document even in the presence of significant amounts of skew or displacement. The basic concept underlying the invention is that the relationship between various text or image elements in an image without skew will remain the same, irrespective of the skew, position displacement, page-image resolution, or page size at a given brightness and contrast setting. Specifically, the relative distances between these text and/or image areas do not change by any of the parameters as mentioned above. Accordingly, the relationships between different text and image areas on a given page are captured and used for page registration and user defined zone detection. The relationship between different text and image areas are captured by using dynamic data networks.

[0009] A dynamic data network is a network of links or vectors that are connected to certain qualified system blocks present within an image. Dynamic data networks are unique to each image at a particular brightness and contrast setting. A template including a dynamic data network is formed by processing an input image, preferably from a form, that will be used to process subsequently input documents. When these documents are later input, a dynamic data
network is produced for each input image, and compared with the dynamic data network of a selected template. Where there is a match, the system can then accurately locate the user defined zones on the image, and thereby use an optical character recognition facility to extract the text or any user defined information from the image at those locations.

A template is formed by a number of processing operations. Preferably, the input image is subsampled to about 50 dpi. Skew is detected and the image is rotated to remove the skew. A data preparation stage removes horizontal and vertical lines, and then smooths the remaining image data, which should be mainly text data and picture type data, into blocks of connected pixels. These blocks are then labeled, provided with an identification number, and classified into text, image, or dual blocks.

The classified blocks are further filtered for size and shape to provide a number of system blocks suitable for use in a dynamic data network. Certain ones of the system blocks are selected, according to location and size in the image, and from these, a dynamic data network is created. The dynamic data network defines the relationship between the system blocks in a resolution, size, skew, and displacement invariant manner. Since the system blocks do not change much at a given brightness and contrast setting, the vectors that define the dynamic data networks are less susceptible to variations in skew, displacement, and the like.

Brief Description of the Drawings

Figure 1 is a block diagram of a system for automatically registering and detecting user defined zones in input documents using templates.

Figure 2 is a flowgraph of the overall method of template definition and page registration.

Figure 3 is a flowgraph of the process of defining a template.

Figure 4 is a dataflow diagram of the definition executive with respect to various modules used to create a template definition.

Figures 5a and 5b are illustrations of the skew detection process for detecting skew in an input image.

Figure 6 is a flowgraph of the process for skew detection.

Figures 7a and 7b are illustrations of sample user interfaces for defining user defined zones on an image.

Figure 8 is a data flow diagram of the data preparation module in conjunction with various modules for preparing an input image.

Figure 9 is a flowgraph of the data preparation process.

Figure 10 is a flowgraph of the block identification process of the labeling module.

Figure 11 is a flowgraph of the data type classification process.

Figure 12 is a flowgraph of the process of creating the dynamic data networks.

Figures 13a and 13b are a flowgraph of the process of registering an input image with a template.

Figure 14 is an illustration of a deskewed bitonal image subsampled at 50 dpi.

Figure 15 is an illustration of the image of Figure 14 following runlength smoothing.

Figure 16 is an illustration of horizontal line removal on the image of Figure 15.

Figure 17 is an illustration of the image of Figure 14 without horizontal lines.

Figure 18 is an illustration of the image of Figure 17 normalized and rotated.

Figure 19 is an illustration of the smoothed image of Figure 18.

Figure 20 is an illustration of the results of removing vertical lines in Figure 19.

Figure 21 is an illustration of a deskewed rotated image without horizontal or vertical lines, from the combination of the image of Figures 18 and 20.

Figure 22 is an illustration of the correctly rotated image of Figure 21 following denormalization.

Figure 23 is an illustration of horizontal smoothing on the image of Figure 22.

Figure 24 is an illustration of vertical smoothing on the image of Figure 21.

Figure 25 is an illustration of an image following vertical and horizontal smoothing to form data blocks.

Figure 26 is an illustration of further smoothing on the image of Figure 25 to refine the data blocks therein.

Figure 27 is a schematic illustration of the results of labeling the data blocks in the image of Figure 26.

Figures 28a-h are illustrations a dynamic data network in various stages of construction.

DETAILED DESCRIPTION OF THE INVENTION

System Architecture

Referring now to Figure 1, there is shown a system for using the improved automatic page registration system of the present invention. The system 100 includes a computer 101 having a secondary storage 107 for long term storage of scanned documents and page registration templates, an input device 109 and an output device 116 for receiving and outputting commands and data into the system 100, and an addressable memory 113 for storing the
various code modules for execution by a processor 111. The system 100 includes a scanner 115 that is capable of scanning input documents, and producing either grayscale, black and white, or color bit map files for the input documents. The scanner 115 preferably has at least 50 dpi resolution. The system 100 includes a printer 117 for printing documents, including scanned documents, or other documents resident in the system 100.

[0041] The addressable memory 113 includes a number of code modules that together comprise an executable application that manages the automatic page registration method of the present invention. More particularly, the addressable memory 113 includes an application executive 137, a scanner control module 139, a definition executive 121, a registration executive 135, a minification module 123, a skew detection module 125, a deskewing module 127, a data preparation module 129, a labeling module 131, and a template module 133, and an optical character recognition module 145. The operation of these various modules will be described below, following a description of the processes that support automatic page registration. The addressable memory 113 further includes a primary image buffer 141 and secondary image buffer 143, which are used to store an image in various states of transformation by the modules.

[0042] The application executive 137 provides overall control of the system 100, including the remaining modules. The application executive 137 provides a user interface for communication with the user, for receiving user commands and data. Through a suitable user interface, the application executive 137 allows the user to input documents into the system 100 with the scanner 115, or other source, to create templates for processing the documents with definition executive 121, and to process further input documents with defined templates with the registration executive 135.

System Operation

I. Overall Process Flow

[0043] The system 100 provides an improved method for automatically registering an input document to eliminate skew and translation, and thereby provide for the more accurate extraction of data from the document using optical character recognition. The method includes two basic processes: creating a template for a given type of document or form, and applying the template to an input document to identify and extract data from the form.

[0044] Referring now to Figure 2, there is shown a flowgraph of the overall method of the present invention. The user, in conjunction with the system 100, defines 201 a template for a given form. Each template describes the internal structure of a form by specifying a number of user defined zones that contain text data to be extracted, and a number of blocks identified by the system. The template is defined by the relationship among the system defined blocks. The user can create any number of templates, each corresponding to a particular form. For example, the user may define different templates for processing invoices, purchases orders, business response cards, survey forms, questionnaires, facsimiles, business cards, and the like. These are but a few of the many different possible forms for which templates can be created. Accordingly, a form is understood here to mean any type of document for which multiple instances containing different data are produced and used. The creation and definition of the templates is managed by the definition executive 121.

[0045] The user then selects 203 a particular template from among a set of defined templates. For example, if the user is processing a stack of invoices, the user would select an appropriate invoice template for such documents.

[0046] The user, proceeds to input 205 in the documents into the system 100. This is preferably done with the scanner 115 and scanner control module 139. Alternatively, the user may input 205 the documents from other sources, including direct facsimile reception. Any source of input documents can be used that produces for each document a bit mapped image file. Alternatively, vector based files may be used if suitably converted to bit mapped images.

[0047] As each document is input 205, the selected template is applied 207 to the image of the document. The template identifies on the document the user defined blocks containing the text data that the user desires to extract. This identification is performed automatically, and identifies the user defined blocks even in the presence of skew or displacement in the image with respect to the original form that defined the template. Thus, even if the input document is misted into the scanner 115, for example, and the resulting image is skewed, the system 100 is still capable of identifying the user defined zones. In addition, there is no need to place on the form additional registration marks conventionally employed to locate and orient documents during scanning. The application of the template to an image is performed by the registration executive 135.

[0048] Once the user defined zones are identified, the system 100 applies the optical character recognition module 145 in a conventional manner to extract 209 the text data from the identified user defined zones. This data is stored 211 for subsequent retrieval and processing. The user may continue to input 205 additional documents, or may terminate processing.

II. Template Definition

[0049] Referring now to Figure 3, there is shown a flowgraph of the process 201 of defining a template, and referring
to Figure 4, there is shown a dataflow diagram of the definition executive 121 in cooperation with other modules during definition of a template. The definition executive 121 manages the operation of the modules 123-133, invoking each module as required, passing in the necessary inputs to the module, and receiving the outputs therefrom to create the template. Figures 14 through 28 are illustrations of a given input document through the various stages of template definition.

A. Image Generation

[0050] Template definition begins by inputting 301 a form into the system 100 which is an exemplar of a type of document from which the user desires to capture selected data in specific areas or zones on the form. For example, the user may desire to create a template of an invoice, and capture by optical character recognition text data in specific areas, such as the customer name, address, the invoice number, the product description, quantity, and price, and the total amount.

[0051] To input 301 the form the user preferably uses the scanner 115 in conjunction with the scanner control module 139. The scanner control module 139 controls the operation of the scanner 115, for example, to set brightness, contrast, resolution, and the like. The scanner 115 outputs an image file which may be a grayscale, bitonal, or color bit map. Where the scanner 115 outputs grayscale or color images, the scanner control module 139 preferably performs thresholding to produce a bitonal image for use in the system. Any standard thresholding technique can be used to obtain bitonal image. Essentially, any given grayscale or color image (4, 8 or 24 bits per pixel) is converted to 1-bit-per-pixel by determining if a given grayscale or color pixel exceeds predetermined threshold value x, where x is typically set at 2depth/2, where "depth" is the number of bits per pixel in the image. If so, the pixel value is assigned a 1, and if not, then the pixel is assigned a 0. A pixel value of 1 may mean the pixel is set or vice versa, as desired for implementation. Additionally, image files from any other sources may be input into the system 100, and processed according to the present invention. Such sources include facsimile images, graphic images produced from graphic application, or even images captured from scanned photographs, or video, or the like.

B. Image Minification

[0052] The definition executive 121 receives the bitonal image file from the scanner control module 139 via the application executive 137, or from any other source. The definition executive 121 passes the bitonal image file to the minification module 123. The minification module 123 minimizes 303, or subsamples the input bitonal image, reducing the resolution of the image from its original resolution to a lower resolution more suitable to forms processing and template definition. Conventional scanners, such as scanner 115 produce a high resolution image (at least 600 dpi) which is useful to produce highly accurate optical character recognition. However, this level of resolution is unnecessary to create and define templates for forms processing, and further, imposes extra demands on memory and storage requirements, and significantly impacts performance. The minification module 123 thus detects the original source resolution and computes a scale or subsampling factor for the image.

[0053] In the preferred embodiment, the input image scaled to approximately 50 dpi from the source resolution, and an appropriate scale factor is computed for this result. For example, if an image that has an original resolution of 200 dpi, the scale factor is 4, and the resulting subsampled image will be 25% of the size of the original image. Where the source resolution is not a multiple of 50 dpi, a scale factor is chosen to result in a resolution closest to 50 dpi, and preferably an image size equal to or less than 64kb. The limitation on image size is useful to improve overall performance, and to avoid limitations induced by the existing x86 architecture and supporting development tools. The preferred embodiment of the minification module 123 uses a decimation technique where a proportionate number of pixels are dropped off from the original image during the subsampling process. For example, if the bitonal image is at 300 dpi, for every bit selected, the next 6 bits are ignored. The minification module 123 outputs the subsampled image in the image buffer 141. The image buffer 141 is used throughout processing to maintain one current state of the processed input image.

C. Skew Detection

[0054] Once the image file is minimized 303, the definition executive 121 activates the skew detection module 125 to identify 305 the presence and degree of skew in an input image. The skew detection module 125 accesses the image buffer 141 to obtain the subsampled image output by the minification module 123. In the preferred embodiment, the skew detection module 125 is capable of detecting skew between -60° and +60°, where 0° represents a perfect horizontal and vertical alignment of the input document on the scanner 115.

[0055] Figures 5a and 5b are a graphical illustration of the skew detection analysis. A scanned image 500 will include a line of text 501 that presents some degree of skew. The line of text 501 is smoothed, resulting in a number of text
blocks 503, each containing a continuous series of pixels. Also present in the image may be image blocks (not shown) which contain non-text derived data, such as lines, shading, and the like. Connected blocks 503 are identified. An imaginary line 505 between the left edge and the right edge of a connected set of blocks 503 is computed, and a skew angle F is determined between this line and a horizontal line 507 extending from the left edge of the blocks 503. This process is repeated for each connected set of blocks in an image 500, and a skew angle F is associated with each such set of connected blocks 503. Where a majority of the individual skew angles F are substantially the same, within a specified range of tolerance, then all of the individual skew angles F are averaged to produce a skew angle for the image 500, along with an orientation (clock/counterclockwise).

[0056] Referring to Figure 6, there is shown a flowgraph of the preferred method of skew detection by the skew detection module 125. The skew detection module 125 performs 601 runlength smoothing on the subsampled pixel data in the image buffer 141 to produce the smoothed blocks. This is done by calling a smoothing module 801 (Figure 8). The smoothing module 801 applies a general runlength smoothing operation on unset (white) pixels in the input image using an input runlength parameter, converting the unset pixels to set (black) pixels. In the preferred embodiment, the smoothing at this point is performed with runlength value of 5, which is based on the preferred resolution of the image (50 dpi), and typical font sizes in text documents. Where other resolutions are used in the system, a different runlength parameter is specified. The smoothed image is maintained in the primary image buffer 141.

[0057] The skew detection module 125 then expands 603 each bit, representing each pixel in the image, to a word (2 bytes). Expanding each bit to a 16 bit representation allows for storage of additional information about each pixel, such as a unique identification value, and information associating the pixel with other pixels, and thereby identifying the individual blocks. If additional bit width is needed for block identification numbers or other information, expanding to additional bytes may be used. Each word is later used by the labeling module 131 to store the block identification values. For example, after the smoothing operation, if the pixel includes a portion such as 1111111110000000, where ‘1’ represents the presence of data (black pixel) and ‘0’ represents no presence of data (white pixel), then after expansion, each bit is stored as a 2 byte word:

0000000000000000, 0000000000000000, 0000000000000000, 0000000000000000, 0000000000000000, and so on.

[0058] The skew detection module 125 then calls 605 the labeling module 131 to segment the pixels in the image into blocks. The operation of the labeling module 131 is further described below. The labeling module 131 identifies each of the blocks from the pixel data, and further identifies each set of connected blocks, that is, blocks that are connected by black (set) pixels. Each set of connected block(s) is labeled with a unique identification number, such that all connected blocks have the same identification number.

[0059] Not all of the blocks in the image are useful to determining the overall skew of the image. Particularly, blocks that either too small or too large with respect to the overall image size tend not to contribute significantly to the actual overall skew. Small blocks provide very little skew information, and big blocks give too large skew values. Accordingly, the skew detection module 125 filters 607 out blocks that are outside of predetermined ranges for height and width, prior to determining their skew angles. In the preferred embodiment, the skew detection module 125 filters out blocks with a height greater than 99 pixels and a width greater than 149 pixels, or blocks with a height less than 6 pixels and a width less than 25 pixels. Again, the filter parameters are based on the resolution of the subsampled image, and would be adapted according to other resolutions. From the remaining blocks, the average height and average width is determined, and only blocks with dimensions exceeding these values are further processed. The blocks that are not filtered out are valid blocks.

[0060] The skew detection module 125 then determines 609 from the remaining blocks the skew angle F and direction of skew for each set of connected blocks, as described above. The imaginary line is preferably computed from center (in the y-axis) of the left edge of the block to the center of the right edge.

[0061] In one preferred embodiment the skew angle is $\tan^{-1}(\Delta Y/\Delta X)$ where ΔX is the difference between the x-axis coordinates of the center of the left and right edges of the block, and ΔY is the difference between the y-axis coordinates of the edges.

[0062] In an alternate embodiment, the imaginary line is taken from the top left to bottom right corners of the block, and thus ΔX is the difference between the x-axis coordinates of the top left and bottom right corners of the block, and ΔY is the difference between the y-axis coordinates of the corners. In this embodiment, the corners are determined as follows. For each pixel column within the block, the bottom of the column is detected as an unset pixel following a series of set pixels. The coordinates of the column bottom are stored. The difference between the bottom of the current pixel column and the bottom of the next pixel column, ΔC, is noted for each pixel column. ΔC is computed to eliminate the possible skew angle errors that might be introduced by the text ascenders like letters ‘h’, ‘l’, ‘d’ and descendents like ‘g’, ‘p’, ‘y’. The average ΔC value is then taken for the entire block. Pixel columns that have ΔC values outside of the range of (average $\Delta C \pm 2$ pixels) (assuming 50 dpi image) are ignored for determining the ends of the imaginary line which will be used to determine the skew angle. This is the “ΔC test.” The first pixel-column bottom with a ΔC value
that satisfies the ΔC test while traversing from the top left corner of the block constitutes the beginning of the imaginary line and the last pixel-column bottom satisfying this constraint constitutes the other end of the imaginary line. This process is repeated for each valid block, and orientation (direction of rotation) and skew angle is stored in the expanded word of each pixel.

[0063] The skew detection module 125 performs a series of tests to ensure that the image has an amount of direction and skew that is both significant and compensable by the system 100. The skew detection module 125 determines 611 whether the total number of valid blocks is less than or equal to 2. Such a low number of qualified blocks is not predictive of the skew of the whole image. Accordingly, if this is the case, the skew detection module 125 sets 617 the image skew angle F at 0°.

[0064] Otherwise, the skew detection module 125 then determines 613 the orientation that is held by the largest number of sets of connected blocks. If this number is a majority, preferably at least 75%, of the total number of sets of connected blocks, then this orientation is taken as the orientation of the entire image. The skew detection module 125 computes the image skew angle F by averaging 615 the individual skew angles F of the valid blocks.

[0065] The skew detection module 125 determines 619 whether the image skew angle F is greater than $|60^\circ|$. If so, then the document may be severely misaligned, and unlikely to be correctly scanned or otherwise captured, and thereby are unlikely to be successfully identified and processed. In this case, the skew detection module 125 sets 617 the image skew angle F to 0°. Otherwise, if the image skew angle F is within the boundary conditions, the skew detection module 125 returns that value. This is shown in Figure 4 as returning the detected skew angle.

D. Deskewing

[0066] Referring again to Figure 3, with the detected skew angle, the definition executive 121 determines 307 whether or not to deskew the image. In the preferred embodiment, the definition executive 121 does not deskew the image if the image skew angle is equal or less than 1°, as this small amount of skew does not impact registration of the form with respect to a template.

[0067] If the image skew angle F exceeds 1°, the definition executive 121 invokes the deskewing module 127, to deskew 309 both the subsampled and the original image back to a true horizontal and vertical orientation. The deskewing module 127 reads both the original image from an image file, and the subsampled image from the image buffer, and rotates them in the direction opposite to their determined skew direction, by their image skew angle F. Rotation is performed using conventional techniques.

[0068] Figure 14 is an example of an input document that has been scanned into a bitonal image file and subsampled to 50dpi (printed full page size) and then deskewed.

E. Selection of User Defined Zones

[0069] Referring again to Figure 3, the definition executive 121 provides the deskewed image to the application executive 137, which further presents the deskewed image to the user through a desirable user interface display. The application executive 137 further provides a conventional set of drawing-like tools with which the user can graphically create 311 the user defined zones. This is done by choosing an appropriate drawing tool, such as a rectangle or polygon creation tool, and applying it to the deskewed image to select the individual areas or zones containing the desired text information. Figure 7a illustrates one example of a suitable user interface 705, showing a deskewed document 700. Figure 7b illustrates the same document now including a number of user defined zones 701. A palette of drawing tools 703 is also shown, with various graphical tools for selecting the user defined zones 701. Once the user defines a number of zones, the coordinates of the boundary of each of user defined zone is stored, preferably using the coordinates of an upper left hand corner, and a lower right hand corner where the user defined zone is a rectangle. For general polygonal user defined zones, the coordinates of each vertex may also be stored.

F. Data Preparation

[0070] Referring again to Figure 3, the definition executive 121 then invokes 313 the data preparation module 129 to perform a number of tasks on the subsampled image to filter out unnecessary or insignificant elements in the image. This includes smoothing, vertical and horizontal line removal, and formation of blocks. The data preparation module 129 produces an image with smoothed blocks ready for labeling by the labeling module 131. Referring to Figure 8, there is shown a dataflow diagram of the underlying modules of the data preparation module 129. The data preparation module 129 includes the smoothing module 801, a line removal module 803, a rotate image module 805, and a combination module 807. Referring to Figure 9 there is shown a flowgraph of the operation of the data preparation module 129. In the figure, text between the process blocks refers to the current status of the processed image. Text above the connecting arrows indicates that the image is in the primary image buffer 141; text below the connecting arrows indicates
that the image is in the secondary image buffer 143. A key is provided in the figure for the text abbreviations used. In addition, the text has been labeled to identify a figure showing an example image at the given stage of processing.

Removal of Horizontal and Vertical Lines

[0071] The data preparation module 129 invokes the smoothing module 801 to smooth 901 the deskewed image. Smoothing increases the accuracy of the removal of horizontal lines. The smoothing module 801 performs runlength smoothing in a conventional manner, using an input runlength parameter. During scanning, vertical and horizontal lines in a document may be disjointed into a number of broken line segments. This results from variations in brightness/contrast, scanning techniques, orientation of the document and the like. Such broken lines are more difficult to identify and remove at the line removal stage by the line removal module 803. Similarly, a form may contain areas demarcated by dashed or dotted lines, which are also difficult to remove. Accordingly, to increase the accuracy of the line removal module 803, it is desirable to cause such broken, dashed, or dotted lines to form continuous lines. This is done by the smoothing module 801.

[0072] The smoothing module 801 is invoked and passed in a runlength parameter, dependent again on the resolution of the subsampled image, that will cause such disjointed lines to be connected by set pixels. In the preferred embodiment, the runlength parameter is set to a maximum of 5, given the preferred resolution of 50 dpi; the runlength parameter would be adjusted for other resolutions. This converts any sequence of 5 or less white pixels into a sequence of black pixels. This pass will connect dotted, dashed or similar lines into continuous line segments. A low runlength value further aids in not deleting the dots used in letters such as "t" and "f", or the crosses on "t", "f" and others.

[0073] Figure 15 is an illustration of the image of Figure 14, following runlength smoothing by the smoothing module 801.

[0074] The data preparation module 129 then invokes the line removal module 803 to remove 903 horizontal lines in smoothed image. Figure 16 shows the results of horizontal line removal 903 on the image of Figure 15. The line removal module 803 scans the image buffer to identify set (black) pixels with a runlength of at least 15. This identifies a potential line segment. The line removal module 803 then checks the second line above the potential line segment to determine whether this line segment has a series of unset pixels for the same runlength as the potential line segment. Alternatively the line removal module 803 may determine the number transitions from set to unset, or unset to set pixels, and compare this value to a predetermined maximum of transitions for a given runlength.

[0075] If the foregoing conditional is satisfied, then this indicates the top edge of the potential line segment. The line removal module 803 similarly checks the second line below the potential line segment to identify the bottom of the potential line segment. In this manner the potential line segment can have a maximum height of 3 pixels. If both of these conditions are true, the potential line segment is an actual line segment. The line removal module 803 then removes the line segment by changing all of the set pixels to unset pixels. This process is repeated from the top of the image to the bottom. The resulting image is stored in the secondary image buffer 143. The specific number of lines and line height again is dependent on the resolution of the image, and may adjusted accordingly.

[0076] The combination module 807 combines two images in the image buffers 141, 143. This module 807 is invoked by the data preparation module 129 after line removal to produce 905 an image with both vertical and horizontal lines removed. Combination is done by logically ANDing each bit of the two input images. The combination module 807 is invoked and passed in a runlength parameter, dependent again on the resolution of the subsampled image, that will cause such disjointed lines to be connected by set pixels. In the preferred embodiment, the runlength parameter is set to a maximum of 5, given the preferred resolution of 50 dpi; the runlength parameter would be adjusted for other resolutions. This converts any sequence of 5 or less white pixels into a sequence of black pixels. This pass will connect dotted, dashed or similar lines into continuous line segments. A low runlength value further aids in not deleting the dots used in letters such as "t" and "f", or the crosses on "t", "f" and others.

[0077] After horizontal line removal, the data preparation module 129 normalizes 907 the deskewed image without horizontal lines. Normalization is the procedure of drawing temporary horizontal lines (1 pixel wide) at the top of the image and the bottom of the image. This procedure is done to improve accuracy during removal of the vertical lines in the image by clearing demarcating the top and bottom of the image during the smoothing operation. Without the temporary lines, during smoothing, parts of the image may be smoothed across the page boundary. After the vertical lines are removed, the temporary lines are also removed.

[0078] Once normalized, the deskewed image is rotated 90°. This rotation is performed 909 by the rotate image module 805, and is done so that the vertical lines may be removed by the line removal module 803. Figure 18 shows the normalization and rotation of the deskewed image of Figure 17.

[0079] The data preparation module 129 invokes the smoothing module 801 to smooth 911 the normalized deskewed image without horizontal lines. Figure 19 shows the results of smoothing 911 the image of Figure 18. The line removal module 803 then removes 913 the vertical lines, which are now horizontal lines in the rotated image. Figure 20 shows the results of removing 913 horizontal (vertical in the unrotated image) lines in Figure 19.

[0080] After the vertical lines are removed 913, the image is stored in the primary image buffer 141, separately from the rotated, normalized, deskewed image without horizontal lines in the secondary image buffer 143, resulting from step 909. The combination module 807 is then called to combine 915 the rotated deskewed image without horizontal
lines from the step 909, with the smoothed image without the vertical lines, here producing a rotated deskewed image without horizontal or vertical lines. Figure 21 shows the results of combining the vertical line removed image of Figure 20 with the deskewed, rotated, normalized image of Figure 18, thereby producing a deskewed, rotated image without horizontal or vertical lines. The order in which the which the vertical and horizontal lines can be removed may be switched with the appropriate modifications.

[0081] Once the horizontal and vertical lines have been removed, the rotate image module 805 rotates 917 the combined image back to its original orientation. The data preparation module 129 denormalizes 919 the image, and removes the temporary lines introduced during normalization. The result is a deskewed image without vertical or horizontal lines. This image is stored in the primary image buffer 141. Figure 22 shows the results of rotating back the image of Figure 21 and denormalizing to remove the top and bottom temporary lines.

Formation of System Blocks

[0082] The second major function of the data preparation module 129 is the formation of blocks that can be subsequently considered for labeling as system blocks by the labeling module 131. The blocks are formed as follows.

[0083] Blocks are formed by a similar series of steps as the line removal process. Horizontal runlength smoothing 921 is performed on the deskewed image without horizontal and vertical lines by the smoothing module 801 with a runlength parameter that will produce large blocks of continuous pixels. In the preferred embodiment, the smoothing operation 921 is performed with a runlength value of - about 80 (at 50 dpi) such that white (unset) runlength occurrences of 80 or less pixels along each pixel line are converted or filled with black (set) pixels. The resulting image is stored in the primary image buffer 141. Figure 23 shows the results of smoothing 921 the image in Figure 22.

[0084] Smoothing 923 is then performed on the vertical line-free image data resulting from step 915, which is then stored in the secondary image buffer 143. Figure 24 shows the results of vertical smoothing on the image of Figure 21. The vertically smoothed image is then rotated back to a portrait orientation, and stored in the secondary image buffer 143.

[0085] The horizontally smoothed image in the primary image buffer 141, and the vertically smoothed image in the secondary image buffer 143 are combined 925 together by the combination module 807. This process generate a set of data blocks in the image. Figure 25 shows the combined results of horizontal and vertical smoothing to produce data blocks, here the combination of Figure 23 and Figure 24 (following rotation).

[0086] In some instances there may be some small gaps in the output which may have to be smoothed further. Further smoothing 927 of the resultant data is performed with a runlength value of 3 pixels, thereby eliminating these residual elements. The resultant image is stored in the primary image buffer 141, and contains the blocks ready for processing by the labeling module 131. Figure 26 shows the results of smoothing 927 to eliminate residual elements in Figure 25.

G. Labeling & Classification of System Blocks

[0087] Referring again to Figure 3, following data preparation, the blocks are labeled and classified 315 by the labeling module 131. Generally, the labeling module 131 analyses the blocks created by the data preparation module 129, identifying each block with a unique block identification number and classifying each block as either a text block, an image block, or a dual block. Text blocks are those blocks that are probably generated by the presence of text areas on the original image. Image blocks are those blocks that are probably generated by the presence of graphics or pictures in the original image. Dual blocks are those blocks that are not identifiably either text or image blocks. Each group of connected block are assigned a unique block identification number.

[0088] The labeling module 131 maintains a list of block identification numbers, each corresponding to a block, and for each block identification number further stores statistical and classification data about the block. In the preferred embodiment, the block identification list is an array of block structs, each block struct having attributes for block identification number, and other data values as further described below.

[0089] The labeling module 131 preferably employs a 4 pixel-connectivity tracing technique to determine whether a selected pixel is connected to its neighboring pixels. Such collections of pixels collectively form clusters, thereby contributing to the formation of a type of block. For each block that is formed, various features are extracted in order to discriminate them as unique blocks belonging to one of the block types.

Block Identification and Labeling

[0090] Referring now to Figure 10 there is shown a flowgraph of the process of block identification by the labeling module 131. The labeling module 131 receives from the data preparation module 129 via the primary image buffer 141, the smoothed image without horizontal or vertical lines, along with a list of the blocks and their identification values.
The labeling module 131 expands each bit in the image, as described above, to a 2 byte representation. The additional bit width will be used to store information about the identified system blocks. The expanded data is stored in the addressable memory 113.

The labeling module 131 scans the expanded data of the image to identify set pixels. Only the bit in the expanded data that corresponds to actual image data is checked. This scanning process proceeds from left to right, top to bottom; a count of the number of lines (based on resolution), and in the image is maintained to determine when the entire image is scanned.

If a set pixel is located, the pixels immediately adjacent to the set pixel in the same and previous line that have already been checked (thus the left, top-left, top, and top-right) are checked to determine if they all have the same block identification number. If so, then the set pixel is assigned the same block identification number. The labeling module 131 determines if the current line is the first line in the image or next to a blank line. If so, then only the pixel to the immediate left is checked, as above.

If the block identification numbers are different among the neighboring pixels, then the labeling module 131 determines whether the set pixel has multiple block identification numbers. If so, then the labeling module 131 assigns the pixel the block identification number held by the largest number of the neighboring pixels. Also, any other neighboring pixels will have their block identification number changed as well to this block identification number. The block identification numbers are assigned from the list of available block identification numbers. The block identification number of the changed pixels is thus added back into the list of available block identification numbers. Each block identification number is thus associated with one set of connected pixels.

Once the block identification number is assigned, a number of statistics on the block identification numbers are updated. In particular, labeling module 131 maintains for each block identification number:

- the number of set pixels present in the image buffer that have the block identification number (NUMB);
- the spanning area of the block, as determined by the top-left, and bottom right set pixels of the block (AREA);
- the number of set-to-unset transitions (scanning left to right/top to bottom) in the block (TRANS);
- the height of the block, as the difference between the y-axis coordinates of the he top-left, and bottom right set pixels of the block (HEIGHT);
- the width of the block as the difference between the y-axis coordinates of the he top-left, and bottom right set pixels of the block (WIDTH);
- a run factor determined by the quotient of NUMB/TRANS, the run factor indicates the average runlength of set pixels in the block (RUN);
- an aspect ratio determined by the quotient of WIDTH/HEIGHT (ASPECT); and
- a density factor determined by the quotient of NUMB/AREA, the density factor indicates the average number of set pixels per pixel in the block (DENSITY).

These data values are updated with each scanned pixel.

The labeling module 131 determines whether all lines in the image have been processed. If not, the labeling module 131 continues to scan the expanded data. If so, then all distinct, separate blocks of connected pixels have been identified, and provided with a block identification number, and each block identification number applies only to one group of connected pixels.

Once all of the blocks have been assigned block identification numbers, the labeling module 131 qualifies selected blocks for determining average block data for the entire image. Qualified blocks are those that have an adequate size and shape to be readily identifiable by the system. In the preferred embodiment, using 50 dpi images, qualified blocks meet the following criteria:

- HEIGHT/RUN > 4.00
- HEIGHT <= 22 lines
- ASPECT >= 5.00
- DENSITY >= 0.5

Each block is checked against these criteria, list of block identification numbers is updated to indicate
whether the block is qualified. The values are related to the preferred resolution, and in other embodiments, other
criteria may be employed.

From the qualified blocks, an average height and average runlength is computed. The average height
is determined by summing the heights of the qualified blocks, and dividing by the number of qualified blocks. The
average runlength is similarly determined.

Figure 27 shows as a schematic example of the results of labeling on the image of Figure 26. In the image
of Figure 27, blocks that have the same pixel density pattern have been labeled as part of one block, and have the
same block identification number.

Block Classification

The labeling module 131 then continues to determine the data type of each block (both qualified, as above
and not qualified), whether it is text, image, or dual. Referring to Figure 11 there is shown a flowgraph of the data type
classification process of the labeling module 131.

The labeling module 131 tests whether there are any qualified blocks resulting from the qualification
process. If not, then the labeling module 131 segregates all blocks into invalid blocks and dual blocks. The labeling
module 131 loops over the block list and determines for each block whether the area (AREA) is less than
100 pixels (assuming 50 dpi). If so, then the block is an invalid block, and processing continues. If the area is greater
than 100 pixels, then the block is classified as a dual block. In each case the block list is updated with the assigned
values.

Once the blocks are initially segregated, or if there are any qualified blocks then the labeling module 131
determines whether the blocks are text or image blocks, or simply indeterminate. This is done by looping over
the list of qualified or dual block blocks, and for each block, determining whether the height of the block is within
a particular range of block heights from the average block height of the image. In the preferred embodiment, where
the preferred image resolution is 50 dpi, the test is whether the height of each block is less or equal to four times the
average block height. Other approximate ratios may be used with other image resolutions.

If the block height is within the desired range, this indicates a small to medium size block that may be either
text or image data. Accordingly, the labeling module 131 further determines the runlength (RUN) of the block with
respect to the average runlength of the all the qualified blocks. In the preferred embodiment, if the block runlength is
less than about six times the average runlength plus an adjustment factor of two, then the block is a text block, and
the block identification list is updated accordingly. This effectively tests whether the block has the area and length
common to text blocks once smoothed by data preparation. Blocks meeting these various tests are probably text blocks
and so classified.

If the runlength exceeds this value, then the block may still be an image block or indeterminate, in which case
it remains classified as a dual block. Accordingly, the labeling module 131 tests whether the height (HEIGHT) of
the block is greater than three lines (again, assuming a 50 dpi image; this value should be scaled with other resolutions).
Since most text blocks are less than this amount, if the height exceeds this value, the block is likely an image block,
and so the block identification list is updated accordingly. If not, then no further classification is performed, and
the block remains classified as a dual block.

Returning then to the conditional, where the height of the block is greater than about four times the
average block height, the block is probably an image block, but further tests are applied to verify this classification.
The labeling module 131 determines whether the aspect ratio (ASPECT) of the block is greater than or equal to
about 0.2. If so, this indicates that the block has the approximate width to height common in most images; any smaller
value would indicate a very narrow block that is unlikely to be an image. Accordingly, the labeling module 131 will
update the block list to indicate an image block. If this test fails, then the labeling module 131 determines whether the width of the block is greater than 3 pixels. If it is, then the block is again classified as an image block.
Otherwise, the block remains classified as a dual block.

At the end of the labeling and classification processes, the blocks in the image have been distinctly identified
and typed as either text, image, or dual blocks. The resulting set of blocks are 'system blocks,' and will be used to
define the structure of the template.

H. Creation of Dynamic Data Network

Referring again to Figure 3, the dynamic data networks that describe the structure of a template are defined
from the valid, labeled, classified blocks. Referring now to Figure 12, there is shown a flowgraph of the process
of creating the dynamic data network of template by the template module 133.

The template module 133 determines whether any of the system blocks intersect any of the user defined
zones. These system blocks are eliminated from further processing. The template module 133 also determines the
first line of the deskewed, subsampled image in which a set pixel occurs, and the last line in which a set pixels occurs. These lines determine the area of the image where any data is present, thereby eliminating unnecessary processing of the image area outside of these lines.

[0110] The template module 133 segments 1201 the image data between the first and last line into a number of zones having equal area. Segmenting the image into segments allows for normalizing the block size in each segment, such that large blocks do not overly influence the selection of blocks for the dynamic data network. By using segments, blocks in each zone of the image will be used in the template, resulting in a more robust template. In the preferred embodiment, the image is segmented into fifteen segments, dividing the image top to bottom.

[0111] In each segment, template module 133 determines 1203 the average area of the text blocks, and separately, the image blocks in the segment. The average area of each block type in each segment is then stored. The template module 133 then selects 1205 in each segment those blocks with an area approximately equal to the average block area of the segment, with respect to the block type. In the preferred embodiment, selected blocks are within ±20% of the average block area of their type. Alternatively, a block with an area less than and next to (in an ordered list) the average block size, and a block with an area greater than and next to the average block size may be selected. For example, assume the blocks in a segment have areas of 104, 100, 118, 132, 138, 102, and 128 sq. pixels, and the average block area is 120 pixels. Then the selected blocks would be those with 118 and 128 sq. pixels. This selection is done for both image and text blocks, resulting in four blocks in each segment.

[0112] The template module 133 then determines 1207 if there are least five blocks selected. If so, a dynamic data network for the template can be created. From experimentation it was determined that a minimum of five blocks are preferred to create a dynamic data network. If five blocks are not selected, the template module 133 indicates 1209 to the form processing definition executive 121 that template definition has failed.

[0113] If there are more than five blocks for the entire image, the dynamic data network for the image is created 1211. The dynamic data network comprises a list of vectors between the system blocks meeting the average size requirement, preferably between their centroids. More particularly, for each system block a vector is defined from the centroid of the system block to the centroid of every other system block. Accordingly, for each system block Bi (i = 1 to n, where n is the number of system blocks) there is a vector list Vi, containing vectors v(i,j) between system block Bi and system blocks Bj:

\[V_i = [v(i,1), v(i,2), \ldots, v(i,n)] \]

[0114] In the preferred embodiment each vector is preferably defined as the distance between the centroids of the system blocks, and a direction.

\[v(i,j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}, (B_i \rightarrow B_j) \]

where \((B_i \rightarrow B_j)\) indicates the direction of the vector from system block Bi to system block Bj.

[0115] Other vector definitions may also be used, so long as a vector invariantly associates one system block with another. For example, each vector may be stored as the coordinates of its end points:

\[v(i,j) = [(x_i, y_i), (x_j, y_j)] \]

from which distance and orientation may be computed as needed.

[0116] The dynamic data network D for the image includes the set of vector lists V for the system blocks:

\[D = [V_1, V_2, V_3, \ldots, V_n] \]

[0117] The dynamic data network of an image describes the structure of the image because the vector relationships between the system blocks are fixed on the image, and remain same even when the image is rotated or displaced by a significant amount. Figure 28a shows a sample form with the text areas used as system blocks, and Figures 28b through 28h shown the various vector list Vi between each of the system blocks and the other system blocks.
Additionally, a portion of the dynamic data network D may be defined with respect to the user-defined zones. This is done by establishing, for each user-defined zone \(Z_k \) (\(k = 1 \) to \(m \), the number of user-defined zones), a vector list \(U \), containing vectors \(u_{(i,j)} \) between zone \(Z_k \) and each system block \(B_i \):

\[
U_i = [u_{(i,j)}, u_{(i,j+1)}, \ldots u_{(i,m)}]
\]

In this embodiment, vectors between user-defined zones have not been found to add significantly to the robustness of the template, and hence are not stored. In alternate embodiments, these vectors may be used should they improve the template. In either case, if vectors between the user-defined zones were included, dynamic data network D would additionally comprise the set of vector lists \(U \) for the user-defined zones:

\[
D = [V_1, V_2, V_3, \ldots V_n, U_1, U_2, U_3, \ldots U_m]
\]

The template module 133 then stores the created template with a user input name and the defined template data, including the location of each system block in the template, the statistical data on each system block, the dynamic data network information, and the coordinates of the user-defined zones. The template module 133 returns control to the definition executive 121.

III. Template Registration

Referring again to Figure 2, after one or more templates have been defined 201, the user may begin processing documents with the templates. The selection of templates and inputting of documents is described above. Application of the template is the process of automatically registering the document with a template.

Generally, the registration process is very similar to the template definition process, except that instead of creating a new template, the identified system blocks in each input image are compared with the system blocks and dynamic data network of the template. If there is a match, then the system applies the user-defined zones of the template to the input image and extracts via optical character recognition any text therein.

The modules used during registration have been previously described, and their underlying operations are effectively the same. The registration process is managed by the registration executive 135.

The registration executive 135 controls the scanner 115 and scanner control module 139 to scan the input document and obtain the image data. The image data is thresholded as described to produce a bitonal image. The registration executive 135 invokes the minification module 123 to minimize the image data to a desired resolution.

The registration executive 135 invokes the skew detection module 125 to detect any skew within the image, and report the image skew angle and orientation. The registration executive 135 determines if the skew exceeds 1°, and if so, calls the deskewing module 127 to deskew the minimized image and the original image data. The minimized image is stored in the primary image buffer 141.

The registration executive 135 invokes the data preparation module 129 to remove the horizontal and vertical lines and to smooth the image into distinct data blocks. The labeling module 131 is then invoked to label and classify 1313 the data blocks with block identification numbers. The labeled blocks are qualified, as above, to produce a list of qualified blocks. The qualified blocks are classified, as described above, as either text, image, or dual blocks.

The registration executive 135 invokes the data preparation module 209 to remove the horizontal and vertical lines and to smooth the image into distinct data blocks. The labeling module 131 is then invoked to label and classify the data blocks with block identification numbers. The labeled blocks are qualified, as above, to produce a list of qualified blocks. The qualified blocks are classified, as described above, as either text, image, or dual blocks.

The registration executive 135 calls the template module 133, which loads 1315 the dynamic data network of the template. The template module 133 then creates a dynamic data network for the input image. This is done by further qualifying 1317 the classified data blocks. This qualification identifies those blocks that are potential system blocks that match the system blocks of template. Each data block in the input image is compared with each system block in the template. The criteria for qualification are:

- the classification of the data blocks must be the same (text or image);
- the absolute difference between the width of the blocks must be less or equal to 5 pixels;
- the absolute difference between the height of the blocks must be less or equal to 5 lines;
- the absolute difference between the number of set pixels in the data block and in the system block must be less...
than 10% of the number of set pixels in the system block.

[0128] The template module 133 tests 1319 whether the number of qualified system blocks of the input image is at least 20% of the number of system blocks in the template. If not, the template does not match the input image, and the template module 133 returns 1333 a failure condition to the registration executive 135.

[0129] If the number of qualified system blocks meets the threshold value, then the template module 133 creates 1321 a dynamic data network for the input image, as described above. This dynamic data network is not stored as a template, but rather is compared 1323 with the dynamic data network of the user selected template.

[0130] The comparison process 1323 iterates over each system block in the input image. The vectors in each image vector list are compared with the vectors in the template vector list. A vector in the input image matches a vector in the template where it is within a predetermined range of dimensional tolerance. In the preferred embodiment, using 50 dpi image, the dimensional tolerance is 3 pixels. That is, if the input image vector's length is within ±3 pixels of the template's vector length, then the vectors match. In other embodiments, a different dimensional tolerance, appropriately scaled, may be used.

The vectors may also be compared by the coordinates of the ends points, the dimensional tolerance being approximately squared. The template module 133 maintains a count of the number of matching vectors.

[0131] The template module 133 then determines 1325 whether the number of matching vectors, and hence matching system blocks, is at least 10% of the number of system blocks in the template. If so, then the dynamic data networks match, and registration is successful.

[0132] If there is match between the dynamic data network of the input image and the template, then the (x,y) offset between the centroids of each pair corresponding system blocks (one in the template, and one in the input image) is determined 1327. This will produce a list of offset values (x,y). The offset value which applies to the largest number of system block pairs is taken as the offset of the image. For example, if five system block pairs have an offset of (2,3), two have an offset of (2,4), and six have an offset of (3,3), then the image offset is (3,3) pixels. The image offset is added to the coordinates of each of the user defined zones, stored in the template, to determine 1329 the coordinates of the user defined zones on the input image.

[0133] The coordinates of the user defined zones in the input are provided 1331 to the optical character recognition module 145. The optical character recognition module 145 then extracts 209 (Figure 2) the text in such zones on the image, providing the data to a file, a database or other storage facility.

[0134] If there was not a match with the template, the registration executive 135 returns 1333 a failure condition to the application executive 137, which prompts the user that the template could not be applied. This will occur where the document is not of the same type as the form, or was scanned with significantly different brightness and contrast settings that either significantly more or less pixels were set in the image than in the original image from which the template derived. The user may then check the scanner 115 settings and rescan the document.

[0135] In the preferred embodiment, if the match failed, the application executive 137 allows the user to redefine 1335 the template, including redrawing the user defined zones. This allows the user to adapt and evolve the template over time to changes in the form, for example, as new versions of the underlying form are made. The registration executive 135 will then attempt to rematch the modified template. The user may choose exit if the user does not want to redefine the template.

Claims

1. A method for automatically identifying user defined zones in a second image with respect to at least one user defined zone in a first image and compensating for skew and displacement in the second image with respect to the first, comprising the steps of:

identifying in the first image a first plurality of blocks of connected pixels; and identifying in the second image a second plurality of blocks of connected pixels, each block being formed by smoothing image data with lines removed;

defining at least one first set of vectors from one block to other blocks of the first plurality of blocks wherein a first vector between any two of the first plurality of blocks describes a skew and displacement invariant relationship between the two blocks;

defining at least one second set of vectors from one block to other blocks of the second plurality of blocks wherein a second vector between any two of the second plurality of blocks describes a skew and displacement invariant relationship between the two blocks;

comparing the at least one first set of vectors to the at least one second set of vectors to determine whether there are matching vectors between the first set of vectors and the second set of vectors; and
responsive to the presence of matching vectors between the first set of vectors and the second set of vectors, applying the user defined zones of the first image to the second image.

2. The method of claim 1, further comprising the step of:
 defining the at least one user defined zone in the first image.

3. The method of claim 1, further comprising the step of:
 thresholding the first and second images to obtain a bitonal images.

4. The method of claim 1, further comprising the step of:
 subsampling the first and second images to reduce the resolution of each image.

5. The method of claim 1, wherein the step of identifying in the first image a first plurality of blocks of connected pixels, comprises the substeps of:
 determining a skew angle and orientation in the first image;
 deskewing the first image according to the skew angle and orientation;
 removing horizontal lines from the first image;
 removing vertical lines from the first image;
 smoothing the first image to produce the first plurality of blocks of connected pixels.

6. The method of claim 5, further comprising the steps of:
 distinctly identifying each of the first plurality of blocks; and
 determining for each block a data classification.

7. The method of claim 1, wherein the step of defining at least one first set of vectors, further comprises the step of:
 determining between a centroid of each of the selected blocks a vector to a centroid in each other selected block.

8. The method of claim 7 further comprising the step of:
 determining between a centroid of each of the at least one user defined zone a vector to a centroid in each selected block.

9. The method of claim 7, where each vector comprises a distance and an direction.

10. The method of claim 5, wherein the step of determining a skew angle and orientation in the first image further comprises the steps of:
 smoothing pixel data in the first image into a plurality of blocks;
 identifying blocks forming connected sets of pixels, each block having a height and a width;
 qualifying as valid blocks those blocks having a height and a width within predetermined ranges;
 for each valid block, determining a block skew angle and orientation;
 determining an orientation of a majority of the valid blocks; and
 averaging the block skew angles of the valid blocks.

11. The method of claim 5, wherein the step of removing horizontal lines from the first image further comprises the steps of:
 runlength smoothing the first image using a runlength parameter selected to convert broken horizontal line segments into continuous horizontal line segments;
 identifying horizontal line segments having less than a maximum height; and
 removing the identified horizontal line segments by converting set pixels in the horizontal line segments to
The method of claim 5, wherein the step of removing vertical lines from the first image further comprises the steps of:

- normalizing the first image by adding temporary horizontal lines at the top and bottom of the image;
- rotating the first image 90°;
- runlength smoothing the first image using a runlength parameter selected to convert broken vertical line segments into continuous vertical line segments;
- identifying vertical line segments having less than a maximum height;
- removing the identified vertical line segments by converting set pixels in the vertical line segments to unset pixels;
- rotating the first image back 90°; and
- denormalizing the first image by removing the temporary horizontal lines.
deutliches Identifizieren jedes Blocks der ersten Mehrzahl von Blöcken und Bestimmen einer Datenklassifizierung für jeden Block.

7. Verfahren nach Anspruch 1, wobei der Schritt des Definierens wenigstens eines ersten Satzes von Vektoren weiterhin den Schritt umfaßt:

Bestimmen eines Vektors zwischen einem Schwerpunkt von jedem der ausgewählten Blöcke zu einem Schwerpunkt in jedem anderen ausgewählten Block.

8. Verfahren nach Anspruch 7, das weiterhin den Schritt umfaßt:

Bestimmen eines Vektors zwischen einem Schwerpunkt von jedem des wenigstens einen benutzerdefinierten Bereichs zu einem Schwerpunkt in jedem ausgewählten Block.

10. Verfahren nach Anspruch 5, wobei der Schritt des Bestimmens eines Verkippungswinkels und der Orientierung in dem ersten Bild weiterhin die Schritte umfaßt:

Glätten der Pixeldaten in dem ersten Bild in einer Mehrzahl von Blöcken; Identifizieren von Blöcken, die zusammenhängende Sätze von Pixeln bilden, wobei jeder Block eine Höhe und eine Breite besitzt; Qualifizieren jener Blöcke als gültige Blöcke, die eine Höhe und eine Breite innerhalb vorbestimmter Bereiche besitzen; für jeden gültigen Block Bestimmen eines Blockverkippungswinkels und der Orientierung; Bestimmung einer Orientierung einer Mehrheit der gültigen Blöcke; und Mitteln der Blockverkippungswinkel der gültigen Blöcke.

11. Verfahren nach Anspruch 5, wobei der Schritt des Entfernens horizontaler Linien aus dem ersten Bild weiterhin die Schritte umfaßt:

Lauflängenglätten des ersten Bildes unter Benutzung eines Lauflängenparameters, der ausgewählt ist, um unterbrochene horizontale Linienabschnitte in kontinuierliche horizontale Linienabschnitte zu konvertieren; Identifizieren horizontaler Linienabschnitte mit einer geringeren als eine Maximalhöhe; und Entfernen der identifizierten horizontalen Linienabschnitte durch Konvertieren gesetzter Pixel in den horizontalen Linienabschnitten in nicht gesetzte Pixel.

12. Verfahren nach Anspruch 5, wobei der Schritt des Entfernens vertikaler Linien aus dem ersten Bild weiterhin die Schritte umfaßt:

Normalisieren des ersten Bildes durch Hinzufügen temporärer horizontaler Linien auf der Ober- und Unterseite des Bildes; Drehen des ersten Bildes um 90°; Lauflängenglätten des ersten Bildes unter Benutzung eines Lauflängenparameters, der ausgewählt ist, um unterbrochene vertikale Linienabschnitte in kontinuierliche vertikale Linienabschnitte zu konvertieren; Identifizieren vertikaler Linienabschnitte, die eine geringere als eine Maximalhöhe besitzen; Entfernen der identifizierten vertikalen Linienabschnitte durch Konvertieren gesetzter Pixel in den vertikalen Linienabschnitten in nicht gesetzte Pixel; Zurückdrehen des ersten Bildes um 90°; und Denormalisieren des ersten Bildes durch Entfernen der temporären horizontalen Linien.

Revendications

1. Procédé d'identification automatique de zones définies par un utilisateur dans une seconde image par rapport au moins à une zone définie par un utilisateur dans une première image et de compensation de l'inclinaison et du déplacement dans la seconde image par rapport à la première, comprenant les étapes consistant à:
identifier dans la première image une première pluralité de blocs de pixels connectés ; et identifier dans la seconde image une seconde pluralité de blocs de pixels connectés, chaque bloc étant formé par lissage de données d'images avec des lignes supprimées ;

définir au moins un premier ensemble de vecteurs d'un bloc vers les autres blocs de la première pluralité de blocs, dans lequel un premier vecteur entre deux blocs quelconques de la première pluralité de blocs décrit une inclinaison et une relation invariante de déplacement entre les deux blocs ;

définir au moins un second ensemble de vecteurs d'un bloc vers les autres blocs de la seconde pluralité de blocs, dans lequel un premier vecteur entre deux blocs quelconques de la première pluralité de blocs décrit une inclinaison et une relation invariante de déplacement entre les deux blocs ;

comparer l'au moins un premier ensemble de vecteurs à l'au moins un second ensemble de vecteurs pour déterminer s'il y a des vecteurs en correspondance entre le premier ensemble de vecteurs et le second ensemble de vecteurs ; et réagissant à la présence de vecteurs en correspondance entre le premier ensemble de vecteurs et le second ensemble de vecteurs, appliquer les zones définies par l'utilisateur de la première image à la seconde image.

2. Procédé selon la revendication 1, comprenant en outre l'étape consistant à
definir l'au moins une zone définie par l'utilisateur dans la première image.

3. Procédé selon la revendication 1, comprenant en outre l'étape consistant à :

appliquer un seuil aux première et seconde images pour obtenir des images bitonales.

4. Procédé selon la revendication 1, comprenant en outre l'étape consistant à :

sous-échantillonner les première et seconde images pour réduire la résolution de chaque image.

5. Procédé selon la revendication 1, dans lequel l'étape d'identification dans la première image d'une première pluralité de blocs de pixels connectés comprend les étapes secondaires consistant à :
déterminer un angle d'inclinaison et une orientation dans la première image ;
annuler l'inclinaison de la première image conformément à l'angle d'inclinaison et à l'orientation ;
supprimer les lignes horizontales de la première image ;
supprimer les lignes verticales de la première image ;

lisser la première image pour produire la première pluralité de blocs de pixels connectés.

6. Procédé selon la revendication 5, comprenant en outre les étapes consistant à :

identifier distinctement chaque bloc de la première pluralité de blocs ; et déterminer pour chaque bloc une classification de données.

7. Procédé selon la revendication 1, dans lequel l'étape de définition d'au moins un premier ensemble de vecteurs comprend en outre l'étape consistant à :
déterminer entre les centroïdes de chacun des blocs sélectionnés, un vecteur vers le centroïde de chaque autre bloc sélectionné.

8. Procédé selon la revendication 7, comprenant en outre l'étape consistant à :

déterminer entre les centroïdes de chaque zone de l'au moins une zone définie par un utilisateur, un vecteur vers le centroïde de chaque bloc sélectionné.

9. Procédé selon la revendication 7, dans lequel chaque vecteur comprend une distance et une direction.

10. Procédé selon la revendication 5, dans lequel l'étape de détermination d'un angle d'inclinaison et d'une orientation dans la première image comprend en outre les étapes consistant à :

lisser les données de pixels dans la première image dans une pluralité de blocs ;
identifier les blocs formant des ensembles de pixels connectés, chaque bloc ayant une hauteur et une largeur ;
qualifier comme blocs valides, les blocs ayant une hauteur et une largeur dans des plages prédéterminées ;
pour chaque bloc valide, déterminer un angle d'inclinaison et une orientation de bloc ;
déterminer une orientation d'une majorité des blocs valides ; et
moyenner les angles d'inclinaison de bloc des blocs valides.

11. Procédé selon la revendication 5, dans lequel l'étape de suppression des lignes horizontales de la première image comprend en outre les étapes consistant à :

lisser en longueur d'exécution la première image en utilisant un paramètre de longueur d'exécution sélectionné pour convertir les segments de lignes horizontales brisés en segments de lignes horizontales continus ;
identifier les segments de lignes horizontales ayant une hauteur inférieure à une hauteur maximale ; et
supprimer les segments de lignes horizontales identifiés en convertissant les pixels positionnés dans les segments de lignes horizontales en pixels non positionnés.

12. Procédé selon la revendication 5, dans lequel l'étape de suppression des lignes verticales de la première image comprend en outre les étapes consistant à :

normaliser la première image en ajoutant des lignes horizontales temporaires en haut et en bas de l'image ;
faire tourner la première image de 90° ;
lisser en longueur d'exécution la première image en utilisant un paramètre de longueur d'exécution sélectionné pour convertir les segments de lignes verticales brisés en segments de lignes verticales continus ;
identifier les segments de lignes verticales ayant une hauteur inférieure à une hauteur maximale ;
supprimer les segments de lignes verticales identifiés en convertissant les pixels positionnés dans les segments de lignes verticales en pixels non positionnés ;
faire tourner la première image de 90° en arrière ; et
dénormaliser la première image en supprimant les lignes horizontales temporaires.
Start

201
Define Template

203
Select Template

205
Input Document

207
Apply Template

209
Extract Text

211
Store Data

End

FIGURE 2
This is a line of text with skew

FIGURE 5a

FIGURE 5b
1001 Expand 1-bit data and store each bit as a 2 byte data.

1003 Set pixel?

1005 Check if the current line is the last line or the last line next to a blank line?

1007 Check if neighboring left pixel?

1009 Check all the neighboring pixels, left, top and top-right.

1011 Check if they all have the same block-id?

1013 Assign the current pixel with the same block-id as others.

1015 Check if pixel containing to have multiple block-ids?

1017 Get new block-id no. from the available block-id list and assign it.

1021 Assign block-id with max. count to current pixel and other lesser block-id pixels.

1023 Free-up block-ids that got re-assigned and update available block-id list.

1025 Collect block statistics and update the block-id information.

1027 Check if all lines are processed?

1029 Quality blocks?

1031 Determine image statistical data.

FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13a

1301 Get the bitonal image data and template file name

1303 Minify the image data to suit forms requirements

1305 Check for the presence of skew

1307 Deskew the minified data as well as original image data

1309 Remove horizontal, vertical lines

1311 Smooth image into data blocks

1313 Label and classify data blocks

A

Skew > 1 degree
A → 1315 Load Template DDN

1317 Qualify System Blocks in Image

1319 Number of matching System Blocks in Image < 20% of Template System Block?

1321 Create Image DDN

1323 Match Vector lists in DDNs

1333 Return the failure status

1335 Redefine Template

209

1331 Provide coordinates of User Defined Zones to OCR

1329 Determine location of User Defined Zones

1327 Determine the image offset

1325 Number of matching System Blocks < 10% of Template System Blocks

FIGURE 13b
CLEANING SERVICES REQUEST

DATA ENTRY

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAYMENT POLICY: IMPORTANT: THIS REQUEST MUST BE COMPLETED BEFORE PAYMENT CAN BE PROCESSED. ALL PAYMENTS MUST BE MADE IN ADVANCE. A 50% DEPOSIT MUST BE MADE TO SECURE THE FILE. PAYMENT IS DUE NO LATER THAN 30 DAYS AFTER RECEIPT OF INVOICE. ALL PAYMENTS MUST BE MADE BY CHECK OR MONEY ORDER. NO CASH OR CREDIT CARDS ACCEPTED. ADDITIONAL COSTS MAY APPLY.

PAYMENT MUST ACCOMPANY ORDER.

1. **CHECK**
2. **MONEY ORDER**

CARD懷ENT

- **DEBIT/CC**
- **CHECK**

CASH

SUBTOTAL

TAX

TOTAL

ALL CLEANING AND JANITORIAL SERVICES MUST BE PERFORMED BY THE KCC.

Figure 17

38
Cleaning Services Request

<table>
<thead>
<tr>
<th>Service Description</th>
<th>Button</th>
<th>Charge</th>
<th>Amount Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Waste Disposal</td>
<td>/</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>Special Instructions</td>
<td>/</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total Due</td>
<td></td>
<td>154</td>
<td>154</td>
</tr>
</tbody>
</table>

Note: Please ensure all cleaning and janitorial services are performed by the JACC.

Date: []

Signature: []

CANCELLATION REQUEST

Reason: []

Signed: []

Figure 22
FIGURE 28a

This is a sample form.

Name:
Occupation:
Address:
Description:
Date:

Total:

FIGURE 28b

Total: