EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 13.06.2001 Bulletin 2001/24

(21) Application number: 96113578.7

(22) Date of filing: 23.08.1996

(54) Plain surface acoustical product and coating therefor
Schallisolierendes Produkt mit flacher Oberfläche und Überzugsmittel dafür
Produit acoustique à surface plane et son revêtement

(84) Designated Contracting States: BE DE FR NL SE

(30) Priority: 01.09.1995 US 522970

(43) Date of publication of application: 12.03.1997 Bulletin 1997/11

(72) Inventor: Sensenig, Darryl L.
Mountville, PA 17554 (US)

(73) Proprietor: Armstrong World Industries, Inc.
Lancaster Pennsylvania 17603 (US)

(51) Int Cl. 7: C09D 5/02, C09D 7/12, B32B 5/26, G10K 11/162

(74) Representative: von Füner, Alexander, Prof. h.c. Dr. et al
v. Füner Ebbinghaus Finck Hano
Mariahilfplatz 2 & 3
81541 München (DE)

(56) References cited:
GB-A- 1 015 704
GB-A- 2 007 684

• DATABASE WPI Section PQ, Week 9624 Derwent Publications Ltd., London, GB; Class P86, AN 96-231124 XP002031798 & CA 2 153 186 A (ARMSTRONG WORLD IND INC), 25 February 1996

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to a sound absorbing product comprising a fiberboard base substrate, particularly an acoustical fiberboard, having a visual surface which is capable of absorbing sound with a noise reduction coefficient NRC (ASTM C423-90a) being equal to or greater than 0.65, and a surface layer on said visual surface consisting of directly applied paint or of an attached porous non woven scrim covered by applied paint.

[0002] Methods for obtaining high noise reduction coefficients (NRC) are well known. NRC values are secured by using ASTM test C423-90a to measure the NRC of a product. Fiberglass is known to be a good sound absorber since it has high porosity. It can be decorated with a surface layer of laminated fabrics or painted scrims requiring only a minimal openness in the surface layer for sound to pass through and be absorbed in the substrate.

[0003] To make an acoustically high NRC (= or > 0.65) product using a wood or mineral fiberboard substrate, the board porosity must be high. Finish paint applied directly to the board also must not form a continuous film closing off the board surface. Normally this occurs thus lowering the NRC. A method generally used to increase the NRC is hole punching and surface perforations.

[0004] US 3 494 782 discloses a method of preparing a spray-coated vinyl-faced fibrous acoustical insulating member, wherein a coating dispersion comprises a thermoplastic vinyl resin and inert particles of a maximum size of up to about 44 microns to act as anti-tack additive material. These particles constitute 5 to 20 percent of the weight of the coating and are of an amount sufficient to make the resin non-tacky at high temperatures. The remainder of the coating layer essentially consists of vinyl resin.

[0005] GB 928 028 discloses a process of coating glass fiber fissured boards with a light reflecting coating in order to leave the multiplicity of fissures of random orientation and various lengths and depths open. The fissures should not be bridged with a coating, i.e. the size of particles is to be as small as possible, even if a special particle size of mineral pigment contained in the applied paint is not disclosed.

[0006] It is the object of the invention to provide a sound absorbing product as described in the first section of the specification that has a high NRC with a plain, fine textured, nonperforated surface visual.

[0007] If a sanded and painted fiberboard without surface perforations and scrim is the construction, then the porosity of the paint layer must be equal or greater than the porosity of the board in order to retain the sound absorption properties of the board. Attaining a high porosity and NRC = or > 0.65 is not easily accomplished with fiberboard without sacrificing other material properties such as strength and hardness.

[0008] If hole punching the fiberboard is needed to achieve the NRC = or > 0.65, then a facing layer is necessary in order to make a plain, nonperforated surface visual. Porous nonwoven scims are attached for this purpose.

[0009] The object of the invention is achieved by the sound absorbing product as described in the first paragraph of the specification in that said paint consists substantially of latex, large size inert filler particles ranging from 40 mesh to 150 mesh (going through a sieve opening of 0.42 mm to 0.1 mm), water and very small size inert filler particles equal to 325 mesh and finer (going through a sieve opening of 0.044 mm or smaller), which very small size particles and the water have a greater affinity to the large size particles than for the visual surface of the substrate resulting in discrete and individual droplets of the applied paint making the surface layer optically opaque as well as discontinuous and acoustically transparent by having a porosity of not less than 15 m²/min/m² (50 ft³/min/ft²) and providing a plain fine textured non perforated surface visual.

[0010] Preferably the very small size inert filler particles are selected from the group consisting of limestone and titanium dioxide.

[0011] It is also preferred that the large size filler particles are selected from the group consisting of limestone, glass beads, silica, perlite.

[0012] The plain, fine textured product according to the invention consists of a wood or mineral fiber substrate having a high NRC (= or > 0.65) and a surface coating that does not alter the substrate sound absorption characteristics. The surfacing described herein is intended to render a product having a plain, fine textured surface without holes or surface perforations. This surface layer can be a directly applied paint or an attached painted nonwoven scrim. The critical characteristic of this surfacing is that it is acoustically transparent so that the sound can penetrate through the surface and be absorbed in the substrate.

[0013] Paints are generally designed and applied at sufficient rates to form a continuous film. Atomized paint droplets coalesce and normally flow, and wick on the substrate to spread over the surface forming a film. This same type of wicking and spreading occurs when painting porous scims. Retaining acoustical transparency of the surface can be attained by applying small amounts of paint insufficient to form a film, but these small amounts are not optically opaque. Another method is to use a paint having minimal wicking and spreading characteristics. More paint can then be applied without closing off the surface. If hole perforations are needed to develop the desired NRC, these holes can be hidden by applying a porous nonwoven scrim to the board surface bridging the holes and then painted with an acoustically porous paint.

[0014] The paint has restricted flow properties and minimized coalescence when applied, thus retaining discrete
paint droplets. This is accomplished with a critically high solids/low liquid suspension ranging from about 70-85% solids by weight which increases viscosity quickly with minimal water loss. The paint also has to have a greater affinity for itself than for the surface to which it is applied. By adding coarse limestone (ranging from 40 mesh to 150 mesh [going through a sieve opening of 0.42 mm to 0.1 mm]) to a more conventional fine particle paint, the total filler level can be increased to 82% solids while retaining a relatively low viscosity of about 1 to 8 Pas (1000-8000 cps). Other particles that can be used are glass beads, silica, perlite, etc. Using these coarse fillers in blends with very fine fillers and binders, causes the liquids and fine fillers to hold to the coarse limestone by surface tension. This prevents wicking of the droplets into the surface of the fiberboard or the scrim. The combination of the paint and scrim is another invention herein. The combination of the paint or paint and scrim on a fiberboard is another invention herein.

[0015] In all three inventions, since flow and coalescence of the paint droplets is minimal, this high solids coating remains discontinuous allowing heavier application rates while retaining an openness essential for air and sound passage.

[0016] If desired, the porosity of the paint coating could be used to reduce the sound absorption of the fiberboard. [0017] It was determined that paints with a high percent of solids, particularly coarse fillers, permits significantly higher application rates while retaining openness essential for good air and sound passage into a sound absorbing substrate. By blending coarse limestone (ranging from 40 mesh to 150 mesh [going through a sieve opening of 0.42 mm to 0.1 mm]) with extremely fine (325 mesh and finer [going through a sieve opening of 0.044 mm or smaller]) limestone, titanium dioxide, binder, and water, unusual properties are secured when this suspension is spray applied. This paint has minimal wicking and spreading characteristics. Minimal coalescence occurs retaining more discrete individual paint droplets. The liquid and fine fillers have a greater affinity for the large particle limestone than for the surface to which they are applied. The factor minimizing coalescence of the paint droplets is the critically high solids, so that with minimal water loss the viscosity quickly increases thus setting the droplet and retaining discrete paint droplets. The use of coarse fillers enables up to 82% filled suspensions with viscosity ranging from about 1 to 4 Pas (1000-4000 cps), permitting spray application via air atomized guns. The amount of fillers and known viscosity altering agents will permit other viscosity ranges higher or lower than above.

[0018] The preferred formulation at present for the paint is as follows:

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>% By Weight</th>
<th>Range %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder-Hycar Acrylic latex emulsion 50% solids by weight - B. F. Goodrich</td>
<td>6.80</td>
<td>4-20</td>
</tr>
<tr>
<td>Filler-Omyacarb slurry limestone 70% solids by weight - Omya Corp.</td>
<td>33.78</td>
<td>30-55</td>
</tr>
<tr>
<td>Filler-40 mesh limestone 100% solids - Pfizer</td>
<td>50.95</td>
<td>30-55</td>
</tr>
<tr>
<td>Filler-Titanium dioxide 100% solids</td>
<td>1.41</td>
<td>1-8</td>
</tr>
<tr>
<td>Liquid-Water</td>
<td>7.06</td>
<td>2-8</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

[0019] When this paint is spray applied, a textured surface is formed. The texture coarseness is controlled by the degree of atomization. Higher atomization air forms a finer texture. There is a limit to the amount of paint that can be applied while still retaining an openness for air and sound passage to the substrate. Higher application rates can be applied to materials which absorb water from the paint droplet more quickly. Rapid absorption minimizes flow and the unwanted formation of a continuous film, Paint application rates as high as 650 g/m² (60 gm/sf) in one coat can be applied to high water absorption wood or mineral fiberboard and very porous nonwoven scrim, while still retaining openness in the paint layer essential for good air and sound passage.

[0020] As the fiberboard or nonwoven scrim becomes less porous, the amount of paint has to be reduced since the water in the paint is not as readily absorbed and flooding occurs closing off the surface. Between about 324 to 540 g/m² (30 to 50 gm/sf) of paint is generally ideal for retaining sufficient openness in the surface layer while not affecting the sound absorption properties of the substrate.

[0021] The above paint formulation can be used on fiberboard substrates made of fibers selected from the group of wood, mineral, glass and mixtures thereof. The paint has utility as a layer for good air and sound passage. Porosity to air flow is a measure of a material's ability to pass sound. Porosity as measured by the Frazier Airflow Test or its equivalent is necessary for sound passage. The paint coating should have a minimum porosity of not less than 15 m³/min/m² (50 cfm/square foot). This will than permit a substrate with a NRC rating of 65, having the above paint coating, to still have a NRC rating of 65. Lowering the paint coating porosity to about 7.5 m³/min/m² (25 cfm/square foot) would reduce the substrate NRC rating to less than 65.

[0022] To obtain structures of very high NRC (>75), one begins by using a very porous wood or mineral fiber substrate plus holes punched therein, if needed, at approximately 2.15 holes per cm² (2000 small holes/sf). A nonwoven glass scrim of 80 g/m² (7.5 gm/sf,) 500 μm (20 mils) thick and having a porosity of 90 m³/min/m² (300 cfm/square foot) is
laminated to this substrate using a water based adhesive. The scrim is generally of a thickness of 10 mile or thicker. Other scrims that can be used are organic fiber, glass/organic fiber combinations and like materials. The weight of the scrims is generally 65 to 160 g/m² (6 to 15 gm/square foot) and a porosity of 60 m³/min/m² (200 cfm/square foot). The scrim used is made by Owens Corning as grade A80 PFR YK111 with glass fibers of a nominal length of 6mm and nominal diameter of 10 to 11 μm.

The holes are visible through the glass scrim. The high solids paint is spray applied using conventional air atomized spray guns. Up to 540 g/m² (50 gm/sf) of paint can be applied without a decrease in the NRC. The surfacing is optically opaque and acoustically transparent without visible surface perforations.

As the porosity of the paint layer or the paint/scrim combination layer decreases the ability of that layer to pass sound decreases. Each layer has utility in different situations. Less porous paint layers or paint/scrim layers can be compensated for increasing the absorption of the substrate. However, this is usually accompanied by a decrease in the strength and durability of the substrate since substrate density must be decreased to increase its absorption. The most efficient system overall is one in which the absorption loss due to the paint or paint/scrim is minimized. The paint/scrim porosity should not be lower than 15 m³/min/m² (50 cfm/square foot). With the above paint coat, the above scrim itself requires a porosity of higher than 60 m³/min/m² (200 cfm/square foot).

The invention is further explained referring to the accompanying drawing, in which Fig. 1 is a side view of a discontinuous paint coating on a porous fiberboard; and Fig. 2 is a sectional side view of a porous scrim and discontinuous paint coating on a porous perforated fiberboard.

Fig. 1 shows a porous fiberboard substrate 2 with a discontinuous paint coating 4. Fig. 2 shows a hole perforated fiberboard substrate 6 with holes 8. A porous scrim 10 is used with a discontinuous paint coating 12.

Claims

1. Sound absorbing product comprising a fiberboard base substrate, particularly an acoustical fiberboard, having a visual surface which is capable of absorbing sound with a noise reduction coefficient NCR according to ASTM C423-90a being equal to or greater than 0.65, and a surface layer on said visual surface consisting of directly applied paint (4) or of an attached porous non woven scrim (10) covered by applied paint (4) characterized in that said paint (4) consists substantially of latex, large size inert filler particles ranging from 40 mesh to 150 mesh (going through a sieve opening of 0.42 mm to 0.1 mm), water and very small size inert filler particles equal to 325 mesh and finer (going through a sieve opening of 0.044 mm or smaller), which very small size particles and the water have a greater affinity to the large size particles than for the visual surface of the substrate resulting in discrete and individual droplets of the applied paint (4) making the surface layer optically opaque as well as discontinuous and acoustically transparent by having a porosity of not less than 15 m³/min/m² (50 ft³/min/ft²) and providing a plain fine textured non perforated surface visual.

2. Sound absorbing product according to claim 1, characterized in that the very small size inert filler particles are selected from the group consisting of limestone and titanium dioxide.

3. Sound absorbing product according to claim 1 or 2, characterized in that the large size filler particles are selected from the group consisting of limestone, glass beads, silica, perlite.

4. Sound absorbing product according to one of the preceding claims, characterized in that the paint is a high solids/low liquid suspension having 70 to 85% solids by weight.

5. Sound absorbing product according to one of the preceding claims, characterized in that the paint has a viscosity of about 1 to 8 Pa s (1000 to 8000 cps).

6. Sound absorbing product according to one of the preceding claims, characterized in that the paint application rates are 324 to 650 g/m² (30 to 60 g/ft²).

Patentansprüche

1. Schallabsorbierendes Erzeugnis
- mit einem Faserplatten-Basissubstrat, insbesondere einer schallschluckenden Faserplatte, das eine Sichtfläche hat, die in der Lage ist, Schall mit einem Schallabsorptionskoeffizienten NCR gemäß ASTM C423-90a zu absorbieren, der gleich oder größer als 65 ist, und
- mit einer Oberflächenschicht auf der Sichtfläche, die aus dirkert aufgebrachter Farbe (4) oder aus einem befestigten, porösen, lockeren Gelegevlies (10) besteht, das von aufgebrachter Farbe (4) bedeckt ist,

dadurch gekennzeichnet,

- daß die Farbe (4) im wesentlichen aus Latex, aus inerten Füllstoffteilchen mit großer Abmessung im Bereich von 40 mesh bis 150 mesh (durch eine Sieböffnung von 0,42 mm bis 0,1 mm gehend), aus Wasser und aus inerten Füllstoffteilchen mit sehr kleiner Abmessung besteht, die 325 mesh und weniger entspricht (die durch eine Sieböffnung von 0,044 mm oder weniger hindurchgehen),
- wobei die Teilchen mit sehr kleiner Abmessung und das Wasser eine größere Affinität zu den Teilchen mit großer Abmessung als zu der Sichtfläche des Substrats haben, was zu diskreten und individuellen Tröpfchen der aufgebrachten Farbe (4) führt, was die Oberflächenschicht optisch undurchsichtig sowie diskontinuierlich und akustisch transparent macht, indem sie eine Porosität von nicht weniger als 15 m³/min/m² (50 ft³/min/ft²) hat und ein ebenes, feines, texturiertes nicht perforiertes Oberflächenaussehen hat.

2. Schallabsorbierendes Erzeugnis nach Anspruch 1, dadurch gekennzeichnet, daß die inerten Füllstoffteilchen mit sehr kleiner Abmessung aus der Gruppe ausgewählt sind, die aus Kalk und Titandioxid besteht.

3. Schallabsorbierendes Erzeugnis nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Füllstoffteilchen mit großer Abmessung aus der Gruppe ausgewählt sind, die aus Kalk, Glasperlen, Siliziumdioxid und Perlit besteht.

4. Schallabsorbierendes Erzeugnis nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Farbe eine Suspension mit hohem Feststoffgehalt und niedrigerem Flüssigkeitsgehalt ist und 70 bis 85 Gewichtsprozent Feststoffe aufweist.

5. Schallabsorbierendes Erzeugnis nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Farbe eine Viskosität von etwa 1 bis 8 Pa s (1000 bis 8000 cps) hat.

6. Schallabsorbierendes Erzeugnis nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Farbaufbringmengen 324 bis 650 g/m² (30 bis 60 g/ft²) betragen.

Revendications

1. Produit absorbant les sons comprenant un substrat à base de panneau de fibres, particulièrement un panneau de fibres acoustique, présentant une surface visible qui est capable d'absorber les sons avec un coefficient de réduction du bruit NCR suivant ASTM CA23-90a égal ou supérieur à 65, et une couche en surface sur ladite surface visible consistant en une peinture (4) appliquée directement ou en une mousseline poreuse (10) non tissée, attachée et recouverte de peinture appliquée (4), caractérisé en ce que ladite peinture (4) consiste essentiellement en latex, en particules de matières de charge inertes de grandes dimensions dans une gamme allant de 40 à 150 mesh (passant à travers une ouverture de tamis de 0,42 mm à 0,1 mm), en eau, et en particules de matières de charge inertes de très petites dimensions correspondant à 325 mesh et plus fine (passant à travers une ouverture de tamis de 0,044 mm ou inférieure), ces particules de très petites dimensions et l'eau ayant une affinité plus grande pour les particules de grandes dimensions que pour la surface visible du substrat, ceci se traduisant par des gouttelettes discontinue et indiviuelles de la peinture appliquée (4), ce qui rend la couche en surface opaque du point de vue optique en même temps que discontinue et transparente du point de vue acoustique en présentant une porosité pas inférieure à 15 m³/min/m² (50 ft³/min/ft²) et en fournissant une surface visible non perforée unie à texture fine.

2. Produit absorbant les sons selon la revendication 1, caractérisé en ce que les particules de matières de charge inertes de très petites dimensions sont choisies dans le groupe constitué par des particules de calcaire et de dioxyde de titane.

3. Produit absorbant les sons selon la revendication 1 ou 2, caractérisé en ce que les particules de matières de charge de grandes dimensions sont choisies dans le groupe constitué par des particules de calcaire, de billes de
verre, de silice et de perlite.

4. Produit absorbant les sons selon l'une des revendications précédentes, caractérisé en ce que la peinture est une suspension à forte densité de matière solide et à faible densité de matière liquide ayant 70 à 85% en poids de matière solide.

5. Produit absorbant les sons selon l'une des revendications précédentes, caractérisé en ce que la peinture présente une viscosité d'environ 1 à 8 Pas (1000 à 8000 cps).

6. Produit absorbant les sons selon l'une des revendications précédentes, caractérisé en ce que la quantité d'application de cette peinture est de 324 à 650 g/m² (30 à 60 g/ft²).