(45) Date of publication and mention of the grant of the patent: 06.11.2002 Bulletin 2002/45

(21) Application number: 96304463.1

(22) Date of filing: 14.06.1996

(54) A method of treating organohalogen compound, and an apparatus thereof
Verfahren und Vorrichtung zur Behandlung von Organohalogenkomponenten
Procédé et dispositif pour le traitement de composants organohalogènes

(84) Designated Contracting States: DE FR

(30) Priority: 14.06.1995 JP 14709495

(73) Proprietors:
• Hitachi, Ltd. Chiyoda-ku, Tokyo 101 (JP)
• Hitachi Engineering Co., Ltd. Hitachi-shi Ibaraki 317 (JP)

(72) Inventors:
• Tamata, Shin Higashiibaraki-gun, Ibaraki 311-13 (JP)
• Ohashi, Satoru Mito-shi, Ibaraki 310 (JP)
• Takano, Toshihide Nishiibaraki-gun, Ibaraki 309-17 (JP)
• Yokoyama, Hisao Hitachioota-shi, Ibaraki 313 (JP)
• Mori, Toshihiro Naka-gun, Ibaraki 319-11 (JP)

(74) Representative: Paget, Hugh Charles Edward et al MEWBURN ELLIS York House 23 Kingsway London WC2B 6HP (GB)

(56) References cited:
US-A- 3 453 073

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Background of the Invention

(1) Field of the Invention:

[0001] The present invention relates to a method for treating organohalogen compound, particularly, to a preferable method for treating the organohalogen compound by destroying the organohalogen compound with a catalyst.

(2) Description of the Prior Art:

[0002] Organohalogen compound contaminate air, rivers, water underground, soil, etc. Particularly, the organohalogen compound having toxicity such as cancer-causing property are regarded as problems in view of environmental pollution. Release suppression technology of the organohalogen compound, and destruction-treatment technology of the organohalogen compound existing in the environment as contaminants after releasing are now under development.

The above destruction-treatment technology is aimed at destroying the organohalogen compound in released waste or in the environment after releasing. Therefore, objects of the destruction-treatment is the organohalogen compound of relatively low concentration. Currently, there are some organohalogen compound which are regarded as a source material of ozone layer destruction, or a source material of green effect, even if it may be less toxic. Therefore, release suppression technology and recovery-treatment technology for such organohalogen compound are now under development. In the recovery-treatment technology, a large amount of recovered organohalogen compound is treated for destruction. Therefore, in view of economical aspect of the facility, it is necessary to destroy the organohalogen compound of relatively high concentration, and to make it harmless.

[0003] As for a treating method to make the organohalogen compound harmless, various methods are well known. Among the various methods, a method for destruction by combustion, a method for destruction using plasma, and a method for destruction by cracking using high temperature steam have a large defect such as a large energy consumption. A method for destruction by ultraviolet ray, a method for destruction by irradiation, and a method for destruction using micro-organism have a small destruction efficiency and a small destructing velocity. A method for destruction of an organohalogen compound using combustion is shown in WO 82/02001 in which a hydrogen-containing carrier gas is used to carry halogenated gases into a hydrogen/oxygen flame. The resulting gases are condensed or passed through a water scrubber. However, this method has a problem that generation of strong poisonous substances such as dioxin may occur. On the contrary, a method for destroying an organohalogen compound using a catalyst receives an attention as a most effective method, because the method scarcely have the above described defects.

[0004] As for the method for treating organohalogen compound using a catalyst, various methods have been disclosed hitherto, for example, as follows; JP-A-52-114468 (1977) disclosed a treating method using a catalytic destruction apparatus of air including organohalogen compound. JP-A-3-42015 (1991) disclosed a method for destructing recovered flon (a generic name of halogenized hydrocarbons including fluorine used as an official terminology in Japan, which includes FC (fluorocarbon), CFC (chlorofluorocarbon), HCFC (hydrochlorofluorocarbon), HFC (hydrofluorocarbon), and Halon). JP-A-3-66388 (1991) disclosed a treating method of flon of high concentration such as 6 mole %. GB 1 233 392 discloses catalytic combustion of waste gases following addition of carbon monoxide and hydrogen. US 3 453 073 discloses a method for recovering hydrogen chloride. From waste gases of acid-type catalysts.

[0005] Destructing objects of the treating method disclosed in JP-A-52-114468 (1977) are organohalogen compound of extremely low concentration. Therefore, it is difficult to destruct recovered organohalogen compound, of which treatment has currently been becoming necessary, with a high efficiency under a high concentration. The treating method disclosed in JP-A-52-114468 (1977) does not teach any countermeasure against corrosion products, which are generated with heating the organohalogen compound, because concentrations of corrosive materials (chlorine, hydrogen chloride, fluorine, hydrogen fluoride etc.) generated at the destruction of the organohalogen compound are low. Furthermore, the treating method taught only insufficient countermeasure against corrosive materials generated with destructing the organohalogen compound. The method disclosed in JP-A-3-42015 (1991) is a method treating organohalogen compound of low concentrations such as 5000 ppm, and therefore, no countermeasure for the corrosive materials generated at heating and destructing the organohalogen compound was taught as same as JP-A-52-114468 (1977).

[0006] The treating method disclosed in JP-A-3-66388 (1991) did not teach any practical means for supplying flon of a high concentration, nor any countermeasure against corrosive materials generated at heating the organohalogen compound. Furthermore, no practical countermeasure against corrosive materials generated at destructing flon was taught except neutralization with an alkali.

[0007] The method disclosed in GB 1233392 involves mixing the waste gases with carbon monoxide and hydrogen derived from sub-stoichiometric combustion such that the temperature at the catalyst is raised by the reaction of these
gases. The gases pass through the catalyst, and then exit the apparatus after passing a heat exchanger.

[0008] The method disclosed in US 3453073 is concerned with a hydrogen chloride recovery process which involves passing chlorinated hydrocarbon, water and oxygen over acid-type catalysts to form hydrogen chloride. The chlorinated hydrocarbons and water are metered as liquids and swept into a pre-heating and mixing tube by a stream of air. Condensors and scrubbers are used to condense the gases and collect hydrogen chloride.

[0009] One of a few defects of the destruction method for organohalogen compound using a catalyst is a smaller destruction efficiency than destruction efficiencies of the destructing method by combustion and the destruction method by plasma. The destruction efficiencies of the organohalogen compound by the destruction method by combustion and the destruction method by plasma is approximately in a range of 99.999 - 99.9999 %. On the contrary, the destruction efficiencies of the organohalogen compound by the destruction method using a catalyst is approximately in a range of 99.9 - 99.99 %. The above destructing efficiencies of the destruction method using a catalyst scarcely make a problem in practical use. However, when the method is applied to a material such as flon, to which the United Nation Environmental Plan gives a guideline for the destruction efficiency as at least 99.99%, it is necessary to add any extra means in order to comply the guideline strictly. For example, JP-A-6-106172 discloses a method, in which undestroyed organohalogen compound in exhaust gas from the catalytic destruction process are eliminated from the exhaust gas by being adsorbed into an adsorbent. The undestroyed organohalogen compound adsorbed in the adsorbent are released and treated again with the catalyst. However, in accordance with the above method, the main catalytic destruction process must be stopped when the released undestroyed organohalogen compound from the adsorbent are treated, and accordingly, the operation efficiency of the catalytic destruction facility is decreased.

[0010] As explained above, conventional methods for treating the organohalogen compound have difficulty in operating the facility for destroying the organohalogen compound of a high concentration with a high destruction efficiency, a high operating efficiency of the facility, and appropriate countermeasures against corrosive materials generated by the destruction.

Summary of the Invention

(1) Objects of the Invention:

[0011] The object of the present invention is to provide a method for treating organohalogen compound, which is capable of suppressing generation of corrosive material and destroying the organohalogen compound effectively, and an apparatus therefor.

[0012] Another object of the present invention is to provide a method for treating organohalogen compound, which is capable of suppressing generation of corrosive material further, and an apparatus therefor.

[0013] Another object of the present invention is to provide a method for treating organohalogen compound, which is capable of controlling supplying amount of the organohalogen compound easily.

[0014] Another object of the present invention is to provide a method for treating organohalogen compound, which is capable of simplifying the water supplying facility.

[0015] Another object of the present invention is to provide a method for treating organohalogen compound, which is capable of protecting corrosion at the upstream region of the catalytic layer.

[0016] Another object of the present invention is to provide a method for treating organohalogen compound, which is capable of suppressing corrosion caused by the destruction gas, which is generated by catalytic destruction of the organohalogen compound, and an apparatus therefor.

[0017] Another object of the present invention is to provide a method for treating organohalogen compound, which is capable of preventing the exhaust gas released from the catalytic layer from generating poisonous substance.

[0018] Another object of the present invention is to provide a method for treating organohalogen compound, which is capable of improving the corrosive environment caused by the exhaust gas released from the catalytic layer.

[0019] Another object of the present invention is to provide an apparatus for treating organohalogen compound, which is capable of suppressing corrosion of the structural material of the catalytic layer.

[0020] Another object of the present invention is to provide an apparatus for treating organohalogen compound, which is capable of improving an efficiency of removal for the acidic gas released from the catalytic layer.

[0021] Accordingly there is provided a method for treating an organohalogen compound as defined in claim 1 herein.

[0022] Preferably the organohalogen compound is added in a liquid condition, i.e. in a liquid state at room temperature, to the carrier gas.

[0023] Alternatively, the organohalogen compound is added in a liquid state under a pressurized condition, which has a boiling point near the room temperature, to the carrier gas.

[0024] In some embodiments, the method may include the steps of burning hydrogen or hydrocarbon fuel in the heater, adding the organohalogen compound to the combustion gas released from the heater, and supplying the combustion gas containing the organohalogen compound to the carrier gas.
[0025] Preferably the heating temperature at the heater is controlled so that the temperature of the gas released from the heater is in a range from a temperature where the organohalogen compound destructs with catalyst to a temperature wherein the organohalogen compound itself starts to destruct at least partly.

[0026] Preferably the exhaust gas is cooled soon after released from the catalytic layer.

[0027] In preferred embodiments, the organohalogen compound is a gas containing chlorine, and the exhaust gas released from the catalytic layer is cooled at once after the releasing.

[0028] Preferably, the method includes the step of adding a reactive material, which reacts with the acidic gas contained in the exhaust gas which is released from the catalytic layer, to the exhaust gas released from the catalytic layer.

[0029] In preferred embodiments, there is provided a means for preventing the entry of mist, which is generated with liquid spray by a spraying means, into the catalytic layer in a space which is formed in a catalyst container at downstream region of the catalytic layer.

[0030] Furthermore, there is preferably provided a means for preventing the transfer of mist, which is generated with liquid spray by the spraying means, to the downstream region of the catalytic layer at the space.

[0031] The invention can limit the organohalogen compound from generating corrosive substance with heating by the carrier gas, and destruction of the organohalogen compound can be performed with a preferable efficiency, because the organohalogen compound is added to the carrier gas which is previously heated by the heater and released from the heater. In order to destroy the organohalogen compound effectively with catalyst, it is preferable to elevate the temperature of the organohalogen compound higher than the reaction temperature of the catalyst with the organohalogen compound. However, if the temperature is excessively high, the organohalogen compound generates corrosive substance. Even if the temperature of the gas released from the heater is within a range in which generation of the corrosive substance is suppressed, the temperature inside the heater reaches locally the temperature at which the corrosive substance is generated. Accordingly, if the organohalogen compound is supplied into the heater, the organohalogen compound is destructed at a local region which is heated to an excessively high temperature to generate the corrosive substance. The carrier gas, which is heated by the heater and released from the heater, has substantially uniform temperature distribution and no local elevation of the temperature. Therefore, if the organohalogen compound is added into the carrier gas at downstream region of the heater, the destruction of the organohalogen compound with the local heating of the carrier gas can be suppressed.

[0032] In accordance with the present invention, the organohalogen compound which is the object of the treatment is a compound containing at least one of chlorine, fluorine, and bromine. Practically, the compound is one of organochloro-compound, organofluoro-compound, and organobromo-compound. As examples of the organochloro-compound, there are mentioned methylchloride, chloroform, carbon tetrachloride, ethylene chloride, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane, hexachloroethane, vinyl chloride, vinylidene chloride, tetrachloroethylene, chlorobenzene, benzyl chloride, benzene hexachloride, ethylene glycol, trichloroethylene, and others. As examples of the organofluoro-compound, there are mentioned CFC-11, CFC-12, CFC-13, CFC-14, CFC-15, HCFC-22, HCFC-141, HCFC-225, and others. As the examples of organobromo-compound, there are mentioned Halon-1211, Halon-1301, Halon-2402, and others.

[0033] The organochloro-compound contains chlorine, and generates mainly corrosive gas (acidic) such as chlorine, hydrogen chloride, and the like by destruction. The organofluoro-compound contains fluorine, and generates mainly corrosive gas (acidic) such as fluorine, hydrogen fluoride, and the like by destruction. The organobromo-compound contains bromine, and generates mainly corrosive gas (acidic) such as bromine, hydrogen bromide, and the like by destruction.

[0034] As an example of the carrier gas for the organohalogen compound, air can be used. The carrier gas is used for introducing the organohalogen gas into the catalytic layer. Therefore, the carrier gas has to be inert chemically and thermally, and an inert gas such as nitrogen, argon, and the like can be used other than air. In economical view, air is preferably used as the carrier gas.

[0035] Further, as for the heater, any of electric heater and combustor can be used. However, in view of heating efficiency, the combustor is preferably used. As the carrier gas (especially, combustion air) is directly heated with heat generated by combustion of fuel in the combustor, the combustion efficiency is remarkably high. The temperature inside the combustor reaches a high temperature locally by combustion of fuel (when town gas is used for the fuel, the burning temperature reaches locally 1000°C).

[0036] CFC-113, one of the organohalogen compounds, starts partly a destructing reaction when the temperature exceeds 700°C, and generates strongly corrosive gases such as HF, HCl, and the like. Therefore, the piping and other components for supplying the organohalogen compound to the catalytic layer must be composed of significantly anti-corrosive materials. However, in the present invention, the materials having not so strong anti-corrosion property can be used as the construction material for the piping and other component.

[0037] The temperature of the carrier gas is lowered, because the heated carrier gas is mixed with steam before mixing the carrier gas and the organohalogen compound. Therefore, a probability to generate the corrosive substance with destruction of the organohalogen compound by heating decreases.
[0038] The steam is used for supplying hydrogen and oxygen which are necessary for destructing the organohalogen compound with catalyst. For instance, when CFC-113 is destructed by hydrolysis, the destruction reaction proceeds as follows:

\[
C_2\text{Cl}_3\text{F}_3 + 3\text{H}_2\text{O} \rightarrow 3\text{HCl} + 3\text{HF} + \text{CO}_2 + \text{CO}
\]

[0039] The amount of the steam necessary for the hydrolysis is 3 moles per 1 mole of CFC-113. The amount of the steam is supplied approximately 1.0 - 2.0 times of an equivalent amount necessary for the destruction based on the kind and the amount of the organohalogen compound. The supplying amount of the steam is preferably controlled so as to be within the above range. Depending on the kind of the catalyst, the destruction is performed not by hydrolysis but by oxidation. In this case, as hydrogen is not necessary, supply of the steam is not necessary.

[0040] Preferred embodiments of the present invention facilitate control of the supplying amount of the organohalogen compound, because the organohalogen compound, which is liquid at room temperature, is added in a liquid condition to the carrier gas. The liquid organohalogen compound can be supplied quantitatively. When the organohalogen compound is in a gaseous condition, the control of the supplying amount becomes complex, because both volume and pressure must be controlled.

[0041] The organohalogen compound can be mixed in a gaseous condition with the carrier gas and steam. However, if the organohalogen compound is mixed in a liquid condition with the carrier gas and steam, the liquid organohalogen compound can be vaporized by sensible heat of the carrier gas and the steam, and accordingly, a facility for vaporization of the liquid organohalogen compound, which is usually provided separately, can be omitted. Furthermore, some of organohalogen compounds have respective boiling point which is close to room temperature. In this case, stable supply of the organohalogen compound is difficult, because the organohalogen compound is liquefied or vaporized depending on variation of the environmental temperature around the treating apparatus. As one of countermeasures against the above problem, a method for supplying the organohalogen compound in a gas condition or a liquid condition by controlling the temperature can be envisaged. However, the above method is not desirable, because a large amount of energy is necessary for controlling the temperature, and precise temperature management of the supply piping and other components are required.

[0042] If the organohalogen compound has a boiling point which is close to room temperature it is preferably pressurized and added in a liquid condition to the carrier gas. Practically, a stable supply and a stable flow rate measurement are realized by pressurizing inside the treating apparatus and maintaining the inside pressure from the treating apparatus to the outlet valve higher than a saturated pressure at the environmental temperature around the treating apparatus so as to keep the organohalogen compound in a liquid condition. However, this requires a more complex system because an extra pressurizing apparatus is necessary.

[0043] The present invention preferably decreases the amount of water (including steam) to be added to the carrier gas, i.e. the combustion gas, because hydrogen or hydrocarbon fuel is burnt in the heater, and the organohalogen compound is added to the combustion gas released from the heater. Therefore, a facility for supplying water can be simplified. When a combustor is used as the heater and hydrogen or hydrocarbon fuel is used as the fuel, steam is generated as a combustion product, and the steam can be utilized for the destruction reaction of the organohalogen compound at the catalytic layer. Naturally, the amount of water supplied externally can be decreased. Accordingly, the facility for supplying water can be simplified. As the hydrocarbon fuel, petroleum, petroleum group gas, alcohol fuel, natural gas, hydrogen, and others can be used. Sulfur component in the fuel has a possibility to shorten the life of the catalyst. Therefore, use of hydrocarbon such as petroleum group gas as propane gas, alcohol fuel, hydrogen, and others, which includes no sulfur, is desirable.

[0044] Depending on the kind and the treating amount of the organohalogen compound, a total amount of steam necessary for its destruction reaction can be supplied by the steam generated by the combustion of the organohalogen compound. For instance, when destroying one mole of CFC-113, which is one of the organohalogen compounds, only three moles of steam is necessary. If one mole of propane, \((\text{C}_3\text{H}_8)\), is used as the fuel which is burnt in the combustor, four moles of steam is generated by the combustion of the propane. Accordingly, it is not necessary to add additional water to the carrier gas supplied to the catalyst layer. The apparatus for treating organohalogen compounds used for the above treatment exclusively does not requires any water supply facility.

[0045] In preferred embodiments the destruction of the organohalogen compound which is added to carrier gas released from the heater can be prevented at upstream region from the catalyst layer, because the temperature of the carrier gas released from the heater is controlled to be higher than a temperature at which the organohalogen compound is destroyed by the catalyst and lower than a temperature at which the organohalogen compound is destroyed at least partially. Therefore, corrosion of the structural material at the upstream region from the catalyst layer can be prevented.

[0046] A practical example of the above advantages is explained hereinafter. When an organohalogen compound of low concentration is treated, the temperature of the carrier gas may be nearly as same as the temperature necessary
for destructing the organohalogen compound with a catalyst layer. However, when an organohalogen compound of high concentration is treated, the temperature of the carrier gas before mixing with the organohalogen compound must be set higher than the temperature necessary for destructing the organohalogen compound with a catalyst layer. Because, the temperature of the carrier gas is decreased by mixing with the organohalogen compound. In the above case, the output power of the heater (for instance, the amount of the supplied fuel) is regulated so that the temperature of the carrier gas before being mixed with the organohalogen compound does not exceed the temperature for the partial destruction of the organohalogen compound, and the temperature of the carrier gas or a mixture of the carrier gas and steam is lower than the temperature for the partial destruction of the organohalogen compound and the temperature after being mixed with the organohalogen compound is higher than the temperature necessary for the destruction of the organohalogen compound by the catalyst layer. If the maximum usable temperature of the catalyst is lower than the temperature for the partial destruction of the organohalogen compound, the temperature must be regulated in a range lower than the maximum usable temperature of the catalyst layer.

In preferred embodiments corrosion by destructed gases generated by the destruction of the organohalogen compound with the catalyst layer can be prevented, because the exhaust gas released from the catalyst layer is cooled down as soon as possible. When the organohalogen compound is destructed, strongly corrosive halogens and hydrogen halides such as chlorine, hydrogen chloride, fluorine, hydrogen fluoride, and the like corresponding to the kind of the organohalogen compound are generated at a high temperature. In order to resist against the above strongly corrosive gas of high temperature, heat resistant and corrosion resistant metals such as Ni, Ni-Cr alloys, and the like, and heat resistant and corrosion resistant materials such as ceramic coating, glass coating must be used as structural materials of the apparatus. However, in accordance with the present invention, the corrosion environment at downstream region of the catalyst layer in the apparatus can be moderated by cooling down the exhaust gas released from the catalyst layer as soon as possible. For instance, if the temperature of the exhaust gas is decreased below 150°C, fluoric resins other than the above inorganic materials can be used. If the temperature of the exhaust gas is decreased below 100°C, vinyl chloride resins coated on the structural material can be used.

As a means for cooling the exhaust gas released from the catalyst layer, there are, for example, a method of installing a heat exchanger in the downstream region form the catalyst container, a method of cooling with washing liquid in a washer which is installed in the downstream region of the catalyst container, a method of cooling with bubbling in a liquid tank which is installed in the downstream region of the catalyst container, and a method of cooling with spraying in the downstream region of the catalyst container, etc. As a means for minimizing the range of strong corrosive environment and suppressing a head loss of the exhaust gas low, the method of cooling with spraying in the downstream region of the catalyst layer in the catalyst container is preferable. For the spraying liquid, a chemically stable liquid such as water is used. Further moderation of the corrosive environment can be realized by adding an alkali agent into the spraying liquid in order to neutralize partially the halogen and the hydrogen halide. As a dry process, a method for cooling by supplying cooled air into the exhaust gas at downstream region of the catalyst layer can be used.

In preferred embodiments generation of poisonous gas from the destructed gases which are generated by the destruction of the organohalogen compound can be prevented, by cooling down the exhaust gas released from the catalyst layer as soon as possible. For instance, the chlorine generated by the destruction of the organohalogen compound containing chlorine yields poisonous organochloro-compounds (dioxine and the like) by reacting with unburned components in the combustion gas after being maintained at a temperature approximately 300°C. The generation of the poisonous organochloro-compound can be prevented by cooling down the exhaust gas released from the catalyst layer as soon as possible.

In preferred embodiments, a reactive material with acidic gases contained in the exhaust gas released from the catalyst layer is added into the exhaust gas released from the catalyst layer. Therefore, the acidic gas can be eliminated from the exhaust gas by reacting with the reactive material. Accordingly, the corrosive environment at downstream region of the catalyst layer can be improved. As the reactive material with the acidic gas, for instance, alkaline solution, slaked lime, and the like can be used. Even in a case using the alkaline solution, either of a method of spraying the alkaline solution into the exhaust gas and a method of bubbling the exhaust gas into the stored alkaline solution can be used. In accordance with the former method, a large surface area of the alkaline solution can be utilized, and accordingly, a large efficiency of the reaction with the acidic gas can be realized. Therefore, the facility for treating the exhaust gas can be made compact. In accordance with the latter method, the head loss of the exhaust gas system is increased, and a salt, which is a reaction product of the acidic gas and the alkali, is precipitated, grown, and adhered onto a wall of the structural material at a low temperature region. The adhered material has a possibility to choke the piping of the treating system. The former method does not have such a problem, because the alkaline solution always flows.

In preferred embodiments, mist does not enter into the catalyst layer, and therefore, corrosion of the structural material of the catalyst layer can be suppressed, because a means for protecting the catalyst layer from entering the mist which is generated by the spraying the liquid from the means for spraying the liquid is provided. Practically, when the liquid is sprayed at downstream region of the catalyst layer in the catalyst container containing the catalyst layer,
These and other objects, features, and advantages of the present invention will be understood more clearly from the following detailed description with reference to the accompanying drawings, wherein:

FIG. 1 schematically illustrates a composition of an apparatus for treating organohalogen compound, which is one of the preferable embodiments of the present invention,

FIG. 2 illustrates a detailed composition of the catalyst container and the exhaust gas treating apparatus shown in **FIG. 1**,

FIG. 3 illustrates a detailed composition of the apparatus for adsorbing the organohalogen compound shown in **FIG. 1**,

FIG. 4 illustrates a composition of the apparatus for treating the organohalogen compound in another embodiment of the present invention,

FIG. 5 illustrates a composition of the apparatus for treating the organohalogen compound in another embodiment of the present invention,

FIG. 6 illustrates a composition of the apparatus for treating the organohalogen compound in another embodiment of the present invention,

FIG. 7 illustrates a composition of another embodiment of the fuel flow rate controlling apparatus,

FIG. 8 illustrates a composition of the apparatus for treating the organohalogen compound in another embodiment of the present invention, and

FIG. 9 illustrates a composition of the apparatus for treating the organohalogen compound in another embodiment.
of the present invention.

Description of the Preferred Embodiments

(Embodiment 1)

[0057] An apparatus for treating organohalogen compound, which is one of the preferable embodiments of the present invention, is explained referring to FIGs. 1, 2, and 3 hereinafter.

[0058] Taking CFC-113 as an example of the organohalogen compound, a treatment procedure in the present embodiment is explained.

[0059] The piping 21 for introducing air as a carrier gas is connected to the heater 1, which is a combustor, via the flow rate regulator 3. The flowmeter 16 (for air flow rate measurement) is provided to the piping 21. The heater is connected to the catalyst container 2 by the piping 22. The catalyst container contains inside a catalyst layer 24. The used catalyst is made of titanium oxide-tungsten oxide. In order to destruct CFC-113 more than 99.9 %, the temperature of the catalyst must be maintained at least 400°C. The piping 23 for introducing steam is connected to the piping 22 at the downstream region of the heater 1 via the flow rate regulator 4. The junction 8 is the above connecting position, i.e. a steam supplying position. The flowmeter 15 (for steam flow rate measurement) is provided to the piping 21. The piping 24 for introducing CFC-113 is connected to the piping 22 at the downstream region of the steam supplying position 8 via the pump 5. The junction 9 is the above connecting position, i.e. a CFC-113 supplying position. The flowmeter 14 (for CFC-113 flow rate measurement) is provided to the piping 21.

[0060] The cooling space 42 located at the downstream region of the catalyst layer 24 in the catalyst container 2 is connected to the exhaust gas treating apparatus 6 by the piping 25. The lower region inside the exhaust gas treating apparatus 6 is connected to the cooling space 42 by the piping 26. The exhaust gas treating apparatus 6 is connected to the entrance region of the apparatus for adsorbing organohalogen compound 7 by the piping 29. The piping 30 provided with the valve 46 is connected to the piping 22 at a position between the heater 1 and the steam supplying position 8, and to the piping 31. The piping 30 provided with the blower 11 is connected to the outlet region of the apparatus for adsorbing organohalogen compound 7 by the piping 31 for introducing air for desorption is connected to the entrance region of the apparatus for adsorbing organohalogen compound 7. The piping 32 provided with the valve 46 is connected to the piping 22 at a position between the heater 1 and the steam supplying position 8 and the CFC-113 supplying position 9. The piping 45 is provided with the open/close valve 13.

[0061] The regulating apparatus in the present embodiment is explained hereinafter. The main controller 20 outputs corresponding control signals to respective of the controllers 17, 18, and 19. The controller 19 regulates the opening of the flow rate control valve 3. The controller 18 regulates the opening of the flow rate control valve 4. The controller 17 regulates the number of rotation of the pump 5.

[0062] The heater 1 is installed at the upstream region of the flon supplying position 9, because the heater has a high heating efficiency with a high operating temperature, and accordingly, the size of the heater can be decreased, and inside the heater 1 reaches at a high temperature locally as same as flame. The CFC-113 does not pass through the heater 1, but the CFC-113 is heated to a desired temperature by being mixed with heated air. In accordance with the above method, the CFC-113 can be heated to 430°C, which is a necessary temperature for catalytic destruction of the CFC-113, with preventing the CFC-113 from local destruction.

[0063] Air is supplied to the heater 1 with a flow rate of approximately 260 Nm³/h regulated by the flow rate control valve 3. Propane is supplied to the heater 1 inside as fuel for combustion through the fuel supply piping 47. A part of the above air is used as air for the combustion. The air is heated to about 600°C by combustion of the propane. The heated air is supplied to the catalyst container 2 through the piping 22. The gas released from the heater 1 is combustion gas. In the above case, only the air necessary for combustion of the propane might be supplied to the heater 1 and the rest of the air is supplied to the piping 22 directly with bypassing the heater 1. Steam is generated by the combustion of the propane. The heated air in the piping 22 contains about 10 kg/h of steam generated by the combustion. The steam can be utilized as the steam necessary for catalytic destruction of the CFC-113.

[0064] However, the amount of steam generated by only the combustion of the propane is not sufficient for catalytic destruction of CFC-113. Therefore, steam at 100°C with a flow rate regulated by the flow rate control valve 4 is supplied to the piping 22 at the steam supplying position 8 through the piping 23, and mixed with the heated air. When the amount of the CFC-113, the object of the destruction, is small, the amount of steam necessary for the catalytic destruction of the CFC-113 can be satisfied with only by the steam generated by the combustion of the propane. A water vaporizer (not shown in the figure) can be installed at the steam supplying position 8 in order to mix sufficiently the steam supplied through the piping 23 and the heated air. The water vaporizer is filled with metal meshes and others in order to increase contacting area of the steam and the air so as to increase a rate of heat exchange. The water
vaporizer is not necessary when the heated air is at a high temperature and has a large flow rate sufficient for maintaining necessary amount of heat for evaporation.

[0065] The CFC-113 is pressurized by the pump 5, and supplied to the piping 22 at the CFC-113 supplying position 9 through the piping 24. The liquefied CFC-113 is supplied at the rate of 50 kg/h by the supplying pump 5. The CFC-113 is mixed with the heated air and the steam at the flon supplying position 9. The flon is vaporized by the sensible heat of the air and the steam, and mixed homogeneously. The CFC-113 is supplied to the inside of the piping 22 by spraying in order to perform heat exchange rapidly with the heated air and the steam. In order to improve the vaporization efficiency of the flon, a flon vaporizer (not shown in the figure) might be installed at the CFC-113 supplying position 9. The flon vaporizer is filled with metal meshes and others in order to enhance the contact of the CFC-113 with the heated air and others. The steam supplying position 8 is desirably located at the same position as the CFC-113 supplying position 9, or, if it may be possible, at the upstream region of the CFC-113 supplying position 9. Because, in order to decrease a possibility to destruct the CFC-113 locally by heating, the heated air at a high temperature is prevented from contacting directly to the CFC-113 by supplying the CFC-113 at a position where the heated air and the steam are mixed and the temperature of the mixture is slightly decreased. Water might be supplied instead of the steam. However, in this case, the water is desirably supplied by spraying in order to perform the heat exchange with the heated air rapidly.

[0066] As explained above, a mixed gas of heated air, steam, and CFC-113 at about 430°C is generated, and the mixed gas is supplied to the catalyst container 2.

[0067] In order to destroy the CFC-113 effectively at the catalyst layer 24 in the catalyst container 2, the mixed gas must be adjusted to a condition suitable for the destruction treatment. Therefore, the supplying amount of the respective of air, steam, and CFC-113 must be regulated to be a desirable condition, and then, the air, the steam, and the CFC-113 are supplied.

[0068] A supplying method of the organohalogen compound to the downstream region of the heater 1 has been explained hitherto taking the CFC-113 as an example.

[0069] However, the boiling point of organohalogen compound varies depending on the kind of respective of the organohalogen compounds. For instance, when treating the organohalogen compound having a boiling point near room temperature of about 20 °C as CFC-11, the organohalogen compound is desirably supplied with maintaining at either one condition of gas or liquid in order to regulate the supplying amount of the organohalogen compound adequately. The supply of gaseous organohalogen compound necessitates to evaporate the organohalogen compound by providing a separate heater to the piping 22, and regulating the heating at above the boiling point. Therefore, the composition of the treating apparatus becomes large and complex. On the contrary, when the organohalogen compound having a low boiling point is supplied in a liquid condition, there are two methods such as a method wherein the organohalogen compound is supplied with cooling down below its boiling point and a method wherein the organohalogen compound is supplied under an operating pressure exceeding its saturated vapor pressure. In the case of cooling method, objects of the cooling is ranged wide because storage tanks and supplying piping of the organohalogen compound must be cooled down. In the case of pressurizing method, there are several advantages such that the heating and cooling facilities are not necessary, further, the saturated vapor pressure of CFC-11 at room temperature is as low as approximately 1 kg/cm², a range to be pressurized is not whole the treating facility, but only from storage tanks to supplying piping of the organohalogen compound, and the impact of pressurizing procedure to the facility is small. In accordance with the above consideration, the supply of the organohalogen compound having a boiling point near room temperature is desirably performed by the method wherein the organohalogen compound is pressurized exceeding its saturated vapor pressure and supplied in a liquid condition.

[0070] On the other hand, in the case of the organohalogen compound having a low boiling point as -30°C such as CFC-12, the method for supplying the organohalogen compound at downstream region of the heater 1 requires a pressure resistance facility, because the operating pressure for supplying the CFC-12 in a liquid condition by pressurizing the CFC-12 over its saturated vapor pressure becomes as high as approximately 10 kg/cm². Therefore, the organohalogen compound having a lower boiling point than room temperature is desirably controlled and supplied in a gaseous condition.

[0071] As explained above, a mixed gas of heated air, steam, and CFC-113 at a temperature suitable for catalytic destruction can be supplied to the catalyst container 2, and the CFC-113 can be destructed.

[0072] In the present embodiment, the CFC-113 is added to the heated air at the downstream region of the heater 1. Accordingly, the temperature of the heated air is not elevated locally, and no local destruction of the CFC-113 occurs. Therefore, corrosion of the piping 22 can be suppressed. Particularly, as the CFC-113 is added to the heated air at the downstream region of the heater 1, the temperature of the heated air becomes lower than the destruction temperature of the CFC-113. Therefore, corrosion of the piping 22 can be remarkably suppressed. The combustion of propane, i.e., a hydrocarbon, generates steam, and the amount of steam (or liquid water) to be added externally into the piping 22 can be decreased. Therefore, a size the steam supplying system, that is, a diametral size of the piping 23 and a size of flow rate control valve 3 can be decreased, and the steam supplying system can be made compact.
Control of the supplying flow rate of the air, steam, and CFC-113 is explained hereinafter.

The supplying amount of air, i.e. a carrier gas, depends on the supplying amount and concentration of the organohalogen compound, and the supplying amount of steam depends on the treating amount of the organohalogen compound. Accordingly, concentration of the mixed gas can be controlled by setting the treating amount of the organohalogen compound and a rate of steam addition, and giving the concentration setting of the organohalogen compound in the mixed gas as a condition for the carrier gas supplying amount control.

An operator inputs data such as kind of the supplied organohalogen compound (characteristics such as specific gravity and others are set), and the treating condition (the treating amount of the organohalogen compound, the ratio of the amount of the steam and the organohalogen compound, and the concentration of the organohalogen compound in the mixed gas) into the main controller 20 from the input apparatus (keyboard etc.) 48. The main controller 20 calculates the supplying amounts of CFC-113, steam, and air based on the input information. The main controller 20 outputs the calculated supplying amount of the organohalogen compound (in the present example, CFC-113), of which kind is designated by the input apparatus 48, to the controller 17, the calculated supplying amount of steam to the controller 18, and the calculated supplying amount of air to the controller 19, respectively, as a setting value.

The supplying amount of air, i.e. a carrier gas, is controlled by regulating the opening of the flow rate control valve 3 by the controller 19 based on the above setting value using the flow rate of the air determined by the flowmeter 16 as a feedback signal. The supplying amount of steam is controlled by regulating the opening of the flow rate control valve 4 by the controller 18 based on the above setting value using the flow rate of the air determined by the flowmeter 15 as a feedback signal. The supplying amount of CFC-113 is controlled by regulating the rotation speed of the pump 5 by the controller 17 based on the above setting value using the flow rate of the air determined by the flowmeter 14 as a feedback signal.

Respective of the setting values of the controllers 17, 18, and 19 can be varied depending on the calculation by the main controller 20. By making the setting values variable as described above, respective of the flow rate control valves has a possibility to cause hunting. Therefore, when the flow rate controlling becomes stable in a certain range, the corresponding controller for controlling the flow rate must have a function to set a condition for accepting a setting value.

In accordance with the present embodiment, the amount of the organohalogen compound to be treated, the amount of the steam, and the amount of the carrier gas can be controlled for composing the mixed gas having an optimum concentration of respective gases for catalytic destruction of CFC-113.

The structure of the catalyst container 2 used in the present embodiment is explained hereinafter referring to FIG. 2.

The catalyst container 2 comprises a porous plate 33 which is fixed inside the chamber by welding. The porous plate 33 has a plurality of pores which enable liquid pass through. A catalyst layer 24, which is filled with the catalyst, is provided on the porous plate 33. The catalyst layer 24 is arranged inside the catalyst container 2. The catalyst container 2 is provided with the inlet hole 34 for filling the catalyst and the outlet hole 35 for taking out the catalyst. The inlet hole 34 and the outlet hole 35 are closed by the closing plates 36A and 36B, respectively, during the mixed gas flows. In a case when pre-fabricated catalyst (for instance, honey-comb shaped catalyst) is used, it is possible to facilitate the operation of the loading and unloading of the honey-comb shaped catalyst by using a catalyst container 2 which is separable into two parts, i.e. an upper part and a lower part. A baffle plate 38 for dispersing a stream of the mixed gas is provided at the upper portion of the catalyst layer 24, particularly in the vicinity of the opening of the piping 22, in the catalyst container 32. The baffle plate 38 is fixed to the catalyst container 38 by welding or the like. A cooling chamber 39 is provided at the lower portion of the catalyst container 2. A cooling space 42 is formed in the cooling chamber 39. One or plurality of spray nozzles 40 are provided in the cooling chamber 39. The spray nozzles 40 are so arranged that cooling water can be sprayed to the whole space in the cooling space 42. The cooling chamber 39 forms inside a separating chamber 43 in addition to the cooling space 42. The cooling chamber 42 and the separating chamber 43 are connected mutually at a lower portion, and divided by a partition plate 44 which is provided in the cooling chamber 39. The piping 25 is connected to the upper portion of the separating chamber 43, and the piping 26 is connected to the lower portion of the separating chamber 43, respectively. The size of the separating chamber 43 is decided so that the flow velocity of the fluid becomes sufficiently slow, particularly, for preventing entrainment of mist in the fluid. The cooling chamber 39 has a bottom 49 declined toward the piping 27 in order to facilitate drainage of the cooling water sprayed from the spray nozzles 40. The baffle plate 37 is provided near the outlet of the catalyst layer 24 in the cooling space 42, and fixed to the cooling chamber 39 by welding. The baffle plate 37 prevents the water sprayed from the spray nozzles 40 from entering into the catalyst layer 24. The catalyst container 2, porous plate 33, inlet hole 34, outlet hole 35, closing plate 36, and baffle plate 37 are made of heat resistant steel, such as a Ni-Cr alloy, which has preferable corrosion resistance against chlorine and hydrogen chloride generated by the catalytic destruction of CFC-113 at a high temperature.

The mixed gas containing CFC-113 flows into the catalyst container 2 through the piping 22. The mixed gas collides with the baffle plate 38, and stream of the mixed gas is dispersed. The stream of the mixed gas reaches
The exhaust gas released from the catalyst layer 24 reaches the cooling space 42. The exhaust gas is cooled down rapidly by cooling water which is sprayed in the cooling space 42. The rapid cooling prevents the exhaust gas from being maintained at approximately 300°C whereat dioxin, an extremely poisonous gas, is generated. That means, generation of dioxin in the exhaust gas can be prevented. It is well known that, if a gas containing chlorine or chlorine compounds is cooled down slowly at approximately 300°C, dioxin is generated. The rapid cooling by the water spray explained above is effective for preventing the generation of dioxin.

In the cooling space 42, sprayed water splashes all over the space. The baffle plate 37 prevents the splashed water from entering into the catalyst layer 24. Accordingly, the temperature inside the catalyst layer 24 can be maintained at a desirable temperature, and a preferable destruction efficiency for CFC-113 can be maintained.

Some of the sprayed water drops are entrained with the exhaust gas ascending in the separating chamber 43 toward the piping 25. However, as the separating chamber 43 has a sufficiently large space, the ascending velocity of the sprayed water drops are decreased, and the sprayed water drops are naturally dropped by the effect of gravity and separated from stream of the exhaust gas. As explained above, the humidity in the exhaust gas flown into the piping 25 can be restricted. Accordingly, the corrosive condition for piping and apparatus, such as the piping 25, the exhaust gas treating apparatus 6, and others, can be moderated.

Chlorine and hydrogen chloride which are generated by the catalytic destruction of CFC-113 can be neutralized by adding an alkaline agent such as sodium hydroxide to the cooling water sprayed from the spray nozzles 40. When an organofluoro-compound is treated instead of flon, fluorine and hydrogen fluoride generated by the catalytic destruction can be neutralized. Accordingly, corrosive property of the exhaust gas released from the catalyst layer 24 can be moderated. In this case, the structural members can be composed of materials which are generally used. For instance, the cooling chamber 39 and others can be made of stainless steel or carbon steel lined with teflon, porcelain, bricks, and others.

On the bottom of the cooling chamber 39, a mixture of sprayed cooling water, chlorine compounds generated by the neutralization, and waste water in a slurry condition is accumulated. However, the mixture can be drained readily to the piping 27 by the declined bottom plate 49. The mixture is treated at the waste water treating apparatus 10 for being made harmless, and then, released to outside the system through the piping 28.

The exhaust gas entered the piping 25 is introduced into the exhaust gas treating apparatus 6. An alkaline solution is supplied to the exhaust gas treating apparatus 6 through the inlet line 41. The alkaline solution descends inside of the exhaust gas treating apparatus 6 contacting with the exhaust gas. The alkaline solution absorbs acidic gases (chlorine gas, hydrogen chloride gas) in the exhaust gas to eliminate the acidic gases from the exhaust gas. Therefore, corrosion of the organohalogen compound adsorbing apparatus 7 located at the downstream region of the exhaust gas treating apparatus 6 can be prevented. The alkaline solution absorbed the acidic gases is introduced into the cooling chamber 39 through the piping 26. The alkaline solution is released to the piping 27 with the cooling water sprayed from the spray nozzles 40.

A small amount of undestroyed CFC-113 contained in the exhaust gas which is released from the exhaust gas treating apparatus 6 is adsorbed by the adsorption tower 50. The exhaust gas, of which undestroyed CFC-113 has been eliminated, is released outside through the piping 30 by operation of the blower 11. The release of the CFC-113 outside the system can be prevented, because the undestroyed CFC-113 is adsorbed by the adsorption tower 50.
5 A part of the heated air released from the heater 1 enters the piping 31 via the valve 46, and heats the air in
the piping 31 to approximately 100°C. The heated air is introduced into the adsorption tower 51 for desorbing the
undestroyed CFC-113 which has been adsorbed by the active carbon, and supplied to the piping 22 via the piping 44
and 45. The undestroyed CFC-113 is introduced into the catalyst layer again for destruction. Because apart of the
heated air released from the heater 1 is used for heating the air for desorption, another heater for heating the air for
desorption is not necessary. Therefore, the system composition can be simplified.

[0092] After operating the apparatus for a designated period, the open/close valves are operated for switching the
adsorbing operation from the adsorption tower 50 to the adsorption tower 51. The exhaust gas released from the
exhaust gas treating apparatus 6 is introduced into the adsorption tower 51, and released outside through the piping
30. The air heated at approximately 100°C is supplied to the adsorption tower 50 through the piping 31. The un-
derstructed CFC-113 desorbed from the active carbon is introduced into the catalyst layer 24 as same as the above
described operation. A returning position of the heated air for desorption is preferably at the downstream region from
the heater 1, if possible, at the downstream region from the steam supplying position and the upstream region from
the catalyst container 2. Because, generation of corrosive gases by local destruction of retraining undestructed CFC-
113 by heating must be prevented.

[0093] After desorbing the undestructed CFC-113 and recovering the active carbon by supplying heated air to the
adsorption tower 50 for a designated period, the supply of the heated air is stopped by closing the flow rate control
valve 46, and only air at a low temperature is supplied to the adsorption tower 50 through the piping 31. The air is
exhausted outside via the blower 12 and the open/close valve 56. At this time, the open/close valve 56 is open, and
the valve 13 is closed. The air at a low temperature cools inside of the adsorption tower after the desorption for preparing
subsequent adsorption. In accordance with the above method for desorption and recovery, the operation for recovering
and desorbing the adsorption tower and destructing the desorbed flon can be performed without stopping the operation
for destructing flon, the main object for the treatment, (hereinafter, it is called "a main destructing operation"). Therefore,
the operation efficiency of the organohalogen compound treating apparatus can be improved.

[0094] In accordance with providing the adsorption tower in the exhaust gas piping line, the release of the unde-
structured flon can be decreased significantly, and the destruction efficiency of the total system can be improved remark-
ably. In accordance with providing two adsorption towers and performing the adsorption and recovery operation alter-
nately using the adsorption towers 50, 51, the adsorption, recovery, and desorption of CFC-113 can be performed
continuously. Furthermore, load fluctuation at the catalyst container 2 can be flattened and stable operations of the
apparatus become possible, because the amounts of the recovered gas and the desorbed gas become approximately
constant by performing the operation for recovering the adsorption tower and destructing the desorbed flon without
stopping the main destructing operation, and the operation for recovering and desorbing the adsorption towers 50, 51
continuously.

[0095] The present embodiment has been explained taking CFC-113 as an example. However, the present embod-
iment can be applied to the destruction treatment of other organohalogen compounds such as organochloro com-
ounds, organofluoro-compounds, organobromo-compounds, and the like. The other embodiments explained later are
applicable as same as the present embodiment.

[0096] In the present embodiment, a quantitative supply pump can be used as the pump 5 shown in FIG. 1.

[0097] In the present embodiment shown in FIG. 1, CFC-113 in a liquid condition was supplied to the piping 22.
However, if the apparatus is aimed at treating exclusively HCFC-22, which has a low boiling point such as -40°C, the
HCFC-22 filled in a cylinder can be supplied in a gaseous condition to the supply position 9. In this case, the pump 5
in FIG. 1 must be replaced with a flow rate control valve. The controller 17 regulates the opening of the above flow
rate control valve based on the preset supplying amount of the HCFC-22 (calculated by the main controller 20).

(Embodiment 2)

[0098] An apparatus for treating organohalogen compound, which is another embodiment of the present invention,
is explained referring to FIG. 4 hereinafter. In the present embodiment, the piping 23 shown in FIG. 1 of the embodiment
1 is connected not to the piping 22 but to the heater 1. Other composition of the present embodiment is as same as the
embodiment 1.

[0099] Steam is supplied to the heater 1 by the piping 23. As the temperature of the inside of the heater 1 is high,
thermal energy for elevating temperature is readily obtained. Further, as the combustion gas flows the inside of the
heater 1, mixing of the steam and air, a carrier gas, can be enhanced. No evaporator is necessary. Furthermore, as the
supply of the steam at 100°C to the inside of the heater 1 decreases the temperature of the inside of the heater 1, heat
resistance necessary for the heater 1 can be moderated. That means, if the air in the heater 1 is heated at 800°C
and subsequently the temperature of the heated air is decreased to 600°C at the steam supplying position 8 by supplying
the steam in the case of embodiment 1 shown in FIG. 1, the temperature of the inside the heater 1 itself can be
decreased to 600°C by supplying the steam directly to the heater 1 such as the present embodiment. Therefore, heat
resistance necessary for the structural material of the heater 1 can be moderated in addition to the advantages obtained by the embodiment 1.

(Embodiment 3)

[0100] The composition of the present embodiment is as same as the embodiment 1 except a point that the flow rate control valve 4 is replaced with a pump in order to supply water to the piping 22 from the piping 23. The controller 18 regulates the rotation speed of the pump based on the preset supplying amount of water (calculated by the main controller 20). The other composition of the present embodiment is as same as the embodiment 1. In accordance with the present embodiment, the steam generator which is necessary in the embodiment 1 becomes unnecessary, and simplification of the apparatus can be achieved. However, as the water and the heated air are not mixed sufficiently in the piping 22, the water must be supplied by spraying into the piping 22, or through an evaporator. The present embodiment realizes the same advantages as the embodiment 1 except the point described above.

[0101] In the present embodiment, supplying water directly to the heater 1 by connecting the piping 23 to the heater 1 as same as the embodiment 2 is possible. In the above case, the evaporator and others become unnecessary in comparison with the case when the water is supplied to the piping 22.

(Embodiment 4)

[0102] An apparatus for treating organohalogen compound, which is another embodiment of the present invention, is explained referring to FIG. 5 hereinafter. The present embodiment has a composition as same as the embodiment 1 except a point that the flow rate control valve 4, the flowmeter 15, the controller 18, and the piping 23 are eliminated from the composition of the embodiment 1. In accordance with the present embodiment, a total amount of steam necessary for destruction of CFC-113 in the catalyst container 2 is supplied by combustion of hydrocarbon fuel such as propane in the heater 1. The supplying amount of the propane from the fuel supply piping 47 must be sufficient for supplying the total amount of steam necessary for the destruction of CFC-113.

[0103] For instance, as shown by the following reaction formula (Equation 1), 4 moles H₂O is generated by combustion of one mole of propane (C₃H₈). In order to destruct one mole of CFC-113 (C₂Cl₃F₃) using catalyst, 3 moles H₂O is necessary as the reaction formula (Equation 2) indicates.

\[
\begin{align*}
C_3H_8 + SO_2 &\rightarrow 3CO_2 + 4H_2O \\
C_2Cl_3F_3 + 3H_2O &\rightarrow 3HF + 3HCl + CO_2 + CO
\end{align*}
\]

(Equation 1)

(Equation 2)

[0104] Therefore, if CFC-113 is supplied to the piping 22 through the piping 24 by one mole/h, the propane is sufficiently supplied to the heater 1 from the fuel supply piping 47 by one mole/h. In the above case, the steam of which amount is 1.33 times of the necessary amount for catalytic destruction of the CFC-113 can be obtained by combustion of the propane. Accordingly, it is not necessary to supply steam from exterior through the piping 23 as the embodiment 1. In accordance with the present embodiment, an advantage that the apparatus can be small in size can be realized in addition to the advantages obtained by the embodiment 1, because the steam supplying apparatus from exterior becomes unnecessary.

[0105] The main controller 20 calculates the supplying amounts of air and CFC-113, and outputs setting values to the corresponding lower controllers 17, 19.

(Embodiment 5)

[0106] An apparatus for treating organohalogen compound, which is another embodiment of the present invention, is explained referring to FIG. 6 hereinafter. The present embodiment has a composition, which is composed by adding fuel flow rate controller, flow rate control valve 57, and thermometers 63, 64 to the composition of the embodiment 1 shown in FIGs. 1, 2, and 3. The flow rate control valve 57 is provided to the fuel supply piping 47. The thermometer 63 is provided to the piping 22 at the interval between the steam supply position 8 and the flon supply position 9 for determining the temperature of the mixed gas of the heated air and the steam. The thermometer 64 is provided to the catalyst container 2 for determining the temperature of the catalyst layer 24. The fuel flow rate controller comprises the controller 58, signal selector 59, alarm setting device 60, alarm warning device 61, and signal setting device 62.

[0107] Steam and CFC-113 are mixed with air heated in the heater 1, and the mixture is introduced into the catalyst
container 2. As for the catalyst, a catalyst made of titanium oxide-tungsten oxide is used. The catalyst must be maintained at least 400°C for destructing the CFC-113 by more than 99.9%. The temperature for partial destruction of the CFC-113 is approximately 700°C.

The temperature of the heated air released from the heater 1 is controlled as follows:

The output signals from the thermometer 63 (the temperature of the mixed gas of the heated air and the steam) and the thermometer 64 (the temperature of the catalyst layer 24) are transmitted to the signal setting device 62. The signal setting device determines whether the output from the thermometer 64 is lower than 400°C or not. The signal selector 59 outputs a first setting value, i.e., 650°C, which is lower than 700°C, to the controller 58 for the signal selector, and transmits the output signal from the thermometer 63 to the controller 58, when the signal selector 59 receives a judging signal of lower than 400°C from the signal setting device 62. The controller 58 regulates the opening of the flow rate control valve 57 based on the first setting value (650°C) using the output signal from the thermometer 63 as a feedback signal. As a condition wherein the temperature of the catalyst layer is lower than 400°C, there is a condition at the starting up of the treating apparatus, for instance. The flow rate of the fuel supplied to the heater 1 increases corresponding to the opening of the flow rate control valve 57 regulated by the controller 58, and the temperature of the heated air is elevated. At the starting up of the treating apparatus, the temperature rise of the catalyst is moderate, and accordingly, rapid rise of the temperature of the heated air is necessary in order to shorten the starting up time. As explained above, the output signal from the thermometer 63 is used as the feedback signal. Therefore, the heated air is released from the heater 1 at a temperature, with which the temperature of the heated air becomes 650°C after mixing with the steam. If the above explained control is not performed, the temperature of the mixed gas of the heated air and the steam has a possibility to exceed 700°C. If CFC-113 is supplied in the above condition, CFC-113 is contacted with the mixed gas of the heated air and the steam at a high temperature (higher than 700°C), and the partial destruction of the CFC-113 is started. The partial destruction of the CFC-113 will cause corrosion of the piping 22 and the catalyst container 2. In accordance with the present embodiment, the rapid temperature rise of the heated air is realized, and the corrosion of the structural material can be prevented.

When the output signal from the thermometer 64 shows a signal higher than 400°C, the signal selector 59 receives a judging signal of higher than 400°C from the signal setting device 62. The signal selector 59 outputs a second setting value, 430°C, which is higher than 400°C, to the controller 58, and transmits the output signal from the thermometer 64 to the controller 58. The controller 58 regulates the opening of the flow rate control valve 57 based on the second setting value (430°C) using the output signal from the thermometer 64 as a feedback signal. The temperature of the heated air is regulated so that the temperature of the catalyst layer 24 becomes 430°C.

The output signal of the thermometer 63 is transmitted to the alarm setting device 60. The alarm setting device 60 operates the alarm warning device 61 when the temperature determined by the thermometer 63 exceeds 630°C. The operator is informed of a danger to destruct the CFC-113 in the piping 22 by the operation of the alarm warning device 61. When the output signal from the thermometer 63 shows a signal higher than 650°C, the signal selector 59 outputs a first setting value to the controller 58, and transmits the output signal from the thermometer 63 to the controller 58 as the feedback signal. As a condition wherein the temperature of the catalyst layer is lower than 400°C, there is a condition at the starting up of the treating apparatus, for instance. The flow rate of the fuel supplied to the heater 1 increases corresponding to the opening of the flow rate control valve 57 regulated by the controller 58, and the temperature of the heated air is elevated. At the starting up of the treating apparatus, the temperature rise of the catalyst is moderate, and accordingly, rapid rise of the temperature of the heated air is necessary in order to shorten the starting up time. As explained above, the output signal from the thermometer 63 is used as the feedback signal. Therefore, the heated air is released from the heater 1 at a temperature, with which the temperature of the heated air becomes 650°C after mixing with the steam. If the above explained control is not performed, the temperature of the mixed gas of the heated air and the steam has a possibility to exceed 700°C. If CFC-113 is supplied in the above condition, CFC-113 is contacted with the mixed gas of the heated air and the steam at a high temperature (higher than 700°C), and the partial destruction of the CFC-113 is started. The partial destruction of the CFC-113 will cause corrosion of the piping 22 and the catalyst container 2. In accordance with the present embodiment, the rapid temperature rise of the heated air is realized, and the corrosion of the structural material can be prevented.

In accordance with the present embodiment, the partial destruction of the CFC-113 at the upstream region of the catalyst layer 24 can be prevented completely in addition to realizing the advantages obtained by the embodiment 1. Accordingly, corrosion of the structural material at the upstream region of the catalyst layer 24 can certainly be prevented.

(Embodiment 6)

Another embodiment of the fuel flow rate control apparatus is explained referring to FIG. 7. The fuel flow rate control apparatus of the present embodiment comprises the controller 58A. The composition of the apparatus for treating organohalogen compound is as same as the embodiment 1. The fuel flow rate control apparatus of the present embodiment is aimed at controlling the starting up of the supply of the CFC-113 at a stable point when the temperature of the catalyst layer 24 reaches at a designated operating temperature. The controller 58A receives the output signals from the thermometers 63, 64.

The heated air released from the heater 1 is introduced into the catalyst container 2. The controller 58A regulates the opening of the flow rate control valve 57 so that the temperature of the catalyst layer 24 becomes 430°C, and control the amount of the fuel supplied to the heater 1. As the temperature rise of the catalyst layer 24 is slow, the temperature of the catalyst layer overshoots the target temperature (430°C), but gradually converges to the target temperature. During the period, when the temperature determined by the thermometer 63 becomes sufficiently higher than the temperature of the steam, the controller 58A outputs a steam supply starting signal to the main controller 20. The main controller 20 outputs the steam supply starting signal to the controller 18. Then, supply of the steam is started by opening of the flow rate control valve 4 in accordance with the operation of the controller 18.
When the temperature of the catalyst layer 24 has converged approximately to the target temperature in accordance with the temperature of the thermometer, and the temperature determined by the thermometer 63 is judged by the controller 58A as lower than the destruction temperature of the CFC-113, the controller 58A outputs a signal for starting the supply of the organohalogen compound to the main controller 20. The main controller 20 outputs the signal for starting the supply of the organohalogen compound to the controller 17. Then, supply of the CFC-113 is started by operating the pump 5 in accordance with the operation of the controller 17.

The catalytic destruction reaction of the CFC-113 is exothermic, and the temperature of the catalyst layer 24 rises approximately 30-60°C. Therefore, the supplying amount of the CFC-113 is gradually increases from a small amount in order to prevent hunting of the temperature in the catalyst layer 24. The above consideration is necessary for the other organohalogen compound as well.

In accordance with the present embodiment, the CFC-113 can be supplied in a condition wherein the temperature is adequately controlled, and the partial destruction of the CFC-113 can be prevented. The composition of the present embodiment can be used concurrently with the composition shown in FIG. 6.

(Embodiment 7)

An apparatus for treating organohalogen compound, which is another embodiment of the present invention, is explained referring to FIG. 8 hereinafter. The composition of the present embodiment differing from the composition shown in FIG. 3 is explained hereinafter. The exhaustor 65 is provided to the piping 44 at the downstream region of the open/close valve 56 instead of the blower 12. The steam condenser 66 is provided to the piping 45. The piping 68 to be connected to the piping 23 is connected to the piping 31 at the downstream region of the open/close valve 69. The open/close valve 69 is provided to the piping 31. Other composition of the apparatus is as same as the composition of the embodiment 1.

In the present embodiment, steam is used as a recovery gas for the adsorption towers 50, 51. The steam is supplied to the piping 31 from the piping 68, and introduced to the adsorption tower to be recovered. The amount of the steam is controlled by regulating the opening of the flow rate control valve 67.

In accordance with the method for recovery and desorption of the present embodiment, the recovery and desorption of the adsorption tower, and destruction of the desorbed and recovered CFC-113 can be performed without stopping the operation of the main catalytic destructing operation of the CFC-113. However, in the above case, the supplying amount of the steam for recovery and desorption must be small in order to avoid giving any influence to the main catalytic destructing operation of the CFC-113. The steam condenser 66 cools the gas containing the desorbed undestructed CFC-113, which is to be returned to the piping 22, down to approximately 60°C to separate the contained steam. Accordingly, the gas containing no steam but CFC-113 can be supplied to the piping 22 from the piping 45. Furthermore, the amount of the steam supplied to the catalyst container 2 can be regulated adequately by the controller 18. In accordance with the installation of the steam separator 66, the influence of the uncontrolled steam to the main catalytic destruction operation of CFC-113 can be suppressed.

In a method wherein the adsorption tower is desorbed and recovered by passing the steam through the tower for a designated period and subsequently the tower is dried by heated air, a part of the heated air which is introduced to the piping 31 from the downstream region of the heater 1 through the piping 32 can be used as the heated air for drying the tower by passing through the corresponding tower. The adsorption tower after the drying can be cooled readily by passing through only air from the piping 31 by closing the flow rate control valve 52.

The same advantages as the embodiment 1 can be obtained by the present embodiment.

(Embodiment 8)

An apparatus for treating organohalogen compound, which is another embodiment of the present invention, is explained referring to FIG. 9 hereinafter. The composition of the present embodiment differs from the composition of the embodiment 1 in the positions of the catalyst container 2 and the exhaust gas treating apparatus 6, which have been changed as shown in FIG. 9. That means, the composition of the embodiment shown in FIG. 2 has been changed to the new composition as shown in FIG. 9. On the contrary to the previous embodiments, wherein wet type exhaust gas treating apparatus are used, the present embodiment uses a dry type exhaust gas treating apparatus.

The portion different from the composition shown in FIG. 2 is explained hereinafter. The space 74 formed at the downstream region of the catalyst layer 24 in the catalyst container 2A is connected to the bag filter 70 via the piping 25. The bag filter 70 is connected to the organohalogen compound adsorption apparatus 7 via the piping 29. The open/close valve provided at the bottom portion of the bag filter 70 is connected to a slaked lime treating apparatus (not shown in the figure) by piping. The cooling air supplying pipe 72 is connected to the piping 26 at a portion near the space 74. The slaked lime supplying pipe 73 is connected to the piping 25.

The exhaust gas including the acidic gas which is generated by the catalytic destruction of the CFC-113 is...
introduced into the piping 25 via the space 74. The temperature of the exhaust gas decreases rapidly to 100°C by
supplying cooling air to the piping 25 through the cooling air supplying pipe 72. The cooling air has the same effect as
the cooling water which is sprayed from the spray nozzles 40 in the embodiment 1. When an organic compound contain-
ing chlorine is treated as the objective organohalogen compound in the present embodiment, generation of poi-
sonous gas such as dioxin and the like can be prevented because the temperature of the exhaust gas decreases
rapidly by the effect of the cooling air.

[0126] The slaked lime supplied from the slaked lime supplying pipe 73 absorbs the acidic gas contained in the
exhaust gas. Therefore, the acidic gas is eliminated from the exhaust gas. The slaked lime reacted with the acidic gas
is separated by the bag filter 70. The separated slaked lime is transferred to the slaked lime treating apparatus by
opening the open/close valve 71, and treated. The exhaust gas separated from the slaked lime is introduced into the
organohalogen compound adsorption apparatus 7.

[0127] The present embodiment realizes the same advantages as the embodiment 1.

Claims

1. A method for treating an organohalogen compound, comprising the steps of:

 (i) mixing said organohalogen compound into a carrier gas which has previously been heated by a heater to
 produce a mixture which also contains steam;
 (ii) decomposing said organohalogen compound by supplying said mixture to a catalyst layer (24) to pass
 through the layer in a direction that is downward from the top of the catalyst layer;
 (iii) conducting exhaust gas, containing decomposed gas generated by the decomposition of said organohal-
 ogen compound, coming out from said catalyst layer into a cooling region (42;25) located downstream of said
catalyst layer;
 (iv) cooling said exhaust gas with cooling water sprayed into said cooling region or cooling air injected into
 the cooling region; and
 (v) exhausting gas from said catalyst layer and said cooling region by an exhauster (11) installed at a position
downstream from said cooling region (42;25).

2. A method as claimed in claim 1, wherein step (iii) includes conducting the exhaust gas into said cooling region via
 a bent path created by baffle member (7) located between said catalyst layer (24) and said cooling region (42).

3. A method as claimed in claim 1 or 2, wherein said organohalogen compound is added to said carrier gas after said
gas has been mixed with steam.

4. A method according to claim 1 or 2, wherein said steam is at least partly introduced into said carrier gas by burning
 a fuel in said carrier gas in said heater.

5. A method as claimed in any one of claims 1 to 4, wherein said organohalogen compound is added in a liquid
 condition to said carrier gas.

6. A method as claimed in any one of claims 1 to 5, wherein the temperature of heating of the carrier gas by the
 heater is controlled so that the temperature of said carrier gas is lower than a temperature for at least partial
 destruction of said organohalogen compound.

7. A method as claimed in any one of claims 1 to 6, wherein said decomposed gases include a gas containing chlorine,
 and said cooling of said exhaust gas is performed at once after its release from said catalyst layer (24).

8. A method for treating an organohalogen compound as claimed in any one of claims 1 to 7, further including, adding
 a material which is reactive with acidic gas contained in exhaust gas released from said catalyst layer to said
 exhaust gas after step (iv).

9. A method as claimed in claim 8, wherein said material which is reactive with said acidic gas is an alkaline liquid.

10. A method as claimed in claim 8, wherein said material which is reactive with said acidic gas is in solid form.

11. An apparatus for treating organohalogen compounds comprising a catalyst container containing a catalyst layer
(24), a supply path (22) for supplying a carrier gas containing an organohalogen compound and steam to said catalyst container, a cooling chamber (42;25) to receive exhaust gas from said catalyst chamber located downstream of said catalyst container, means (40) for spraying a cooling liquid into said cooling chamber (40) or means (72) for supplying cooling air to said cooling chamber (25) to cool exhaust gas containing a decomposed gas of said organohalogen compound exhausted from said catalyst layer, and an exhauster (11) downstream of said cooling chamber (42) for exhausting exhaust gas from said catalyst chamber (24) and said cooling chamber.

12. An apparatus as claimed in claim 11, which further comprises a baffle member (7) mounted in said cooling chamber (42) for preventing mist generated by spraying cooling liquid from said spraying apparatus from back flowing into said catalyst container.

13. An apparatus as claimed in claim 11 or 12, which further comprises an exhaust gas processing apparatus (7;70) for removing an acidic gas contained in the exhaust gas exhausted from said cooling chamber.

14. An apparatus as claimed in claim 11 or 12, which further comprises an adsorbing tower (6) filled with an adsorbent for adsorbing undecomposed organohalogen compounds contained in exhaust gas which is exhausted from said cooling chamber (42) and conducted to said adsorbing chamber (6).

15. An apparatus as claimed in any one of claims 11 to 14, wherein said supply path comprises a heating apparatus (1) for heating the carrier gas, a steam path (23) for supplying steam is connected to said supply path downstream of said heating apparatus (1), and an organohalogen path (24) for supplying said organohalogen compound is connected to said supply path downstream of the connecting point of the steam path and the supply path.

Patentansprüche

1. Verfahren zur Behandlung einer halogenorganischen Verbindung mit folgenden Schritten:

 (i) Einmischen der halogenorganischen Verbindung in ein zuvor von einer Heizeinrichtung erwärmtes Träergas zur Erzeugung einer Mischung, die auch Dampf enthält,
 (ii) Zersetzen der halogenorganischen Verbindung durch Zuführen der Mischung zu einer Katalysatorschicht (24) unter Durchführung durch die Schicht in eine von der Oberseite der Katalysatorschicht abwärts gerichtete Richtung,
 (iii) Leiten von Abgas, das durch die Zersetzung der halogenorganischen Verbindung erzeugtes Zersetzungs gas enthält und aus der Katalysatorschicht austritt, in einen stromabwärts der Katalysatorschicht angeordneten Kühlbereich (42, 25),
 (iv) Kühlen des Abgases mit Kühlwasser, das in den Kühlbereich gesprüht wird oder mit Kühl Luft, die in den Kühlbereich eingeleitet wird, und

2. Verfahren nach Anspruch 1, wobei der Schritt (iii) das Leiten des Abgases in den Kühlbereich über einen gekrümmten Weg beinhaltet, der von einem zwischen der Katalysatorschicht (24) und dem Kühlbereich (42) angeordneten Drosselelement (7) zur Verfügung gestellt wird.

3. Verfahren nach Anspruch 1 oder 2, wobei die halogenorganische Verbindung dem Träergas zugegeben wird, nachdem dieses mit Dampf gemischt wurde.

4. Verfahren nach Anspruch 1 oder 2, wobei der Dampf mindestens teilweise in das Träergas eingebracht wird, indem ein Kraftstoff in dem Träergas in der genannten Heizeinrichtung verbrannt wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die halogenorganische Verbindung dem Träergas in flüssiger Form zugegeben wird.

6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Heiztemperatur des Träergases durch die Heizeinrichtung so gesteuert wird, daß die Temperatur des Träergases unter einer Temperatur zur mindestens teilweisen Zerstörung der halogenorganischen Verbindung liegt.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das Zersetzungsgas ein Chlor enthaltendes Gas beinhaltet und die Kühlung des Abgases sofort nach Freigabe von dem Katalysator (24) durchgeführt wird.

10. Verfahren nach Anspruch 8, wobei das mit saurem Gas reaktive Material in fester Form vorliegt.

12. Vorrichtung nach Anspruch 11, mit einem Drosselelement (7), das in der Kühlkammer (42) angebracht ist, um zu verhindern, daß durch das Sprühen von Kühlfüssigkeit aus der Sprühvorrichtung erzeugter Nebel zurück in den Katalysatorbehälter strömt.

15. Vorrichtung nach einem der Ansprüche 11 bis 14, wobei der Zuführweg eine Heizvorrichtung (1) zum Heizen des Trägergases enthält und mit ihm stromabwärts der Heizvorrichtung (1) ein Dampfweg (23) zur Zufuhr von Dampf und stromabwärts des Verbindungspunkts zwischen ihm und dem Dampfweg ein Halogenorganik-Weg (24) zur Zufuhr der halogenorganischen Verbindung verbunden ist.

Revendications

1. Procédé pour traiter un composé organohalogéné, comportant les étapes consistant à :
 (i) mélanger ledit composé organohalogéné dans un gaz porteur qui a été chauffé au préalable par un dispositif de chauffage pour produire un mélange qui contient également de la vapeur,
 (ii) décomposer ledit composé organohalogéné en introduisant ledit mélange dans une couche de catalyseur (24) pour passer à travers la couche dans une direction qui est dirigée vers le bas depuis le haut de la couche de catalyseur,
 (iii) amener un gaz d'échappement, contenant un gaz décomposé produit par la décomposition dudit composé organohalogéné, provenant de ladite couche de catalyseur dans une région de refroidissement (42 ; 25) située en aval de ladite couche de catalyseur,
 (iv) refroidir ledit gaz d'échappement à l'aide d'eau de refroidissement pulvérisée dans ladite région de refroidissement ou de l'air de refroidissement injecté dans la région de refroidissement, et
 (v) évacuer un gaz depuis ladite couche de catalyseur et ladite région de refroidissement par un dispositif d'échappement (11) installé à une position en aval de ladite région de refroidissement (42 ; 25).

2. Procédé selon la revendication 1, dans lequel l'étape (iii) comporte l'étape consistant à amener le gaz d'échappement dans ladite région de refroidissement via un trajet incurvé créé par un élément défecteur (7) situé entre ladite couche de catalyseur (24) et ladite région de refroidissement (42).

3. Procédé selon la revendication 1 ou 2, dans lequel ledit composé organohalogéné est ajouté audit gaz porteur
après que ledit gaz a été mélangé à de la vapeur.

4. Procédé selon la revendication 1 ou 2, dans lequel ladite vapeur est au moins partiellement introduite dans ledit gaz porteur en brûlant un combustible dudit gaz porteur dans ledit dispositif de chauffage.

5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel ledit composé organohalogéné est ajouté dans une condition liquide audit gaz porteur.

6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la température de chauffage du gaz porteur par le dispositif de chauffage est commandée de sorte que la température dudit gaz porteur est inférieure à une température pour une destruction au moins partielle dudit composé organohalogéné.

7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel lesdits gaz décomposés comportent un gaz contenant du chlore, et ledit refroidissement dudit gaz d'échappement est effectué immédiatement après sa libération depuis ladite couche de catalyseur (24).

8. Procédé pour traiter un composé organohalogéné selon l'une quelconque des revendications 1 à 7, comportant de plus l'ajout d'un matériau, qui est réactif avec un gaz acide contenu dans un gaz d'échappement libéré depuis ladite couche de catalyseur, audit gaz d'échappement après l'étape (iv).

9. Procédé selon la revendication 8, dans lequel ledit matériau qui est réactif avec ledit gaz acide est un liquide alcalin.

10. Procédé selon la revendication 8, dans lequel ledit matériau qui est réactif avec ledit gaz acide est sous forme solide.

11. Dispositif pour traiter des composés organohalogénés comportant un conteneur de catalyseur contenant une couche de catalyseur (24), un trajet d'alimentation (22) pour introduire un gaz porteur contenant un composé organohalogéné et de la vapeur dans ledit conteneur de catalyseur, une chambre de refroidissement (42 ; 25) pour recevoir un gaz d'échappement provenant de ladite chambre de catalyseur située en aval dudit conteneur de catalyseur, des moyens (40) pour pulvériser un liquide de refroidissement dans ladite chambre de refroidissement (40) ou des moyens (72) pour introduire de l'air de refroidissement dans ladite chambre de refroidissement (25) pour refroidir le gaz d'échappement contenant un gaz décomposé dudit composé organohalogéné évacué de ladite couche de catalyseur, et un dispositif d'échappement (11) en aval de ladite chambre de refroidissement (42) pour évacuer un gaz d'échappement depuis ladite chambre de catalyseur (24) et ladite chambre de refroidissement.

12. Dispositif selon la revendication 11, qui comporte de plus un élément déflecteur (7) monté dans ladite chambre de refroidissement (42) pour empêcher qu'une brume générée par pulvérisation d'un liquide de refroidissement depuis ledit dispositif de pulvérisation ne s'écoule en arrière dans ledit conteneur de catalyseur.

13. Dispositif selon la revendication 11 ou 12, qui comporte de plus un dispositif de traitement de gaz d'échappement (7 ; 70) pour éliminer un gaz acide contenu dans le gaz d'échappement évacué depuis ladite chambre de refroidissement.

14. Dispositif selon la revendication 11 ou 12, qui comporte de plus une tour d'adsorption (6) remplie d'un adsorbant destiné à adsorber des composés organohalogénés non-décomposés contenus dans un gaz d'échappement qui est évacué depuis ladite chambre de refroidissement (42) et amené dans ladite chambre d'adsorption (6).

15. Dispositif selon l'une quelconque des revendications 11 à 14, dans lequel ledit trajet d'alimentation comporte un dispositif de chauffage (1) pour chauffer le gaz porteur, un trajet de vapeur (23) pour introduire de la vapeur est connecté audit trajet d'alimentation en aval dudit dispositif de chauffage (1), et un trajet pour composé organohalogéné (24) pour introduire ledit composé organohalogéné est connecté audit trajet d'alimentation en aval du point de connexion du trajet de vapeur et du trajet d'alimentation.
FIG. 5