Date of publication and mention of the grant of the patent: 25.04.2007 Bulletin 2007/17

Application number: 96303608.2

Date of filing: 21.05.1996

Derivatives of monocyclic polyamines, their preparation, and their use as antiviral agents

Derivate monocyclischer Polyamine, ihre Herstellung und ihre Verwendung als antivirale Mittel

Dérivés de polyamines monocycliques, leur préparation et leur application comme agents antiviraux

Designated Contracting States:
AT BE CH DE DK ES FI FR GB IE LI LU NL PT SE

Priority: 06.06.1995 GB 9511357

Date of publication of application: 11.12.1996 Bulletin 1996/50

Proprietor: ANORMED INC.
Langley BC V2Y 1N5 (CA)

Inventors:
• Bridger, Gary James
 Bryn Mawr, PA 19010 (US)
• Padmanabhan, Screenivasan
 Exton, PA 19341 (US)
• Skerlj, Renato Tony
 Plainfield, NJ 07060 (US)
• Hernandez-Abad, Pedro Emilio
 Malvern, PA 19355 (US)
• Sant, Milind Prabhakar
 Woburn, MA 01801 (US)

Representative: McCall, John Douglas et al
W.P. THOMPSON & CO.
Coopers Building
Church Street
Liverpool L1 3AB (GB)

References cited:
WO-A-92/16494
WO-A-95/18808
WO-A-93/12096

• ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 38, no. 4, April 1994, pages 668-74, XP000196385 E. DE CLERCQ ET AL.: "Highly Potent and Selective Inhibition of Human Immunodeficiency Virus by the Bicyclam Derivative JM3100"
Description

The present invention concerns improved antiviral compounds. More especially, it concerns derivatives of monocyclic polyamines which have activity in standard tests against HIV-infected cells.

The disease known as Acquired Immune Deficiency Syndrome (AIDS) caused by infection with HIV has attracted immense research effort because of the effect of the disease on infected individuals, and the dangers of the disease spreading to a wider section of the population. In general, although various chemo-therapeutic treatments have been advocated, and some compounds have emerged as a potential basis for treatment, there is still a need for alternatives.

In particular, most treatments such as AZT have a high toxicity to cells, and it would be desirable to find compounds which are less toxic. In man, the development of resistance to AZT has been identified as an additional clinical problem.

WO-A-9312096 describes linked polyamide cyclic compounds of general formula V-R-A-R'-W where V and W are independently cyclic polyamine moieties having from 9 to 32 ring members and 3 to 8 amine nitrogens and having either one or more aromatic rings fused thereto or a heteratom other than nitrogen incorporated in the ring, A is an aliphatic or aromatic moiety and R and R' are each a linking chain, possess improved partition coefficients at biologically relevant pH compared to known compounds, and possess high anti-HIV activity.

We have found a group of compounds which show protective properties in in vitro screens of cells challenged with HIV-1 and/or HIV-2, and are therefore indicated as having potential for the treatment of AIDS and AIDS-Related Complex, and other viral and especially retroviral infections. Accordingly the present invention provides the compounds of general formula I, defined below, having activity against HIV. A further aspect of the invention provides a process for the preparation of compounds of general formula I. The invention further provides the use of the compounds of formula I in the manufacture of a medicament for the treatment of HIV-infected patients. Pharmaceutical compositions according to the invention comprise the compounds of formula I in combination or association with a pharmaceutically acceptable diluent or excipient, for the treatment of HIV-infected patients. Pharmaceutical compositions according to the invention comprise the compounds of formula I in combination or association with a pharmaceutically acceptable diluent or excipient, for the treatment of HIV-infected patients. The invention yet further provides a method of treatment of a HIV-infected patient, comprising administering to said patient an effective dose of a said compound. It is to be understood that treatment includes prophylactic treatment of patients at risk, in view of the protective properties observed in tests. The use of the compounds may also be stated as including a method of treating HIV-infected or HIV-challenged human cells to prevent or modulate the multiplication of the HIV, comprising administering to said cells an effective dose of a said compound.

Our USP 5021409 describes linked cyclic polyamines as being active against HIV-1 and -2 in in vitro tests. Our WO93/12096 describes selected linked polyamine compounds as having very considerable Selectivity Indices (SI), eg greater than 5-10 x 10^4, in tests against HIV-1 and -2. We had also described, in WO92/16494, certain "long chain antiviral compounds", as having antiviral activity. Such long chain compounds had a polyheteroalkyl chain of 9 to 32 members, optionally linked through a linking atom or group, attached to a cyclic polyamine. The single compound tested showed a modest SI of 13.

Accordingly, the present invention provides a macrocyclic compound of general formula I

V-CR^1R^2-Ar-CR^3R^4-N(R^5)-(CR^6R^7)x-R^8

wherein V is a cyclic polyamine system having a total of 9 to 24 members from 3 to 6 amine nitrogens spaced by two or more carbon atoms from each other, wherein said system may optionally comprise a pyridinylene or phenylene ring; R^1 to R^7 may be the same or different and are independently selected from hydrogen and straight, branched or cyclic alkyl with up to 6 C atoms;

R^8 is a pyridinyl, pyrimidyl, pyrazinyl, imidazolyl, thienyl, piperidinyl, pipazinyl, aminobenzyl or mercaptoan group, Ar is a phenylene ring;

x is 1 or 2;

and the acid addition salts and metal complexes thereof.

Preferably V is a 14- to 17-membered fused or unfused ring system, such as a cyclam system or a 4,7,10,17-tetraazacyclo[13.3.1]heptadeca-1(17),13,15-triene system or a derivative thereof, and especially a cyclam system or derivative thereof. The moiety V may be substituted at C or N non-linking atoms, suitably by hydroxyl, alkoxy, thiol, thioalkyl or any other atom or group which does not adversely affect the activity or toxicity of the compounds but may reduce the basicity of the amines, for example halogen, nitro, carboxy, carboxyamido, sulphinic acid or phosphate. Suitably the fused aromatic or heteroaromatic ring is phenyl, pyridine, pyrimidine, pyrazine, imidazole or thiazole. Preferably, the fused aromatic or heteroaromatic ring is phenyl or pyridine.
[0010] Preferably R₁ to R₇ are each hydrogen.

[0011] The invention also includes what may be termed as "pro-drugs", that is protected forms of the compounds, which release the compound after administration to a patient. For example, the compound may carry a protective group which is split off by hydrolysis in body fluids eg in the bloodstream, thus releasing active compound or are oxidised or reduced in body fluids to release the compound. A discussion of pro-drugs may be found in "Smith and Williams' Introduction to the Principles of Drug Design", H J Smith, Wright, Second Edition, London 1988.

[0012] Acid addition salts, for example hydrochlorides, and non-toxic labile metal complexes of compounds of formula I are also active compounds according to the present invention. Non-toxic in the present tense has to be considered with reference to the prognosis for the infected patient without treatment. Copper and zinc complexes are preferred although other metals such as nickel may be considered, whereas less labile metals such as cobalt and rhodium are less preferred because of likely lower selectivity.

[0013] Compounds of formula I are novel. Accordingly, a further aspect of the invention provides a process for the preparation of a compound of formula I which comprises the following steps:

 (i) nucleophilic attack by the cyclic polyamine V having a single unprotected amine nitrogen, all other amine nitrogen atoms being protected, on an excess of a compound of formula II

 \[Y-\text{CR}^1\text{R}^2\text{Ar}-\text{CR}^3\text{R}^4\text{Y} \]

 wherein R¹ to R⁴ and Ar are as hereinbefore defined, and each Y is an active substituent which can be displaced by the unprotected nitrogen of polyamine V and is preferably selected from Br, Cl, I, methane sulphonate, 4-toluene-sulphonate, trifluoromethane sulphonate.

 It is well within the capabilities and knowledge of the skilled synthetic chemist to protect the amine nitrogens of cyclic polyamines, and it is preferred to use substitution by methanesulphonyl and/or toluenesulphonyl and/or diethoxy-phosphonyl (see Bridger et al, J. Med. Chem. 1995, 38, 366-378; Bridger et al WO 93/12096).

 The protected polyamine V is firstly reacted with a 5- to 10-fold excess of a compound of formula II in a solvent such as acetonitrile or dimethylformamide, tetrahydrofuran or dioxane and in the presence of a base, for example sodium carbonate or potassium carbonate. The reaction generally proceeds at room temperature to elevated temperature to give a cyclic polyamine in which all amine nitrogens are protected. In general, a mixture of products will be obtained and we have found that the product can conveniently be purified by silica gel chromatography or crystallisation.

 (ii) Nucleophilic attack of a compound of formula III

 \[\text{R}^5\text{NH}-(\text{CR}^6\text{R}^7)_x\cdot\text{R}^8 \]

 wherein R⁵ to R⁸ and x are as hereinbefore defined on the product of the reaction described at (i) above, and subsequently de-protecting the amine nitrogens. The reaction with an excess of a compound of formula III is carried out under similar conditions to the reaction with the polyamine V.

[0014] The de-protection step is suitably carried out by re-fluxing the protected molecule in a mixture of aqueous HBr and acetic acid or concentrated sulphuric acid, or in the case of diethoxyphosphonyl in the presence of gaseous hydrogen chloride or gaseous hydrogen bromide in acetic acid.

[0015] As mentioned above, the compounds of the invention have activity against viral infections, especially retrovirus infections and specifically HIV. Accordingly a further aspect of the invention provides a compound of formula I for use in medicine. More specifically, there is provided the use of a compound of formula I in the manufacture of a medicament for the treatment of HIV-infected patients. In the alternative, there is provided a method of treating an HIV-infected patient comprising administering to said patient, a pharmaceutically effective amount of a compound of formula I. Although compounds of formula I could be administered as the raw material it is preferable to present them in the form of a pharmaceutical composition comprising a compound of formula I as active ingredient in admixture with a pharmaceutically acceptable diluent or carrier and optionally one or more other therapeutic ingredients, such compositions providing a further aspect of the invention.

[0016] In all aspects of the invention, it is understood that meso forms, enantiomers and resolved optically active forms of the compounds of formula I are also included. Also, it is to be considered within the invention, compounds of formula I diluted with non-toxic or other active substances.

[0017] The present invention will now be illustrated by the following preparative Examples.
General procedure A

1-[1-Methylene-4-(bromomethylene)phenylene]-4,8,11-tris(diethoxyphosphoryl)-1,4,8,11-tetraazacyclotetradecane.

[0018] To a stirred solution of 4,8,11-Tris(diethoxyphosphoryl)-1,4,8,11-tetraazacyclotetradecane (see Bridger et al. J Med. Chem. 1995, 38, 366-378) (6.1g, 0.01mol) and KO2CO3 (1.89g, 0.013mol) in CH3CN (150ml) was added α,α'-dibromo-p-xylene (13.2g, 0.05mol) and the reaction mixture stirred at 80°C for 1 hour. The solution was cooled to room temperature and the solvent removed under reduced pressure. The residue was partitioned between brine (50ml) and CH2Cl2 (100ml). The organic phase was separated, dried (Na2SO4) and concentrated to a minimum volume. The solid was filtered off and the solvent evaporated under reduced pressure to give the crude product as a pale yellow oil. Purification by column chromatography in silica gel (CH2Cl2:CH3OH, 25:1) gave 1-[1-methylene-4-(bromo-methylene)

General procedure B

[0019] Second alkylation of the bromobenzyl cyclam intermediate with an amine.

[0020] To a solution of the appropriate amine (5.0 equiv.) in dry CH2CN (5mL) containing a suspension of K2CO3 (1.5 equiv.) at 80°C was added dropwise with stirring a solution of 1-[1-methylene-4-(bromomethylene)phenylene]-4,8,11-tris(diethoxyphosphoryl)-1,4,8,11-tetraazacyclotetradecane (0.6mmol) in CH2CN (10ml) over 15-20 min. After stirring for a further 1 hour at 80°C the solution was concentrated to dryness and the residue was partitioned between CH2Cl2 and water. The organic layer was separated and washed with water (3x) then dried (MgSO4) and evaporated. The crude residue was purified by column chromatography on silica gel eluting with 5-15% MeOH/CH2Cl2 to afford a viscous oil.

General procedure C

[0022] To a stirred solution of the protected cyclam derivative from procedure B (0.1-0.5mmol) in acetic acid (3mL) containing a suspension of K2CO3 (1.5 equiv.) at 80°C was added dropwise with stirring a solution of 1-[1-methylene-4-(bromomethylene)phenylene]-4,8,11-tris(diethoxyphosphoryl)-1,4,8,11-tetraazacyclotetradecane (6.1g, 0.01mol) and K2CO3 (1.89g, 0.013mol) in CH3CN (5mL) containing a suspension of K2CO3 (10ml) over 15-20 min. After stirring for a further 1 hour at 80°C the solution was concentrated to dryness and the residue was partitioned between CH2Cl2 and water. The organic layer was separated and washed with water (3x) then dried (MgSO4) and evaporated. The crude residue was purified by column chromatography on silica gel eluting with 5-15% MeOH/CH2Cl2 to afford a viscous oil.

EXAMPLE 1

N-[1,4,8,11-Tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminomethyl)pyridine hexahydrobromide

[0024] Mp 200-205°C (dec); 1H NMR (D2O) δ 2.04 (m, 4H), 3.20-3.40 (m, 8H), 3.40-3.60 (m, 8H), 4.34 (s, 2H), 4.38 (s, 2H), 4.51 (s, 2H), 7.50 (m, 4H), 7.75 (t, 1H, J=6.6 Hz), 7.82 (d, 1H, J=7.9 Hz), 8.26 (t, 1H, J=7.9 Hz), 8.63 (d, 1H, J=5.3 Hz); 13C NMR (D2O) δ 18.30, 18.96, 37.04, 37.28, 37.40, 40.92, 41.13, 41.49, 44.26, 47.61, 48.01, 51.29, 58.88, 127.46, 127.75, 130.40, 131.05, 131.23, 131.47, 132.10, 132.44, 144.95, 145.81, 146.01; FAB MS m/z 493 (M+H6Br, 7), 491 (M+H6Br, 7), 411 (M+H, 100); Anal. (C24H38Br6N6HBr); Calc. C, 32.36; H, 4.98; N, 9.44; Br, 53.21. Found C, 32.20; H, 5.00; N, 9.30; Br, 53.10.

EXAMPLE 2

N-[1,4,8,11-Tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-N-methyl-2-(aminomethyl)pyridine hexahydrobromide hydrate

[0025] Mp 220-225°C (dec); 1H NMR (D2O) δ 2.06 (m, 4H), 2.76 (s, 3H), 3.20-3.65 (m, 16H), 4.47 (bs, 4H), 4.65 (s, 2H), 7.54 (bs, 4H), 7.80 (t, 1H), 7.87 (d, 1H), 8.28 (t, 1H), 8.68 (d, 1H); 13C NMR (D2O) δ 18.14, 18.75, 18.89, 36.74, 37.04, 37.15, 37.62, 40.38, 40.72, 40.91, 41.28, 44.05, 47.50, 56.98, 58.88, 60.28, 127.60, 128.86, 130.78, 130.96.
EXAMPLE 3

N-[1,4,8,11-Tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-4-(aminomethyl)pyridine hexahydrobromide

[0026] White solid: mp 201-204°C (dec); 1H NMR (D2O) δ 1.91 - 2.12 (m, 4H), 3.00 - 3.49 (m, 16H), 4.13 (s, 2H), 4.34 (s, 2H), 4.53 (s, 2H), 7.39 - 7.57 (m, 4H). 8.02 (d, 2H, J=6.3 Hz), 8.74 (d, 2H, J=6.3 Hz); 13C NMR (D2O) δ 18.26, 18.88, 36.94, 37.29, 37.36, 40.89, 41.06, 41.44, 44.21, 47.61, 49.17, 51.43, 59.02, 127.84, 130.21, 131.64, 132.15, 132.45, 142.19, 151.67; FAB MS m/z 493 (M+H81Br, 8), 491 (M+H79Br, 10), 411 (M+H, 83), 320 (37), 247 (58), 201 (100). Anal. (C25H38N6·6HBr). Calc. C, 32.17; H, 4.95; N, 9.34; Br, 53.50. Found C, 32.16; H, 5.03; N, 9.41; Br, 53.28.

EXAMPLE 4

N-[1,4,8,11-Tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-3-(aminomethyl)pyridine hexahydrobromide

[0027] White solid: mp 198-202°C (dec); 1H NMR (D2O) δ 1.83 - 2.07 (m, 4H), 2.96 - 3.47 (m, 16H), 4.11 (s, 2H), 4.32 (s, 2H). 4.49 (s, 2H), 7.38 - 7.56 (m, 4H). 8.04 (t, 1H, J=6.4 Hz), 8.63 (d, 1H, J=8.3 Hz), 8.76 (d, 1H, J=5.6 Hz), 8.86 (s, 1H); 13C NMR (D2O) δ 18.23, 18.87, 36.92, 37.29 (2C), 40.88, 41.05, 41.43, 44.17, 47.22, 47.60, 51.18, 59.04, 128.29, 130.01, 131.49, 132.14, 132.66 (2C), 142.55, 142.76, 148.98; FAB MS m/z 493 (M+H81Br, 7), 491 (M+H79Br, 6), 411 (M+H, 100), 320 (33), 247 (24).

Anal. (C24H38N6·6HBr). Calc. C, 32.17; H, 4.95; N, 9.34; Br, 53.50. Found C, 32.08; H, 5.02; N, 9.25; Br, 53.28.

EXAMPLE 5

N-[1,4,8,11-Tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminomethyl-5-methyl)pyrazine pentahydrobromide

[0028] White solid: mp 194-197°C (dec); 1H NMR (D2O) δ 1.93 - 2.12 (m, 4H), 2.42 (s, 3H), 3.25 (s, 8H), 3.48 (s, 8H), 4.28 (s, 2H), 4.30 (s, 2H), 4.33 (s, 2H), 7.44 (s, 4H), 8.33 (s, 1H), 8.46 (s, 1H); 13C NMR (D2O) δ 18.01, 18.72, 19.80, 36.66, 37.05, 37.13, 40.70, 40.89, 41.27, 43.99, 47.47, 48.14, 50.61, 59.06, 129.97, 131.43, 132.04, 132.99, 140.93, 144.98, 146.49, 153.51; FAB MS m/z 509 (M+H81Br, 17), 507 (M+H79Br, 15), 426 (M+H, 100), 320 (21), 247 (20).

Anal. (C24H39N7·5.5HBr). Calc. C, 33.10; H, 5.15; N, 11.26; Br, 50.47. Found C, 32.80; H, 5.41; N, 11.00; Br, 50.58.

EXAMPLE 6

N-[1,4,8,11-Tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminoethyl)pyridine hexahydrobromide

[0029] White solid: mp 195-198°C (dec); 1H NMR (D2O) δ 1.98 - 2.17 (m, 4H), 3.20 - 3.38 (m, 8H), 3.38 - 3.63 (m, 12H), 4.27 (s, 2H), 4.39 (s, 2H), 7.50 (s, 4H), 7.80 - 7.89 (m, 2H), 8.42 (m, 1H), 8.58 (d, 1H, J=5.8 Hz); 13C NMR (D2O) δ 18.51, 19.14, 29.85, 37.56 (3C), 41.21, 41.41, 41.82, 44.57, 45.27, 47.83, 51.10, 58.74, 126.35, 127.93, 130.66, 131.27, 131.99, 132.69, 141.89, 147.79, 150.91; FAB MS m/z 507 (M+H81Br, 40), 505 (M+H79Br, 34), 425 (M+H, 100).

Anal. (C25H40N6·6HBr). Calc. C, 32.99; H, 5.09; N, 9.23; Br, 52.67. Found C, 32.79; H, 5.34; N, 9.11; Br, 52.45.

EXAMPLE 7

N-[1,4,8,11-Tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminomethylthiophene pentahydrobromide

[0030] White solid: mp 245-248°C (dec); 1H NMR (D2O) δ 1.87 - 2.12 (m, 4H), 3.02 - 3.51 (m, 16H), 4.17 (s, 4H), 4.38 (s, 2H), 6.97 (t, 1H, J=3.9 Hz), 7.13 (d, 1H, J=3.1 Hz), 7.41 (s, 5H); 13C NMR (D2O) δ 18.80, 19.52, 38.03 (3C), 41.59 (2C), 42.21, 44.89 (2C), 48.15, 49.83, 58.52, 128.13, 129.12, 131.15, 131.47, 131.50, 131.90, 132.42, 132.87; FAB MS m/z 498 (M+H81Br, 11), 496 (M+H79Br, 9), 416 (M+H, 53), 218 (100), 201 (64).

Anal. (C23H37N5S·5HBr). Calc. C, 33.68; H, 5.16; N, 8.54; Br, 48.71. Found C, 33.85; H, 5.22; N, 8.50; Br, 48.52.
EXAMPLE 8

$N\{1,4,8,11\text{-Tetraazacyclotetradecanyl},1,4\text{-phenylenebis(methylene)}\}2\text{-\,(aminooethyl)}\text{mercaptan pentahydrobromide dihydrate}$

[0031] White solid: mp 234 - 236°C (dec); 1H NMR (D$_2$O) δ 1.75 - 2.05 (m, 4H), 2.75 - 3.45 (m, 20H), 4.05 (s, 2H), 4.15 (s, 2H), 7.35 (s, 4H). FAB MS m/z 462 (MH+1HBr, 15), 460 (MH+1HBr1, 15), 380 (M+H, 100), 300 (64), 279 (47), 239 (49).

Anal. (C$_{20}$H$_{37}$N$_5$S.5HBr.2H$_2$O.0.5HOAc) requires C, 29.67; H, 5.69; N, 8.24; Br, 46.99. Found C, 29.31; H, 5.72; N, 8.25; Br, 46.64.

EXAMPLE 9

$N\{1,4,8,11\text{-Tetraazacyclotetradecanyl},1,4\text{-phenylenebis(methylene)}\}2\text{-aminobenzylamine pentahydrobromide}$

[0032] White solid: mp 203-206°C (dec); 1H NMR (D$_2$O) δ 1.85 - 2.13 (m, 4H), 3.02 - 3.58 (m, 16H), 4.23 (s, 2H), 4.31 (s, 4H), 7.23 - 7.54 (m, 8H); 13C NMR (D$_2$O) δ 18.03, 19.29, 37.78, (3C), 41.37 (2C), 42.00, 44.82, 46.25, 47.96, 51.16, 58.68, 124.04, 124.40, 129.40, 130.75, 131.21 (2C), 131.88, 131.96, 132.46, 132.83; FAB MS m/z 507 (M+H1Br, 15), 505 (M+H1Br1, 18), 425 (M+H, 100), 320 (30), 201 (51).

Anal. (C$_{25}$H$_{40}$N$_6$.5HBr.0.5H$_2$O). Calc. C, 33.42; H, 5.19; N, 9.35; Br, 51.14. Found C, 33.69; H, 5.35; N, 9.00; Br, 51.13.

EXAMPLE 10

$N\{1,4,8,11\text{-Tetraazacyclotetradecanyl},1,4\text{-phenylenebis(methylene)}\}4\text{-aminobenzylamine hexahydrobromide}$

[0033] Yellow solid, mp = 120-125°C; 1H NMR (D$_2$O) δ 1.8 - 2.0 (m, 4H), 2.9 - 3.4 (m, 16H), 4.1 (s, 2H), 4.18 (s, 4H), 7.2 - 7.5 (m, 8H); 13C NMR (D$_2$O) δ 18.86, 19.57, 38.14, 41.76, 43.74, 45.14, 48.24, 50.14, 50.42, 51.49, 58.38, 124.13, 131.13, 131.30, 131.83, 131.92, 131.96, 132.67; FAB MS m/z 507 (MH+1HBr, 5), 505 (MH+1HBr1, 5), 425 (M+H, 45), 201 (47), 155 (75), 106 (100).

Anal. (C$_{25}$H$_{40}$N$_6$.6HBr.HOAc) requires C, 33.43; H, 5.19; N, 8.66; Br, 49.42; O, 3.30. Found C, 33.42; H, 5.49; N, 8.62; Br, 49.23.

EXAMPLE 11

$N\{1,4,8,11\text{-Tetraazacyclotetradecanyl},1,4\text{-phenylenebis(methylene)}\}4\text{-\,(aminooethyl)}\text{imidazole hexahydrobromide}$

[0034] Off white solid, mp = 135-140°C (dec); 1H NMR (D$_2$O) δ 1.75 (m, 2H), 1.90 (m, 2H), 2.70 - 3.27 (m, 20H), 3.77 (s, 2H), 4.14 (s, 2H), 7.18 (s, 1H), 7.25 (d, 2H, J=7.97 Hz), 7.37 (d, 2H, J=7.97 Hz), 8.48 (s, 1H); FAB MS m/z 496 (MH+1HBr, 5), 494 (MH+1HBr1, 5), 414 (M+H, 17), 201 (15).

Anal. (C$_{23}$H$_{39}$N$_7$.6HBr) requires C, 30.73; H, 5.04; N, 10.91; Br, 53.32. Found C, 30.39; H, 5.41; N, 10.41; Br, 53.66.

EXAMPLE 12

$N\{1,4,8,11\text{-Tetraazacyclotetradecanyl},1,4\text{-phenylenebis(methylene)}\}benzylamine pentahydrobromide$

[0035] Off white solid, mp = 245 - 250°C (dec); 1H NMR (D$_2$O) δ 1.9 - 2.1 (m, 4H), 3.2 - 3.6 (m, 16H), 4.12 (s, 2H), 4.15 (s, 2H), 4.36 (s, 2H), 7.30 (s, 5H), 7.41 (d, 2H, J=8.3 Hz), 7.46 (d, 2H, J=8.3 Hz); 13C NMR (D$_2$O) δ 18.43, 19.06, 37.29, 37.46, 37.63, 41.09, 41.32, 41.68, 44.46, 47.74, 50.18, 51.00, 58.79, 129.53, 129.97, 130.18, 130.35, 130.68, 131.18, 131.92, 133.14. FAB MS m/z 492 (MH+1HBr, 13), 490 (MH+1HBr1, 13), 410 (M+H, 100), 201 (36).

Anal. (C$_{25}$H$_{39}$N$_5$.5HBr) requires C, 36.88; H, 5.45; N, 8.60; Br, 49.07. Found C, 36.79; H, 5.56; N, 8.48; Br, 48.79.

[0036] The compounds of the invention were tested in a screen by the MTT method (J. Virol. Methods 120: 309 - 321 [1988]). MT-4 cells (2.5 x 104 / well) were challenged with HIV-1 (HTLV-III/B) or HIV-2 (LAV-2 ROD) at a concentration of 100 CCID$_{50}$ and incubated in the presence of various concentrations of the test compounds, which were added immediately after challenge with the virus. After 5 days culture at 37°C in a CO$_2$ incubator, the number of viable cells was assessed by the MTT (tetrazolium) method. Antiviral activity and cytotoxicity of the compounds are expressed in
the Table below as EC\textsubscript{50} (\(\mu\text{g/ml}\)) and CC\textsubscript{50} (\(\mu\text{g/ml}\)), respectively. The potential therapeutic usefulness was assessed by calculating a Selectivity Index (SI) corresponding to the ratio of CC\textsubscript{50} to EC\textsubscript{50}.

<table>
<thead>
<tr>
<th>TABLE 1 Anti-HIV activity data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

[0037] In this field of study, it is considered that any compound exhibiting a Selectivity Index of greater than 100 has the considerable potential for further study. HIV is one of the most challenging viruses to combat, and the results given above provide an indication of activity against other retroviruses and against other viruses in general.

[0038] The active compounds may be administered in the form of pharmaceutical composition formulated according to well known principles and incorporating the compound, preferably in unit dose form, in combination with a pharmaceutically acceptable diluent or excipient. Such compositions may be in the form of solutions or suspensions for injection, irrigation or be in capsule, tablet, dragee, or other solid composition or as a solution or suspension for oral administration or formulated into pessaries or suppositories or sustained release forms of any of the above for implantation. Suitable diluents, carriers, excipients and other components are well known. It may be desirable also to formulate a composition for topical administration such as an ointment or cream. The compounds of the invention may be used, in the form of a composition or alone.

[0039] The pharmaceutical compositions according to the invention may be formulated in unit dosages determined in accordance with conventional pharmacological methods, suitably to provide active compounds in the dosage range in humans of from 0.1 to 100mg/kg body weight per day, in a single dose or in a number of smaller doses. Preferred dosage ranges are 1 to 30mg/kg body weight per day iv or ip. Other active compounds may be used in the compositions or such active compounds or supplemental therapy may be included in a course of treatment.

Claims

1. A compound of the formula

\[
V-\text{CR}^1\text{R}^2-\text{Ar-}\text{CR}^3\text{R}^4-\text{N(R}^5\text{)}-(\text{CR}^6\text{R}^7\text{)}_x\text{R}^8
\]

wherein V is a cyclic polyamine system having a total of 9 to 24 members from 3 to 6 amine nitrogens spaced by two or more carbon atoms from each other, wherein said system may optionally comprise a pyridinylene or phenylene ring;

\(\text{R}^1\) to \(\text{R}^7\) may be the same or different and are independently selected from hydrogen and straight, branched or cyclic alkyl with up to 6 C atoms;

\(\text{R}^8\) is a pyridinyl, pyrimidyl, pyrazinyl, imidazolyl, thiienyl, piperidinyl, piperazinyl, aminobenzyl or mercaptan group;

\(\text{Ar}\) is a phenylene ring;

\(x\) is 1 or 2;

and the acid addition salts and metal complexes thereof.
2. A compound as claimed in claim 1, wherein V is a 14- to 17-membered ring system.

3. A compound as claimed in claim 1 wherein V is a 1, 4, 8, 11-tetraazacyclotetradecanyl system or a 4, 7, 10, 17-tetraazabicyclo[13.3.1]heptadeca-1(17), 13,15-tirene system.

4. A compound as claimed in claim 3, wherein V is a 1,4,8,11-tetraazacyclotetradecanyl system.

5. The compound of claim 3 which is

N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminomethyl)pyridine;

N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-N-methyl-2(aminomethyl)pyridine;

N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-4-(aminomethyl) pyridine;

N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-3-(aminomethyl) pyridine;

N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminomethyl) thiophene;

N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-4-(aminomethyl)imidazole; or

N-[7-(4,7,10,17-tetraazabicyclo[13.3.1]heptadeca-(17), 13,15-triienyl)-1,4-phenylenebis(methylene)]-2-(aminomethyl)pyridine.

6. N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-(2-(aminoethyl) mercaptan.

7. N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-(2-amino-methyl-5-methyl) pyrazine.

8. N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-benzylamine.

9. The compound of claim 5 which is N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminoethyl)pyridine.

10. N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-amino-benzylamine.

11. N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-4-amino benzylamine.

12. A process for the preparation of a compound of claim 1 which comprises

(i) nucleophilic attack by the cyclic polyamine V having a single unprotected amine nitrogen, all other amine nitrogen atoms being protected, on an excess of a compound of the formula

\[Y\text{-CR}^1\text{R}^2\text{-Ar}\text{-CR}^3\text{R}^4\text{Y}\]

Wherein R\(^1\) to R\(^9\) and Ar are as defined in claim 1 and each Y is an active substituent which can be displaced by the unprotected nitrogen of polyamine V,

(ii) followed by nucleophilic attack by a compound of the formula

\[R^5\text{NH} (CR^6R^7)^x\text{-R}^8\]

wherein R\(^5\) to R\(^8\) and x are as defined in claim 1, on the product of the reaction described at (i) above, and subsequently de-protecting the amine nitrogens.

13. A compound as defined in any one of claims 1 to 11 for use in medicine.

14. The use of a compound as defined in any one of claims 1 to 11 in the manufacture of a medicament for the treatment of HIV-infected patients.

15. A pharmaceutical composition comprising as active ingredient a compound according to any one of claims 1 to 11, in admixture with a pharmaceutically acceptable diluent or carrier and optionally one or more other therapeutic ingredients.

16. A composition according to claim 15, in unit dosage form.
Patentansprüche

1. Verbindung der Formel

\[V - CR_1^1 R^2 - Ar - CR_3^3 R^4 - N(R^5) - (CR_6^6 R^7)_x - R^8 \] (I)

worin \(V \) ein cyclisches Polyaminsystem mit insgesamt 9 bis 24 Gliedern, von 3 bis 6 Aminstickstoffen, die durch zwei oder mehr Kohlenstoffatome voneinander entfernt sind, ist, worin genanntes System gegebenenfalls einen Pyridinyl- oder Phenilenring umfassen kann;

\(R^1 \) bis \(R^7 \) gleich oder verschieden sein können und unabhängig aus Wasserstoff und geradkettigem, verzweigtem oder cyclischem Alkyl mit bis zu 6 C-Atomen ausgewählt sind;

\(R^8 \) eine Pyridinyl-, Pyrimidyl-, Pyrazinyl-, Imidazolyl-, Thiophenyl-, Piperidinyl-, Piperazinyl-, Aminobenzyl- oder Mercaptangruppe ist;

\(Ar \) ein Phenylenring ist;

\(x \) 1 oder 2 ist; und die Säureadditionssalze und Metallkomplexe davon.

2. Verbindung nach Anspruch 1, worin \(V \) ein 14- bis 17-gliedriges Ringsystem ist.

3. Verbindung nach Anspruch 1, worin \(V \) ein 1,4,8,11-Tetraazacyclotetradecanyl-System oder ein 4,7,10,17-Tetraazabicyclo[13.3.1]heptadeca-1(17),13,15-trien-System ist.

4. Verbindung nach Anspruch 3, worin \(V \) ein 1,4,8,11-Tetraazacyclotetradecanyl-System ist.

5. Verbindung von Anspruch 3, die Folgendes ist:

- \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-2\text{-(aminoethyl)}\text{pyridin}; \)
- \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-N\text{-methyl-2-(aminoethyl)}\text{pyridin}; \)
- \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-4\text{-(aminoethyl)}\text{pyridin}; \)
- \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-3\text{-(aminoethyl)}\text{pyridin}; \)
- \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-2\text{-(aminoethyl)}\text{pyridin}; \)
- \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-2\text{-(aminoethyl)}\text{imidazol}; \) oder
- \(N-[7-\text{[4,7,10,17\text{-Tetraazabicyclo}[13.3.1]heptadeca-(17),13,15-trien]-1,4\text{-phenylbis(methylen)}]}-2\text{-(aminoethyl)}\text{pyridin}. \)

6. \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-2\text{-(aminoethyl)}\text{mercaptan}. \)

7. \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-2\text{-(aminomethyl-5-methyl)pyrazin}. \)

8. \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-\text{benzylamin}. \)

9. Verbindung von Anspruch 5, die \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-2\text{-(aminomethyl)}\text{pyridin} \) ist.

10. \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-2\text{-(aminobenzylamin}. \)

11. \(N-[1,4,8,11\text{-Tetraazacyclotetradecanyl}-1,4\text{-phenylbis(methylen)}]-4\text{-aminobenzylamin}. \)

12. Verfahren zur Herstellung einer Verbindung von Anspruch 1, das Folgendes umfasst:

(i) nucleophilen Angriff durch das cyclische Polyamin \(V \) mit einem einzelnen ungeschützten Aminstickstoff, alle anderen Aminstickstoffatome sind geschützt, an einem Überschuss einer Verbindung der Formel

\[Y - CR_1^1 R^2 - Ar - CR_3^3 R^4 Y \]

worin \(R^1 \) bis \(R^9 \) und \(Ar \) wie in Anspruch 1 definiert sind und jedes \(Y \) ein aktiver Substituent ist, der durch den
ungeschützten Stickstoff vom Polyamin V ersetzt werden kann,
(ii) gefolgt vom nucleophilen Angriff durch eine Verbindung der Formel

\[\text{R}^5 \text{NH} (\text{CR}^6 \text{R}^7)_x \text{-R}^8 \]

worin \(\text{R}^5 \) bis \(\text{R}^8 \) und \(x \) wie in Anspruch 1 definiert sind, an dem Produkt der vorstehenden bei (i) beschriebenen Reaktion, und anschließend Entschützen der Aminstickstoffe.

13. Verbindung, wie in einem der Ansprüche 1 bis 11 definiert, zur Verwendung in der Medizin.
15. Pharmazeutische Zusammensetzung, die als Wirkstoff eine Verbindung nach einem der Ansprüche 1 bis 11 in Beimischung mit einem pharmazeutisch verträglichen Verdünnungsmittel oder Träger und gegebenenfalls einem oder mehreren anderen therapeutischen Bestandteilen umfasst.

Revendications

1. Composé de formule

\[\text{V-CR}^1 \text{R}^2 \text{-Ar-CR}^3 \text{R}^4 \text{-N} (\text{R}^5 \text{R}^6 \text{R}^7)_x \text{-R}^8 \]
\((I)\)

dans laquelle V est un système polyamine cyclique ayant au total 9 à 24 chaînons renfermant de 3 à 6 atomes d’azote d’amine espacés les uns des autres de deux atomes de carbone ou plus, ledit système pouvant éventuellement comprendre un cycle pyridinylène ou phénylène ;
\(\text{R}^1 \) à \(\text{R}^7 \) peuvent être identiques ou différents et sont choisis indépendamment parmi un atome d’hydrogène et un groupement alkyle linéaire, ramifié ou cyclique ayant jusqu’à 6 atomes de C ;
\(\text{R}^8 \) est un groupement pyridinyle, pyrimidyle, pyrazinyle, thiénoyle, thiényle, pipéridinyle, pipérazinyle, aminobenzyle ou mercaptan ;
Ar est un cycle phénylène ;
x vaut 1 ou 2 ;
et les sels d’addition d’acide et les complexes métalliques de celui-ci.

2. Composé selon la revendication 1, dans laquelle V est un système de cycle à 14 à 17 chaînons.
3. Composé selon la revendication 1, dans laquelle V est un système 1,4,8,11-tétraazacyclotétra-décanyl ou un système 4,7,10,17-tétraazabicyclo[13.3.1]heptadéca-(17),13,15-triène.
4. Composé selon la revendication 3, dans laquelle V est un système 1,4,8,11-tétraazacyclotétra-décanyl.
5. Composé selon la revendication 3, le composé étant :

la N-[1,4,8,11-tétraazacyclotétra-décanyl-1,4-phénylènebis(méthylène)]-2-(aminométhyl)pyridine ;
la N-[1,4,8,11-tétraazacyclotétra-décanyl-1,4-phénylènebis(méthylène)]-N-méthyl-2-(aminométhyl)pyridine ;
la N-[1,4,8,11-tétraazacyclotétra-décanyl-1,4-phénylènebis(méthylène)]-4-(aminométhyl)pyridine ;
la N-[1,4,8,11-tétraazacyclotétra-décanyl-1,4-phénylènebis(méthylène)]-3-(aminométhyl)pyridine ;
la N-[1,4,8,11-tétraazacyclotétra-décanyl-1,4-phénylènebis(méthylène)]-2-(aminoéthyl)pyridine ;
le N-[1,4,8,11-tétraazacyclotétra-décanyl-1,4-phénylènebis(méthylène)]-2-(aminométhyl)thiophène ;
le N-[1,4,8,11-tétraazacyclotétra-décanyl-1,4-phénylènebis(méthylène)]-4-(aminoéthyl)imidazole ; ou
la N-[7-(4,7,10,17-tétraazabicyclo[13.3.1]heptadéca-(17),13,15-triényl)-1,4-phénylènebis(méthylène)]-2-(aminométhyl)pyridine.

6. N-[1,4,8,11-tétraazacyclotétradécanyl-1,4-phénylènebis(méthylène)]-2-(aminoéthyl)mercaptan.
7. N-[1,4,8,11-tétraazacyclotradécanyl-1,4-phénylènebis(méthylène)]-2-(aminométhyl-5-méthyl)pyrazine.

8. N-[1,4,8,11-tétraazacyclotradécanyl-1,4-phénylènebis(méthylène)]-benzylamine.

9. Composé selon la revendication 5, le composé étant la N-[1,4,8,11-tétraazacyclotétra-décanyl-1,4-phénylènebis(méthylène)]-2-(aminométhyl)pyridine.

10. N-[1,4,8,11-tétraazacyclotradécanyl-1,4-phénylènebis(méthylène)]-2-aminobenzylamine.

11. N-[1,4,8,11-tétraazacyclotradécanyl-1,4-phénylènebis(méthylène)]-4-aminobenzylamine.

12. Procédé de préparation d’un composé selon la revendication 1, qui comprend :

 (i) l’attaque nucléophile par la polyamine cyclique V ayant un atome d’azote d’amine non protégé unique, l’ensemble des autres atomes d’azote d’amine étant protégés, sur un excès d’un composé de formule

 \[Y \cdot CR^1 R^2 \cdot Ar \cdot CR^3 R^4 Y \]

 dans laquelle R^1 à R^9 et Ar sont tels que définis dans la revendication 1, et chaque Y est un substituant actif qui peut être déplacé par l’atome d’azote non protégé de la polyamine V,

 (ii) suivie de l’attaque nucléophile par un composé de formule

 \[R^5 NH (CR^6 R^7)_x \cdot R^8 \]

 dans laquelle R^5 à R^8 et x sont tels que définis dans la revendication 1, sur le produit de la réaction décrite en (i) ci-dessus, et de la déprotection subséquente des atomes d’azote d’amine.

13. Composé selon l’une quelconque des revendications 1 à 11, destiné à être utilisé en médecine.

14. Utilisation d’un composé selon l’une quelconque des revendications 1 à 11, pour la fabrication d’un médicament destiné au traitement de patients infectés par le VIH.

15. Composition pharmaceutique comprenant, en tant qu’ingrédient actif, un composé selon l’une quelconque des revendications 1 à 11, en mélange avec un diluant ou un support pharmaceutiquement acceptable, et éventuellement un ou plusieurs autres ingrédients thérapeutiques.

16. Composition selon la revendication 15, sous forme galénique unitaire.