EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 28.03.2001 Bulletin 2001/13

Application number: 96109004.0

Date of filing: 05.06.1996

Invention:
Injection molding machine with associated securing/clamping assembly and related control system.
Spritzgiessmaschine mit zugehörigem Befestigungs-Spannzusammenbau und entsprechendes Steuersystem.
Machine à mouler par injection avec assemblage de fixation/serrage associé et système de contrôle s’y rapportant.

Designated Contracting States:
AT CH DE FR GB IT LI

Priority:
07.06.1995 US 486600
07.06.1995 US 482870
07.06.1995 US 482869
02.01.1996 US 582434

Date of publication of application: 11.12.1996 Bulletin 1996/50

Divisional application:
97112831.9 / 0 841 143
981120975.2 / 0 904 918

Proprietor: HUSKY INJECTION MOLDING SYSTEMS LTD.
Bolton Ontario L7E 5S5 (CA)

Inventors:
Glaesener, Pierre
7780 Bissen (LU)
Choi, Christopher W.M.
Richmond Hill, Ontario, L4B 3Z9 (CA)
Kestle, Martin Richard
Everett Ontario L0M 1JO (CA)

Representative: Weiss, Peter, Dr. rer. nat.
Dr. Weiss, Weiss & Brecht
Zeppelinstrasse 4
78234 Engen (DE)

References cited:
EP-A- 0 438 721
FR-A- 2 390 271
US-A- 2 976 569
WO-A-95/08428
GB-A- 2 064 415

Remarks:
Divisional application 97112831.9 filed on 25/07/97.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention is directed to a securing/clamping system according to the first part of claim 1 and especially to injection molding machines using tie bar clamping units, and more particularly, to a control system for controlling the clamp-up and mold break operations of the tie bar clamping units. The prior art includes, many injection molding machines which use tie bar clamping units for positioning a platen for the application of clamp-up forces. Control systems using hydraulic fluid, pressurized air and electric motors in combination with numerous switches and typically a controller unit are used to control both the positioning of the platens and the application and removal of clamp-up force for acquiring mold clamp-up and mold break.

JP-61261-017 discloses a clamping mechanism for injection molding machines. The purpose of the control system therein is to maintain a parallel parting line between the molds by sensing the distance traveled by each clamping cylinder of each tie bar and maintaining the distances substantially equal. Accordingly, parallelism of the parting line between the molds can be maintained when the injection pressure of molten resin is uneven within the mold.

US-A 4,832,884 discloses a method for measuring and controlling the closing force of a plastic injection molding machine. Accordingly, for an injection molding machine, a closing force is measured for a predetermined number of operation cycles. A mean value is calculated from the measurements and if the mean value is within a predetermined tolerance, no control intervention takes place. However, if the mean value is outside the tolerance but within a zone limited by alarm units, control intervention takes place by stepwise changing the installed height of the mold until the actual value measured for closing force after each operating cycle is within the tolerance given. In this method and system, a toggle joint system serves to generate the closing force on the first and second mold parts. In this case, the force is measured and if the force is within a tolerance zone, the spacing between the first and second mold parts is altered to less than or no increase the old force.

US-A 4,966,738 discloses a method for mold clamping force adjustment. Accordingly, in this method, a mold touch position is detected, at which the mold halves of a mold contact each other. The mold temperature is detected by means of thermocouples attached to the mold halves. The mold thickness is obtained based on the position where a movable platen and a stationary platen of the injection molding machine contact each other. After a molding operation is started, the mold temperature is detected and the amount of change in mold thickness during a period between a preceding cycle and a current cycle is calculated based on the change of mold temperature, the mold thickness, and the thermal expansion coefficient of the mold. A mold touch position for a current cycle is obtained based on the calculated value. Accordingly, when the mold is clamped in the current cycle, the movable platen is moved from the mold touch position toward the stationary platen by a predetermined amount to produce a predetermined mold clamping force. For this method, the measurements and adjustments are directed primarily to the mold position and not to the position of the clamping units. A clamping unit is a singular one which functions to force the movable platen against the stationary platen. That is, no tie bar clamping units are used internal to any of the platens for producing the clamp-up force.

US-A-5,147,661 discloses a mold aligning device for a compression molding machine. The mold aligning device includes a plurality of mold position adjusting cylinder actuators disposed on a bed wherein position detectors are associated with the mold positioning adjusting cylinder actuators to detect the strokes thereof. The hydraulic source for driving the mold position adjusting cylinder actuators and control unit for controlling the strokes of the piston rods of the actuators with reference to zero points of the piston rods of the actuators, is determined beforehand. The zero points are decided by placing the upper mold in close contact with the lower mold and extending the piston rods of the actuators so that the piston rods are pressed against the lower surface of a slide block. The strokes of the piston rods are controlled during a compression-molding operation so that the upper mold is maintained precisely in parallel with the lower mold. This device is directed to pressure molding. The cylinder actuators are not positioned within a movable molten platen, and the actuators do not clamp onto tie bars. The main purpose of the machine is to maintain parallelism between the upper and lower molds by the actuators placing direct pressure on the upper mold supporting surface for maintaining the same parallel to the lower mold.

US-A-5,338,171 discloses a die-clamping apparatus with an aligning device. The apparatus includes a stationary die plate for holding a stationary die, a movable die plate for holding a movable die, a hydraulic cylinder for moving the movable die plate forwardly and rearwardly with respect to the stationary die plate, and a tie bar for clamping by a fastening device located in the movable die plate. One or more alignment devices are provided so as to join the movable die and the stationary die in such a manner that primary alignment can be performed. The molding apparatus can be provided with a guide pin for secondarily aligning the movable die with respect to the stationary die when the stationary die and the movable die have been placed at predetermined positions. Four die clamping cylinders are provided at the corners of the stationary die plate so as to apply a clamping force to the stationary and movable dies after the fastening device has fastened to the tie bar. For this device, the tie bar fastener and clamping units, while being located on the tie bars, one adjacent the movable platen and one adjacent the stationary platen, are separate devices adding to the complexity of the machine.
US-A-5,370,518 discloses an apparatus for injection and compression molding. The apparatus includes and injection device and a compression molding device wherein the compression molding device includes a stationary die plate for holding a stationary die, a movable die plate for holding a movable die, means for rapidly extending and retracting the movable die plate relative to the stationary die plate and means for locking the movable die plate to the tie bars at a position where the movable die plate approaches the stationary die plate. Means for fastening the dies after the movable die plate is locked to the tie bars is also provided. An injection device for feeding a molten plastic material into a mold cavity between the stationary die and the movable die initiates feeding of the molten plastic material into the mold cavity when the stationary die and movable die are parted from each other by a predetermined distance. The plastic material is compressed and drawn while the movable die is moved towards the stationary die after a predetermined quantity of molten plastic material has been fed into the mold cavity. The apparatus includes a device in a movable die plate for clamping onto the tie bars. However, the device does not include a combined means for providing the clamping force between the platens and fastening to the tie bars, as the clamp force is provided by separate die fastening cylinders which are positioned on the tie bars but separate from the fasteners.

A securing/clamping system of the above mentioned art is shown in the GB-A-2 064 415. There is shown an injection molding machine, having a movable mold mounting platens and a fixed mold mounting platen. The movable platen is moved into the closure position by means of pressure cylinders. Locking being effected simultaneously with the traverse stroke into the closure position. During the traverse stroke into the closure position, when the end of each of four columns attached to the movable platen abuts a cover of a clamping bush, a hydraulic locking cylinder is pressurized after the displacement of the opening piston inside a cylinder has displaced working fluid in the direction of the locking cylinder. On completion of the locking stroke the mold closure stroke is caused by a cam, attached to the position rod of the locking cylinder, actuating a switch so that the pressure chamber of the closure cylinder is pressurized. For the removal of the molding the opening cylinder and the locking cylinder are simultaneously actuated.

The object of the present invention is to overcome the shortcomings of the devices discussed above, by the provision of a system according to claim 1.

SUMMARY OF THE INVENTION

The primary object of this invention is to provide a control system for use in controlling tie bar clamping mechanisms for injection molding machines.

Another object of this invention is to provide a control system for use with tie bar clamping mechanisms for an injection molding machine, which tie bar mechanisms function to engage tie bars, provide clamp-up forces, and also to provide mold break forces.

Still another object of this invention is to provide a control system which is operative with tie bar clamping mechanisms for placing the same in the proper adjustable starting position after each molding operation so as to consistently allow for sufficient stroke for mold clamp-up and mold break.

Yet another object of this invention is to provide a control system which is operative with tie bar clamping mechanisms for adjusting starting positions of the mechanisms for accommodating different size molds and respective shut heights.

The objects and advantages disclosed herein are achieved by the system according to the second part of claim 1. The system is a securing/clamping system for use with platens of a molding machine. The system comprises tie bars for connecting the platens; a device for positioning one of the platens on the tie bars connecting the platens and relative another of the platens; and a securing/clamping mechanism for forcibly engaging the one of the platens with the another of the platens and on the tie bars, for sustaining forceful engagement of one of the platens with the another of the platens and the tie bars, and for breaking the one of the platens from the another of the platens and the tie bars.

The details of the present invention are set out in the following description and drawings wherein like reference characters depict like elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified overhead view of a tandem injection molding machine having securing/clamping assemblies in accordance with the principles of the present invention;

FIG. 2 is an elevational view of the tandem injection molding machine shown in FIG. 1;

FIG. 3A is detailed cross-sectional view of a securing/clamping assembly for use with the injection molding machine according to the principles of the present invention, showing engaged teeth in the upper half and disengaged teeth in the lower half, taken along line 3A-3A of FIGS. 6A and 6B;
FIG. 3B is a partially cross-sectional end view of a securing/clamping assembly used with the injection molding machine according to the principles of the present invention, taken along line 3B-3B of FIG. 3A; FIG. 4 is an end view of the injection molding machine shown in FIG. 1 in accordance with the principles of the present invention and showing the securing/clamping assemblies and rotational mechanism therefor; FIG. 5 is an elevational view of a single mold injection molding machine in accordance with the principles of the present invention; FIG. 6A is an enlarged view of the rotational mechanism shown in FIG. 4 in the disengaged position; FIG. 6B is an enlarged view of the rotational mechanism shown in FIG. 4 in the engaged position; FIG. 7 is a schematic diagram of a control circuit system which is operational to control the clamp-up and mold break activities of the injection molding machine of FIGS. 1-6B, as well as resetting the positions of the securing/clamping assemblies in accordance with the principles of the present invention; FIG. 8A is a partial schematic view of the movable platen, securing/clamping assembly and stationary platen identifying the positions of these elements used in calculations by a controller, and in accordance with the principles of the present invention; and FIG. 8B is a partial schematic view of the movable platen, securing/clamping assembly and stationary platen identifying position variables used in calculating an adjustable starting position in accordance with the principles of the present invention.

**DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT**

[0017] Referring now to the drawings in detail, there is shown in FIG. 1, a simplified top view of a tandem injection molding machine designed in accordance with the principles of the present invention and designated generally as 10. Machine 10 generally includes a fixed center platen 12, a movable end platen 14, a movable end platen 16, an injection unit 18, tie bars 20a-2d (20c and 20d shown in FIGs. 4), 21a-21d (21c and 21d not shown) and 23a-23d (23c and 23d not shown) for guiding the movable platens and securing/clamping assemblies 22a-22d (22c and 22d shown in FIG. 4).

[0018] Center platen 12 is fixed to a base and movable end platens 14 and 16 are movable away from and toward center platen 12 via positioning cylinders 25 and 27, respectively, as shown in FIG. 2. Center platen 12 includes a molding side 24 having a first stationary mold half 26 and a molding side 28 including a second stationary mold half 30. In addition, center stationary platen 12 includes a first hot runner 32 for directing melt to first stationary mold half 26 and a second hot runner 34 for directing melt to the second stationary mold half 30. Locking flanges 36a and 36b extend from the side of the fixed center platen for alternating engagement with injection unit 18. Alternatively, a single fixed connection could be used with a distribution valve to feed resin to either side of the center platen and respective mold. Movable platens 14 and 16 each include a movable mold half 29 and 31, respectively, for forming molds upon closing with stationary mold halves 26 and 30, respectively.

[0019] Referring to FIG. 1, and FIG. 2 showing an elevational view of machine 10 shown in FIG. 1, tie bars 20a-2d (20c not shown) extend from fixed center platen 12 toward movable end platen 14 and four tie bars 21a-21d (21d not shown) extend from fixed center platen 12 toward movable end platen 16. Tie bars 20a-20d and 21a-21d are arranged at the corners of the fixed center platen 12 such that when the mold is closed, they extend through securing/clamping assemblies 22a-22d (22c not shown) and 23a-23d (23d not shown), respectively, carried by, or within the movable end platens 14 and 16, respectively. The tie bars are preferably stationary while the movable platens move relative thereto and are supported on guide shoes, shoe 23a shown in FIG. 3A.

[0020] Each of end platens 14 and 16 include four bores shown by dotted lines in FIGs. 1 and 2, 35a-35d (35c not shown) and 37a-37d (37d not shown), respectively, in which clamping and securing assemblies 22a-22d and 23a-23d, respectively, extend. Movable platen 14 and 16 preferably include fasteners, shown in FIG. 4, on the outwardly facing surface thereof for the securement of the securing/clamping assemblies, respectively.

[0021] The securing/clamping assemblies function to both grip or engage the tie bars and apply pressure to the mold halves during mold injection. Accordingly, from a general standpoint, each of the securing/clamping assemblies 22a-22d and 23a-23d include a mechanism for securely and positively engaging the tie bar, wherein the mechanism is further capable of conveying pressure to the platens for forcing the mold halves together during injection molding. Preferably, each securing/clamping assembly is formed from a body member having a structure which is movable as a single unit for securing with the tie bars and applying clamping pressure between the platens.

[0022] All of the securing/clamping assemblies, bores, and the tie bars are substantially the same and accordingly, only one securing/clamping assembly 22a, bore 35a and tie bar 20a are described in detail along with their associated elements, unless specifically provided, it being understood that the description applies equally to securing/clamping assemblies 22b-22d, bores 35b-35d and tie bars 20b-20d and associated elements.

[0023] In a particular embodiment of the securing/clamping assemblies, securing/clamping assembly 22a is mounted on the outwardly facing side of movable end platen 14 and within bore 35a as shown in FIGS. 1 and 4, and as discussed above. Referring to FIGS. 3A and 3B, in order for the securing/clamping assembly 22a of platen 14 to function with tie
bar 20a, tie bar 20a includes an elongated end section having a plurality of spaced protrusions in the form of teeth 38a separated by longitudinally extending outer slots 40a, as shown in FIG. 4 and in more detail in FIG. 6A for the bar 20d. Accordingly, at the end of tie bar 20a is a toothed outer surface, as shown in FIG. 3A. The toothed outer surface of tie bar 20a is in the form of longitudinal outer strips of teeth 39a extending in the axial direction of the tie bar, wherein the teeth 38a are preferably aligned in a radial direction on the tie bar and separated by a space in the axial direction. Each of the strips of teeth such as strips of teeth 39a is radially separated from another strip of teeth via an outer axially extending slot, such as outer slots 40a as shown in FIG. 4. Outer strips of teeth 39a and slots 40a of tie bar 20a are adapted to engage and align, respectively, with inner teeth and grooves of securing/clamping assembly 22a, discussed below, in order to cause a locking engagement with the bar 20a.

Securing/clamping assembly 22a is positioned in bore 35a and is secured therein via retaining ring 41a and fasteners 42a, as shown in FIG. 3A. Securing/clamping assembly 22a is comprised of a member in the form of a piston 44a adapted to be positioned in bore 35a and coaxially relative to a tie bar 20a, as shown in FIGS. 3A and 3B. Piston 44a includes an outer surface 46a and an inner surface with axially extending teeth 48a separated by spaces in the axial direction, which are adapted to engage teeth 38a of the strips of teeth 39a of tie bars 20a. A slight axial clearance is provided between the teeth 38a of tie bars 20a and the inner teeth 48a of toothed piston 44a to allow for relative movement and position error adjustment during engagement of the teeth.

In FIG. 3A, the top half of the figure shows locking engagement of teeth 38a of tie bar 20a with inner teeth 48a of piston 44a, and the clearance, represented by dotted lines in FIG. 4, while the bottom half shows non-engagement. Inner teeth 48a are included in a plurality of equally radially spaced and axially extending inner strips of teeth, such as 49a, which are radially separated from each other by inner slots 51a, as shown in FIG. 6A and axially separated by a space.

In order to achieve relative motion between securing/clamping assembly 22a and tie bar 20a, outer strips of teeth 39a of tie bar 20a are less in radial width than inner slots 51a of piston 44a and outer slots 40a of tie bar 20a are greater in radial width than inner strips of teeth 49a of piston 44a, thus allowing sufficient space for axial movement therebetween. During engagement or disengagement of strips of teeth 39a with strips of teeth 49a, teeth 38a do not extend into the entire depth of the spaces between inner teeth 48a or slots 51a, respectively, thereby leaving a clearance between the teeth and piston bore. A clearance also preferably exists between teeth 48a and the innermost surfaces of tie bar 20a, i.e. the surfaces defined by the spaces between teeth 38a or the surface of slots 40a.

Outer surface 46a of piston 44a has a stepped shape preferably including a base portion 50a having a wider diameter than a neck portion 52a. Bore 35a is shaped to closely receive piston 44a at the base and neck portion. Accordingly, bore 35a has a smaller bore portion 54a having a diameter only slightly greater than the diameter of neck portion 52a and larger bore portion 56a having a diameter only slightly greater than the diameter of base portion 50a of piston 44a. Smaller bore portion 54a and larger bore portion 56a are circular in shape and are separated by an intermediate bore portion 58a having a hemispherical, tapered, stepped or other type of shape, the choice of which is not critical. Intermediate bore portion 58a begins at smaller bore portion 54a, expanding outwardly to its maximum diameter just prior to larger bore portion 56a. The maximum diameter of intermediate bore portion 58a is less than the outside diameter of larger bore portion 56a, and base portion 50a of piston 44a. Accordingly, a face 60a is formed between intermediate bore portion 58a and larger bore portion 56a against which axially transverse surface 62a of piston 44a can abut.

Referring still to FIGS. 3A and 3B, seals 64a are provided between smaller bore portion 54a and neck portion 52a and seal 69a is provided between larger bore portion 56a and base portion 50a of piston 44a. Intermediate bore portion 58a is accordingly greater in diameter than the transitional area 59a between base portion 50a and neck portion 52a, defined in part by axially transverse surface 62a, of piston 44a. Accordingly, free space 66a is provided between bore 35a and piston 44a in the vicinity of the intermediate bore portion 58a. This space 66a is appropriately sealed via seals 64a and 69a, for the introduction of pressurized air, hydraulic or other fluid in order to provide a clamping pressure against surface 62a of piston 44a for pressing the movable platen 14 against the fixed center platen 12 during injection molding. Additional seals 63a are preferably provided between retaining ring 41a and piston 44a. Clamping pressure is released by releasing hydraulic pressure from space 66a and applying hydraulic fluid under pressure in cavity 65a against surface 67a of piston 44a. Before pressure is applied in space 66a against surface 62a so as to force movable platen 14 against the fixed center platen 12, inner strips of teeth 49a of piston 44a should first be engaged with outer strips of teeth 39a of tie bar 20a. Such locking engagement, and disengagement, of inner strips 49a with outer strips of teeth 39a is accomplished via rotational mechanism 68, shown in FIG. 4.

Rotational mechanism 68 is used for rotating securing/clamping assemblies 22a-22d and is substantially the same as the rotational mechanism (not shown) used with securing/clamping assemblies 23a-23d. Accordingly, only rotational mechanism 68 is described in detail, it being understood that the description applies equally to the rotational mechanism used with securing/clamping assemblies 23a-23d.

As shown in the end view of FIG. 4 where securing/clamping assemblies 22a-22d are shown positioned in movable platen 14, rotational mechanism 68 is preferably in the form of a linkage assembly which extends between...
5 and is connected to all four securing/clamping assemblies 22a-22d on the movable end platen 14. Rotational mechanism 68 specifically connects securing/clamping assemblies 22a and 22b and securing/clamping assemblies 22c and 22d. The linkage assembly of rotational mechanism 68 includes one or more, preferably a pair, of piston/cylinder mechanisms 70 and 71 attached to bracket 72 between two of the securing/clamping assemblies, i.e. securing assemblies 22a and 22c.

[0031] Both piston/cylinder mechanisms 70 and 71 and associated linkage are substantially the same and according only one piston/cylinder assembly 70 and associated linkage will be described in detail, it being understood that the description applies equally to assembly piston/cylinder assembly 71 wherein assembly 71 is substantially the mirror image of assembly 70.

[0032] The non-moving end of piston/cylinder assembly 70 is pivotally attached to bracket 72 and piston rod end 73 of piston/cylinder assembly 70 extends toward securing/clamping assemblies 22a-22b.

[0033] Piston rod 73 extends from piston/cylinder assembly 70 and is attached via a bearing assembly 76 to the end surface 77a of piston 44a. Linkage arm 80 is attached to bearing assembly 76 which pivots about stud 78 fastened to end surface 77a. Linkage arm 80 traverses a portion of end surface 77a of piston 44a and is connected at another stud 82 on end surface 77a. Studs 78 and 82 are preferably spaced from each other on the end surface 77a of piston 44a, approximately 90°. Stud 78 is preferably positioned on the outer side 83 of the vertical centerline of securing/clamping assembly 22a. A second linkage arm 84 extends from stud 82 which connects securing/clamping assemblies 22a and 22b and is attached to the end surface 77b of piston 44b. Linkage arm 84 is pivotally attached to securing/clamping assembly 22b at a stud 86, wherein stud 86 is positioned on securing/clamping assembly 22b adjacent the outer side 87 of the vertical centerline of securing/clamping assembly 22b.

[0034] The dotted lines in FIG. 4 indicate movement of rotational mechanism 68 upon the actuation of piston/cylinder assemblies 70 and 71. The solid lines show the pistons in the unextended position with the inner strips of teeth 49a-49d of the pistons 44a-44d being unengaged with outer strips of teeth 39a-39d of tie bars 20a-20d. The dotted lines of the securing/clamping assemblies also show the inner strips of teeth 49a-49d of pistons 44a-44d engaged with the outer strips of teeth 39a-39d of tie bars 20a-20d. This engagement and disengagement is shown in more detail in FIGS. 6A and 6B, where FIG. 6A shows the securing/clamping assembly 22d in the disengaged position, i.e. strips of teeth 39d and 49d enmeshed and FIG. 6B shows the securing/clamping assembly 22d in the engaged position with strips teeth 39d and 49d meshed. Accordingly, upon simultaneous actuation of piston/cylinder assemblies 70 and 71, inner strips of teeth 49a-49d, securing/clamping assemblies 22a-22d, respectively, can be synchronously engaged and disengaged with outer strips of teeth 39a-39d of tie bars 20a-20d, respectively, so as to lock movable platens 14 and 16 into substantially closed positions prior to the application of the desired clamping force via pressure against surfaces 62a-62d (shown in FIG. 3: 62b-62d not shown), of pistons 44a-44d (44b-44d not shown).

[0035] The total available travel of piston 44a is at least the total of the pitch of the strips of teeth plus the clearance plus the maximum elongation of the tie bars. This allows shut height to be adjusted to any point between maximum and minimum even though engagement between tie bar teeth and piston teeth is of a fixed pitch.

[0036] While the rotational mechanism 68 has been described in detail as a linkage assembly, it is to be understood that other types of rotational mechanisms can be used such as, for example, sprockets, belts and chains, directly synchronized drives, and rack and pinion assemblies.

[0037] While the securing/clamping assemblies 22a-22d of the present invention have been described for use with a tandem injection molding machine having a fixed center platen and two movable end platens, the securing/clamping assemblies are by no means limited to such use. Assemblies 22a-22d can be incorporated in a manner similar to as described above for tandem type machines having a fixed end platen and movable platens movable toward the fixed end platen. Use of the securing/clamping assemblies is also feasible and contemplated for other variations of tandem machines.

[0038] Further, the securing/clamping assemblies can be equally used with a non-tandem machines 210, as shown in FIG. 5, i.e. injection molding machines having a single stationary mold platen 214 and one movable platen 212 or any other variation thereof. Accordingly, FIG. 5 is indicative of the use of the securing/clamping assemblies 22a-22d, therein assemblies 222, of the present invention with a non-tandem machine 210. The above description of the securing/clamping assemblies, rotational mechanisms, and the additional parts of the injection molding machine, are equally applicable to a non-tandem machine and is incorporated therein. Alternatively, assemblies 222 can be mounted on fixed platen 214 and tie bars attached to moving platen 212.

[0039] Referring now to FIG. 7, the control system 100 of the present invention is shown schematically. Control system 100 is operative to individually control each of securing/clamping assemblies 22a-22d (22c and 22d not shown in FIG. 7). Control system 100 generally includes a controller 102, a four way servo valve 104, preferably a high dynamic servo valve, used to control axial motions of all four securing/clamping assemblies, cartridge valves 106a-106d used for enabling or disabling the movements of each of the securing/clamping assemblies 22a-22d (22c and 22d not shown), a plurality of linear position measuring devices 107a-107d (107c and 107d not shown), preferably linear transducers for measuring the position of the securing/clamping assemblies, a pressure transducer for measuring the pressure of...
the clamping assemblies, a lock out valve 108 to facilitate the segregation of the hydraulic supply from the clamping assemblies for preventing clamp pistons’ movements and maintaining the clamp force, when the same is reached, a closed loop controller 110 for controlling clamp-up tonnage, monitoring logic 112 for use with linear position measuring devices 107a-107d (107c and 107d not shown) for measuring the positions of securing/clamping assemblies 22a-22d (22c and 22d not shown), and a securing/clamping assembly control manifold 114 for rotating the securing/clamping assemblies into engagement with the tie bars. Controller 102 (shown schematically) is operable with these elements and other elements disclosed below to provide a system for intricately controlling the movements of securing/clamping assemblies 22a-22d (22c and 22d not shown).

Controller 102 (shown schematically) is operable to coordinate the operations of the various valves and other elements in control system 100. Cartridge valves 106a-106d for each of securing/clamping assemblies 22a-22d (22c and 22d not shown), respectively function to enable each of securing/clamping assemblies 22a-22d to provide a clamp-up force to mold halves 30 and 31. Cartridge valves 106a-106d provide enablement status to securing/clamping assemblies 22a-22d (22c and 22d not shown) when it is verified that the securing/clamping assemblies are in engagement with tie bars 20a-20d (20c and 20d not shown), respectively. Sensors (not shown) are used to verify such engagement of securing/clamping assemblies with the tie bars. Engagement of securing/clamping assemblies 22a-22d (22c and 22d not shown in FIG. 7) with the tie bars is established via securing/clamping assembly control manifold 114 which provides pressurized fluid to rotational mechanism 68, rotating securing/clamping assemblies 22a-22d (22c and 22d not shown) into engagement with the tie bars. Under the control of controller 102, manifold 114 is activated when home position is reached as discussed further below. Once enabled, the status of the enabled condition is confirmed by limit switches (not shown) installed in the four cartridge valves 106a-106d. An open status for each of the cartridge valves form an interlock condition for clamping-up. A loss of this status detected by controller 102 constitutes a fault condition and the clamp-up action will be terminated and securing/clamping assemblies 22a-22d (22c and 22d not shown) vented to tank.

Servo valve 104 is operative to provide a preset flow rate of hydraulic fluid or the like to the securing/clamping assemblies when controller 102 verifies that cartridge valves 106a-106d have enabled each of securing/clamping assemblies 22a-22d (22c and 22d not shown). Closed loop controller 110 (shown schematically) is provided for regulating the rate of increase of hydraulic fluid provided by servo valve 104, and accordingly, the rate of increase of clamping force. Closed loop controller 110 provides control to the system for rapid build up of clamp-up tonnage until the tonnage meets a required set point. Closed loop controller 110 also prevents clamp-up tonnage from exceeding the prescribed set point.

Controller 102 also includes additional monitoring logic 112 (shown schematically) which prevents the securing/clamping assemblies from experiencing the build up of unequal clamping forces relative to each other. Such an inequality could cause mechanical damages. The linear position measuring devices 107a-107d (107c and 107d not shown), such as linear transducers, are used in conjunction with monitoring logic 112 to measure the positions of each of securing/clamping assemblies 22a-22d (22c and 22d not shown) at all times and are positioned adjacent securing/clamping assemblies 22a-22d, as shown. Controller 102 is provided with a prescribed maximum allowable deviation in position and accordingly, the measurements from linear position measuring transducers 107a-107d (107c and 107d not shown) are used to maintain each of the securing/clamping assemblies within the prescribed deviation. Should the maximum deviation measured by the transducers exceed the maximum allowable value, the clamp-up process will be terminated and the securing/clamping assemblies vented to tank.

The prescribed level of the clamp-up tonnage can be continuously regulated by servo valve 104 under closed loop pressure control or can be maintained by lock out valve 108 to prevent deviation of the clamp-up tonnage from the prescribed level until the molding process is completed.

Proximity switches 116, shown schematically in FIG. 7, monitored by controller 102, are provided with rotating mechanism 68 for determining angular orientations of the securing/clamping assemblies 22a-22d, for insuring proper alignment with tie bars 20a-20d.

Referring now to FIGS. 1-8 the operation of the injection molding machine 10 in accordance with the principles of the present invention will be described.

In operation, with specific reference to FIGS. 6, 8A and 8B, of tandem machine 10 shown in FIGS. 1 and 2, rotational mechanism 68 for at least one of movable platens 14 and 16, as shown in FIG. 4, is set such that the plurality of securing/clamping assemblies 22a-22d and 23a-23d, respectively, are unengaged with tie bars 20a-20d and 21a-21d, respectively, i.e. wherein the slots of the tie bars and securing/clamping assemblies are in alignment with the teeth of the securing/clamping assemblies and tie bars, respectively, thus allowing movement of one of movable platens 14 and 16 relative the tie bars and center fixed platen 12, as shown in FIG. 6A. By way of example only, movable platen 14 is first moved into the mold closed position, as shown in FIG. 2, while movable platen 16 remains in a mold open position, as also shown in FIG. 2. In achieving the mold closed position of the mold halves 26 and 29, as shown in FIG. 2, movable mold half 29 is moved via positioning cylinder 25 into engagement with first stationary mold half 26. In addition, injection unit 18 is locked in engagement with locking flange 36a of first hot runner 32, as shown by the
dotted lines of FIG. 1 or alternatively, a distribution valve is used to direct flow to mold halves 26 and 29. Accordingly, during movement of movable end platen 14, rotational mechanism 68 for movable platen 14 is in the position as shown by the solid lines in FIG. 4 and securing/clamping assemblies 22a-22d are movable relative to tie bars 20a-20d, respectively.

[0047] When first stationary mold half 26 and first movable mold half 29 are in the position shown in FIGS. 1 and 2, under the control of control system 100 and specifically controller 102, and through the application of rotational securing/clamping assembly control manifold 114, rotational mechanism 68 is actuated via piston/cylinder assembly 70 and 71 such that the inner strips of teeth 49a-49d of pistons 44a-44d are rotated into engagement with outer strips of teeth 39a-39d of tie bars 20a-20d, respectively. The actuation of rotation mechanism 68 is performed only when all securing/clamping assemblies 22 are positioned to their home positions. The proximity switches 116, which are monitored by controller 102, are provided with rotating mechanism 68, are used for determining angular orientations of the securing/clamping assemblies 22a-22d, for insuring proper alignment with tie bars 20a-20d, prior to rotation.

[0048] Due to thermal effects, such as expansion, on the platens and body of the injection molding machine during molding, the optimal starting or home position of the securing/clamping assemblies can change and accordingly is redetermined after every molding cycle, as described below.

[0049] Home or adjustable starting position can be defined with reference to FIGS. 8A and 8B. Each piston 44 has a zero position denoted as C0 which defines the pistons position fully retracted and in the clamp-up direction. Each piston also has a fully extended, unclamped position defined as maximum position Cmax, the value of which also defines the mechanical stroke of piston 44. When one of moving platens 14 and 16 is positioned by cylinders 25 and 27 (shown in FIG. 7), respectively, the movable platens preferably have a clearance from the stationary platen equal to the maximum shut height for the mold being used, plus an offset, which may preferably be 30mm. At this position, and when the piston is fully extended to its maximum position Cmax, the ends of tie bars 20 are preferably flush with the outside surface of base portion 50 of piston 44. In calculating the home or starting position of piston 44, in addition to C0 and Cmax, several other variables are used.

[0050] As shown in FIG. 8B, Ccal defines the home position of the stroke piston 44 at maximum shut height. By virtue of the mechanical design, Ccal can be defined as Cmax - offset, preferably 30mm, so that at this position when the moving platen is at maximum shut height, the piston has enough stroke to provide clamp-up and maximum mold break, as well as sufficient securing/clamping assembly clearances. Securing/clamping assembly clearance G, defined as the clearance between inner teeth 48 and the teeth 38 of the piston 44 and tie bar 20, respectively, is also used in determining the home position of the clamp piston at different shut heights. P defines the pitch of the teeth of piston 44 and tie bar 20, Cmin defines a minimum clamp-up stroke based on stretching of tie bars at the prescribed tonnage, Ccushion defines a cushion distance provided such that the piston 44 does not bottom out against the walls of bore 35 when clamp-up is performed. The following table lists the mechanical dimensions of the parameters discussed above for particular smaller and larger clamping units.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>E900-E1650</th>
<th>E2150-E3650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum clamp piston stroke Cmax</td>
<td>60 mm</td>
<td>75 mm</td>
</tr>
<tr>
<td>Clamp piston calibration position Ccal</td>
<td>Cmax - offset</td>
<td>Cmax - offset</td>
</tr>
<tr>
<td>Gap on one side of a tooth G</td>
<td>1.5 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Tooth pitch P</td>
<td>32 mm</td>
<td>40 mm</td>
</tr>
<tr>
<td>Minimum clamp-up stroke Cmin</td>
<td>3 mm</td>
<td>4 mm</td>
</tr>
<tr>
<td>Clamp-up cushion Ccushion</td>
<td>2 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Maximum mold break stroke Mbrmax</td>
<td>20 mm</td>
<td>25 mm</td>
</tr>
</tbody>
</table>

[0051] Controller 102 uses the above discussed variables in calculating the starting or home position Chome of each securing/clamping mechanism via computer program product having computer readable code. Controller 102 preferably uses the following formulas provided in the code for calculating the home or adjustable starting position, which allows for sufficient and optimum stroke for clamp-up and mold break. The formulas are as follows:
Algorithm 1:

\[
C_{\text{home}} = \left( C_{\text{cal}} - (Sh_{\text{max}} - Sh_{\text{actual}}) \right) \mod P
\]

If \( C_{\text{home}} < a \), then \( C_{\text{home}} = C_{\text{home}} + P \),

where \( a = C_{\text{cushion}} + C_{\text{min}} + G \), and

where \((X) \mod P\) is operative to return

the remainder after \( X \) is divided by \( P \).

For the above calculations used by controller 102, the actual shut height \( Sh_{\text{actual}} \) is directly measured from the machine when mold halves 26 and 29 are closed. In accordance with the above formulas used by controller 102, the securing/clamping assemblies are positioned to their optimum home positions on the tie bars so that the required mold break stroke and clamp-up stroke is provided.

In addition, the above formulas can be used together with the following formulas to provide that a minimum volume is kept in the chambers of the securing/clamping assemblies 22a-22d so that clamp-up time and stiffness of the securing/clamping mechanisms are minimized when the maximum mold break stroke is not required. The formulas are as follows:

Algorithm 2:

\[
\text{If } C_{\text{max}} - C_{\text{home}} - G \geq Mbr_{\text{setpoint}} + P, \text{ then } C_{\text{home}} = C_{\text{home}} + P
\]

To recover from situations when the securing/clamping assemblies 22a-22d are not rotated fully out, without any possible damages to the mechanical assemblies due to movement without complete clearance, the following algorithms are used to provide design parameters which minimize possible damages to the mechanical assemblies disclosed herein. Considering the mechanical design of the system, complete securing/clamping assembly clearance is always fulfilled if the following relationship is satisfied wherein:

\[
C_{\text{target}} = \text{Securing/clamping assembly clearance position}
\]

\[
Sh_{\text{actual}} = \text{Actual mold position (Actual shut height)}
\]

\[
C_{\text{act}} = \text{Clamp cylinder actual position}
\]

\[
Sh_{\text{max}} = \text{Position of stroke at maximum mold shut height}
\]

\[
n = \text{integer (0, 1, ...)}
\]

\[
(Sh_{\text{max}} - C_{\text{cal}}) - (Sh_x - C_{\text{target}}) = n \times P
\]

The problem is reduced to find a \( C_{\text{target}} \) which is at the smallest distance from the \( C_{\text{act}} \). Hence, the algorithm is as follows:
**Algorithm 3:**

\[
X = \left( \frac{(Sh_{\text{max}} - Sh_t) - (C_{\text{cal}} - C_{\text{act}})}{P} \right) \mod P \\
\text{If } X > (P-X), \text{ then } X = (X-P) \\
C_{\text{target}} = C_{\text{act}} - X
\]

The above algorithm applies for calculating the securing/clamping assembly clearance, while algorithms 1 and 2 apply to the calculation of the home position. The reason for not using the home position calculation algorithms for securing/clamping assembly clearance is because algorithm 3 does not take into account the mold break stroke.

[0055] In the event of the loss of "securing/clamping assembly engaged" status and "securing/clamping assembly disengaged" status, the actual clamp piston position \(C_{\text{act}}\) is compared to the target, \(C_{\text{target}}\), for securing/clamping assembly clearance. If the absolute difference is smaller than or equal to \(G\) then the controller will move the clamp pistons to the securing/clamping assembly clearance target position before rotating the securing/clamping assembly to a disengaged position. However, if the absolute difference is calculated more than \(G\), securing/clamping assemblies will be rotated out without any clamp piston movement. The latter situation implies the possible contact of the teeth of the securing/clamping assemblies and tie-bars. This control scheme will be applied when mold close or mold open is initiated during manual operation. The strategy is adopted to get out from deadlock situation and minimize mechanical damages to the machine.

[0056] To provide more efficient operation during automatic cycling, the securing/clamping assembly clearance is regained after mold break by stroking the mold stroke cylinder by a small distance \(G\) in the opening direction. Since the clamp pistons are in contact with the tie-bars at the end of mold break operation, the opening of the moving platen by a stroke of \(G\) will provide the necessary securing/clamping assembly clearance. Re-positioning of the clamp pistons to home position will be carried out after securing/clamping assemblies are rotated to a disengaged position.

[0057] The initial position of the mold halves is achieved by moving the movable platen in a stepwise manner until strips of teeth 39a-39d and 49a-49d are respectively in position for engagement. Rotational mechanism 68 under the direction of manifold 114 rotates securing/clamping assemblies 22a-22d into engagement with the tie bars 20. The engaged position of the securing/clamping assemblies 22a-22d is represented by the dotted line shown in FIG. 4. Such engagement of outer strips of teeth 39a-39d of tie bars 20a-20d with inner strips of teeth 49a-49d of pistons 44a-44d is also represented in the upper half of FIG. 3A for assembly 22a and in FIG. 6B for assembly 22d.

[0058] With the inner strips of teeth 49a-49d engaged with outer strips of teeth 39a-39d, respectively and the first stationary mold half 26 being positioned in molding engagement with first movable mold half 29 (as shown in FIG. 1), pressure can be applied to the mold halves via securing/clamping mechanisms 22a-22d through servo valve 104. Accordingly, each of cartridge valves 106a-106d are actuated to enable clamping motion by pistons 44a-44d of securing/clamping assemblies 22a-22d. Once enablement is detected by controller 102 through limit switches (not shown) installed in cartridge valves 106a-106d, servo valve 104 is operative to provide pressurized fluid to securing/clamping assemblies 22a-22d. If however, the enablement status of the cartridges is detected by controller 102 as disabled, a fault condition, clamping action by the enabled securing/clamping assembly 22a is terminated and assembly 22a is vented to tank. Disablement occurs when the securing/clamping assembly reaches the home position or when the linear position of assemblies 22a-22d deviate too far from a mean value, as discussed below in detail.

[0059] If no fault condition is detected, and referring again to FIGS. 1 and 3A, hydraulic pressure or the like is provided via servo valve 104 at a preset flow rate against longitudinal transverse surface 62a-62d (62b-62d not shown) of each of securing/clamping assemblies 22a-22d. The hydraulic pressure against surface 62a-62d forces first stationary mold half 26 and first movable mold half 29 sealably together in preparation for injection molding and moves piston 44 through the stroke calculated between the home or starting position \(C_{\text{home}}\) and the required clamp-up position, as shown in FIGS. 8A and 8B. In addition, any clearances between the respective teeth of the clamp pistons 44 and tie bars 20 are taken up during the stroke. Through servo valve 104 under the command of controller 110, clamp-up force builds between the mold halves. That is, the rate of increase of clamp-up force is regulated by servo valve 104 under the supervision of closed loop controller 110. The pressure build up is, therefore, maintained at a preset level through closed loop controller 110. As force between the mold halves is maintained via each securing/clamping assemblies 22a-22d, and at the proper level via closed loop controller 110, melt is injected via injection unit 18 through first hot runner 32 for facilitating molding.

[0060] During any simultaneous motions of the four clamp pistons, it is essential to have all clamp pistons moving...
synchronously. For this reason, the synchronous operation is monitored by a function, called synchronization monitor 112, shown in FIG. 7. The function is started when the clamp pressure is measured to exceed a minimum threshold value during simultaneous motions of all four pistons. At the start of the monitoring logic, the actual positions of all clamp pistons are read in as starting positions. At each sampling time of the function, the change in position with respect to the starting position of each piston is calculated and the mean value of the change is compared to the change in position of the piston. During clamp-up, the positions of all four pistons 44 are measured at all times through linear transducers 107a-107d in conjunction with monitoring logic 112, shown in FIG. 7. Under the guidance of controller 102, these positions are only allowed to deviate from a mean value preferably set at .5mm. Should any deviation of any piston exceed this maximum allowable mean value, the clamp-up motion is aborted by controller 102 and all securing/clamping assemblies 22 are vented to tank.

[0061] Referring to FIG. 7, during clamp-up, once the clamp-up tonnage is reached, lock out valve 108 maintains the desired clamp-up force at the required tonnage until injection molding is complete and cooling time has expired. After cooling, lock out valve 108 is de-energized via controller 102 and all cartridge valves 106 are open to allow clamp-up pressure to decompress to a low level for clamping. Therefore, pressure is reduced in cavities 66 for the unclamping of the molds. For smooth decompression and unclamping without any hydraulic shocks, decompression is preferably performed following an S-curve time ramp. Similar to clamp-up, during decompression, the positions of the pistons 44a-44d may be are synchronized through monitoring by linear transducers 107 and logic 112, as controlled by controller 102.

[0062] After decompression, securing/clamping assemblies 22a-22d are used to break the mold. Pistons 44a-44d are maintained in engagement with tie bars 20a-20d and securing/clamping assemblies are powered in the backward direction by pressurized fluid through servo valve 104 and against surfaces 67a-67d (67b-67d not shown) of pistons 44a-44d, as shown in FIG. 3A. Preferably, the axial clearance G between the engaged teeth of piston 44 and tie bar 20 is as the free space for initially breaking the mold halves apart. Accordingly, flow control through servo valve 104 for unclamping is substantially similar to flow control via servo valve 104 during clamp-up, except that fluid is directed in the opposite directions. During the entire operation of breaking the molds, monitoring logic 112 is used to ensure synchronized movement between all securing/clamping assemblies 22a-22d.

[0063] Once mold break is completed, the teeth of pistons 44a-44d are rotated out of engagement with the teeth of tie bars 20a-20d via rotational mechanism 68 controlled by securing/clamping assembly control manifold 114. Once this disengagement of the teeth has been accomplished, positioning cylinder 25 is movable mold half 29 away from first stationary mold half 26 so that the molded unit may be ejected by the ejection system 88, shown schematically in FIG. 1, the design of which is known in the art. In preparation for the subsequent clamping sequence, pistons 44 are required to be repositioned to the home or starting position.

[0064] Repositioning may take place as long as pistons 44a-44d are disengaged from tie bars 20a-20d. Repositioning may begin even if mold opening is not complete. Semi-simultaneous repositioning or sequential repositioning may be used for repositioning pistons 44a-44d.

[0065] For semi-simultaneous repositioning, and with reference to FIGS. 3A, 7, 8A and 8B, the process is divisible into two parts which includes coarse control and fine control. To begin the coarse control, cartridge valves 106a-106d enable all pistons 44a-44d to be moved toward their home or adjustable starting positions via servo valve 104 directing pressurized fluid to the pistons. An outer window or threshold value is defined which is at close proximity to the target but which is defined by a distance long enough to prevent overshoot of the clamp pistons. When each clamp piston 44a-44d reaches its outer window or threshold value, a decision logic is used to determine whether it should be transitioned to fine control or be stopped at the outer window. The decision is based on whether any other clamp piston 44 is enabled. If all other pistons are disabled, one piston will transit to fine control when the outer window is reached. Otherwise, if at least one other piston is enabled it is disabled when the outer window is reached. In this way, continuity of motion of at least one clamp piston 44a-44d is preserved. If the clamp pistons are on different sides of the target position when semi-simultaneous repositioning is started, only the clamp pistons of one side are moved towards the target position. When all pistons on the same side are repositioned then the remaining pistons on the other side will commence the repositioning.

[0066] In accordance with the above calculations, controller 102 has calculated the home or adjustable starting position and linear transducers 107 along with monitoring logic 112 continually calculate a distance each piston 44a-44d has to move for reaching the home or adjustable starting position, as determined from the calculation discussed above. As discussed above, controller 102 is provided with an outer window or threshold value which defines a set distance the pistons 44 have to move to the home or starting position. When one pistons 44a-44d has reached a position in which the distance to the home or starting position in less than the threshold position value, and all other pistons are disabled controller 102 switches closed loop controller 110 to fine control.

[0067] During fine control, closed loop controller 110 functions to reduce the flow setting of servo valve 104 preferably to a quarter of its coarse control setting to insure a smooth continuous movement of the leading clamp piston. When the leading clamp piston has reached its home or adjustable starting position, it is disabled via cartridge valve 106.
thereby preventing any further movement of that first piston. After the first of pistons 44a-44d, another piston of the remaining yet to be positioned pistons is enabled and selected for fine control. A number of selection criteria could be used. For example, selection can be based on which piston is closer to the home or adjustable starting position. Once selected, the another piston is enabled through cartridge valve 106 and positioned to its home or starting position via pressurized fluid through servo valve 104, finely controlled by controller 110. This process continues for all the pistons 44a-44d until all pistons 44a-44d are positioned at their home or starting position.

[0068] For sequential repositioning, a strategy similar to the semi-simultaneous approach described above is used, except that all securing/clamping assemblies 22 are repositioned one after another, sequentially. That is, each assembly is controlled as described above but sequentially such that coarse and fine control is performed entirely on each assembly, one after another.

[0069] For the tandem machine 10 as shown in FIG. 1, as securing/clamping assemblies 22a-22d are released and movable mold half 29 is moved to the open position, the other movable mold half 31 is closed via cylinder 27, and clamped via securing/clamping assemblies 23a-23d, via the same operation as discussed above for mold halves 26 and 29 and securing/assemblies 22a-22d under the control of controllers 102 and 110. Injection unit 18 is moved into locking engagement with locking clamps 36 of second hot runner 34, or valve direction is changed for injecting melt and forming a molded unit in mold halves 30 and 31. The securing/clamping assemblies 23a-23d (23c and 23d not shown) are designed and function in the same manner as described above and are repositioned in the same manner as described above.

[0070] Mold halves 26, 29 and 30, 31 can be opened, closed, clamped and unclamped independently of each other. Each side of stationary platen 12 can be operated as a completely independent machine or they can be coordinated and synchronized in any one of a number of ways. FIG. 5 shows a single mold injection molding machine wherein numerals similar to those used for machine 10 describe similar elements and are not described in detail here, wherein reference is made to the preceding description. Machine 210 includes stationary platen 214 and one movable platen 212. Injection molding machine 210 includes securing/clamping assemblies 222, similar to as described above for the tandem machine, in movable platen 212 and is designed and functions the same as described above with regard to securing/clamping assemblies 22, tie bars 20 and rotating mechanism 68, except that only one set of securing/clamping assemblies, tie bars, and one rotating mechanism is used.

[0071] It is to be understood that the invention is not limited to the illustrations described and shown herein, which are deemed to be merely illustrative of the best modes of carrying out the invention as defined by the claims, and which are susceptible of modification of form, size, arrangement of parts and details of operation.

Claims

1. A securing/clamping system for use with platens (12, 14, 16, 212, 214) of a molding machine (10, 210), comprising:

- tiebars (20a-20d, 21a-21d, 220a-220d) for guiding said platens (14, 16, 212);
- moving means (25, 27) for positioning one of said platens (14, 16, 214) relative to another of said platens (12, 212);
- securing/clamping means (22a-22d, 23a-23d, 222a-222d) for forcefully engaging said one of said platens with said another of said platens and on said tiebars (20a-20d, 21a-21d, 220a-220d) for sustaining forceful engagement of one of said platens with said another of said platens and said tiebars, and for breaking said one of said platens from said another of said platens and said tiebars;
- said securing/clamping means (22a-22d, 23a-23d, 222a-222d) comprises a body member means (44a-44d, 244a-244d) including means of securing said one of said platens (12, 14, 16, 212, 214) to at least one of said tiebars (20a-20d, 21a-21d, 220a-220d); said means of securing is rotatable into and out of engagement with said at least one tiebar (20a-20d, 21a-21d, 220a-220d);
- said means of securing is rotatable into and out of engagement with said at least one tiebar (20a-20d, 21a-21d, 220a-220d);
- said platens (14, 16, 214) have bores (35a-35d, 37a-37d, 235a-235d) for receiving said body member means (44a-44d, 244a-244d); characterized in that

- said body member means (44a-44d, 244a-244d) having a structure which is movable as a single unit and having an outer surface (59a-59d, 62a-62d, 67a-67d) being configured to form two cavities (65a-65d, 66a-66d) between said outer surface (59a-59d, 37a-37d, 235a-235d) and said bores (35a-35d, 37a-37d, 235a-235d) for the receipt of pressurized fluid, said one cavity (66a-66d) is for said sustaining forceful engagement of one of said platens with said another
of said platens and said other cavity (65a-65d) is for said breaking said one of said platens from said another of said platens.

2. The system according to claim 1, wherein said moving means position one of said platens (14, 16, 214) on said tiebars (20a-20d, 21a-21d, 220a-220d) said platens.

3. The system according to claim 1 or 2, wherein said one of said platens comprises a movable platen (14, 16, 214) and said another of said platens comprises a stationary platen (12, 212), further comprising:

   means for determining an adjustable starting position (102) of said securing/clamping means (22a-22d, 23a-23d, 222a-222d) and movable platen (14, 16, 214) characterized in that said adjustable starting position provides sufficient stroke to said movable platen (14, 16, 214) for mold clamp-up and mold break;
   means for adjusting (102) said adjustable starting position for achieving greater accuracy of said adjustable starting position for said securing/clamping means (22a-22d, 23a-23d, 222a-222d) and said movable platen (14, 16, 214), said means for adjusting (102) including means for actuating (104) said securing/clamping means (22a-22d, 23a-23d, 222a-222d) for developing said clamp-up force of said securing/clamping means (22a-22d, 23a-23d, 222a-222d);
   means for monitoring and controlling the position of said securing/clamping means (22a-22d, 23a-23d, 222a-222d) and movable platen (14, 16, 214); and
   means for sustaining (108) said clamp-up force at a prescribed level between said movable platen (14, 16, 214) and said tiebars (20a-20d, 21a-21d, 220a-220d) and between said movable platen (14, 16, 214) and said stationary platen (12, 212).

4. The system according to one of claims 1 til 3, comprising:

   said another of said platens comprising a stationary platen (212) including at least one stationary mold half (226);
   said one of said platens comprising a movable platen (214) movable relative said stationary platen (212) and having mold half (229) adapted to engage said stationary mold half (226) to form a first mold;
   a unit for delivering melt to said first mold; and
   said tiebars (220a-220d) extending between said stationary platen (212) and said movable platen (214).

5. The system according to one of claims 1 til 3, comprising:

   said another of said platens comprises a stationary platen (12) including at least two stationary mold halves (26, 30), said at least two stationary mold halves (26, 30) located on opposed sides of said stationary platen (12);
   said one of said platens comprises a movable platen (14, 16) movable relative said stationary platen (12) and having a movable mold half (29, 31) adapted to engage one of said stationary mold halves (26, 30) to form a first mold;
   another movable platen (14, 16) movable toward said stationary platen (12) and including another movable mold half (29, 31) adapted to engage the other of said stationary mold halves (26, 30) to form a second mold;
   means (18) for delivering melt to said first and second molds;
   said tiebars (20a-20d, 21a-21d) further for extending between and connecting said stationary platen (12) and said another movable platen (14, 16);

   characterized in that at least one of said movable platen (14, 16), said another movable platen (14, 16) and said stationary platen (12) includes one of said securing/clamping means and said means for securing (44a-44d).

6. The system according to at least one of claims 1-5, characterized in that said body member means (44a-44d, 244a-244d) having a structure which is movable as a single unit for securing said tiebars (20a-20d, 21a-21d, 220a-220d) and for conveying a clamping force to said platens (12, 14, 16, 212, 214), said body member means (44a-44d, 244a-244d) adapted to be attached with at least one of said platens (12, 14, 16, 212, 214) and including said means for securing (44a-44d, 244a-244d) and means for conveying (62a-62d, 67a-67d) said clamping force to said platens for clamping said platens during molding.

7. The system according to at least one of claims 1-6, characterized in that said at least one tiebar (20a-20d, 21a-21d, 220a-220d) includes an engagable surface (38a-38d) said engagable surface (38a-38d) is a first toothed
surface positioned at an end of said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d), said body member means is a sleeve (44a-44d, 244a-244d) positioned coaxially relative to said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d), said sleeve (44a-44d, 244a-244d) including an inner toothed surface (49a-49d) adjacent said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d) and an outer surface, said inner toothed surface (49a-49d) adapted to mate with said first toothed surface.

8. The system according to claim 7, characterized in that said first toothed surface is an outer surface located on an end of said at least one **tiebars** (20a-20d, 21a-21d, 220a-220d), said first toothed surface including outer strips of teeth (39a-39d), said outer strips extending in an axial direction on said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d), each of said outer strips of teeth (39a-39d) radially separated from at least one other of said outer strips of teeth (39a-39d) via one of axially extending outer slots (40a-40d).

9. The system according to claim 8, characterized in that said inner toothed surface includes axially extending inner strips of teeth (49a-49d), each of said inner strips of teeth (49a-49d) radially separated from at least one other inner strip via one of axially extending inner slots (51a-51d), and characterized in that upon rotation of said body member means and sleeve (44a-44d, 244a-244d) into locking engagement with said at least one means for connecting (20a-20d, 21a-21d, 220a-220d), said inner strips of teeth (49a-49d) engage said outer strips of teeth (39a-39d) and said inner slots (51a-51d) substantially align with said outer slots (40a-40d) and characterized in that upon rotation of one of said body member means and sleeve (44a-44d, 244a-244d) out of locking engagement with said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d), said inner strips of teeth (49a-49d) align with said outer slots (40a-40d) and said inner slots (51a-51d) align with said outer strips of teeth (39a-39d).

10. The system according to claim 9, characterized in that said inner slots (51a-51d) have a greater radially extending width than said outer strips of teeth (39a-39d) and said outer slots (40a-40d) have a greater radially extending width than said inner strips of teeth (49a-49d).

11. The system according to claim 4-5, characterized in that said movable platens (14, 16, 214) are adapted to be forced in directions for achieving clamping with at least one of another of said movable platens (14, 16) and said stationary platens (12, 212), and characterized in that said movable platens (14, 16, 214) have said bores (35a-35d, 37a-37d, 235a-235d) for receiving said means for securing (44a-44d, 244a-244d), said means for conveying fluid and said surfaces (62a-62d, 67a-67d) are for the receipt of pressure from said pressurized fluid thereagainst to said directions, characterized in that said movable platens (14, 16, 214) have said bores (35a-35d, 37a-37d, 235a-235d) and being configured to have surfaces (62a-62d, 67a-67d) extending substantially transversely to said directions, characterized in that said cavities (65a-65d, 66a-66d) are for the introduction of pressurized fluid and said surfaces (62a-62d, 67a-67d) are for the receipt of pressure from said pressurized fluid thereagainst for moving said movable platens (14, 16, 214) in said directions.

12. The system according to claim 7, further comprising means for rotating (68) said body member means (44a-44d, 244a-244d) relative to said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d) for placing said engagement means (49a-49d) into and out of locking engagement with said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d), said means for rotating (68) comprises a linkage assembly (78, 80, 82, 84, 86) connected with said body member means (44a-44d, 244a-244d), further including a plurality of synchronized linkage actuating mechanisms (70, 71) for actuating said linkage assembly (78, 80, 82, 84, 86) for synchronously placing said body member means (44a-44d, 244a-244d) into and out of locking engagement with said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d), each of said synchronized linkage actuating mechanisms includes a piston and cylinder device (70, 71) connected with a plurality of linkage bars (78, 80, 82, 84, 86) forming said linkage assembly for actuating said linkage bars (78, 80, 82, 84, 86) and causing said means for securing (44a-44d, 244a-244d) to be placed into and out of locking engagement with said at least one **tiebar** (20a-20d, 21a-21d, 220a-220d).

13. The system according to claim 3, further comprising means for disabling and enabling (106a-106d) said securing/clamping means (22a-22d, 23a-23d, 222a-222d), said means for disabling and enabling (106a-106d) comprises a control valve for each of said securing/clamping means (22a-22d, 23a-23d, 222a-222d).

14. The system according to claim 3, characterized in that said securing/clamping means (22a-22d, 23a-23d, 222a-222d) are actuated by pressurized fluid, said means for actuating (104) comprising a multi-directional valve (104) for directing said pressurized fluid to said securing/clamping means (22a-22d, 23a-23d, 222a-222d).

15. The system according to claim 14, characterized in that said means for monitoring and controlling (110) comprise
a closed loop pressure controller means (110) for controlling the rate of increase of clamping force by controlling the opening of said multi-directional valve (104).

16. The system according to claim 15, characterized in that said closed loop pressure controller means (110) includes logic means (112) for determining a maximum allowable deviation in the relative position between a plurality of said securing/clamping means (22a-22d, 23a-23d, 222a-222d) and for terminating actuation if said maximum allowable deviation is exceeded.

17. The system according to claim 16, further including means for measuring linear position (107a-107d) of each of said plurality of said securing/clamping means (22a-22d, 23a-23d, 222a-222d), characterized in that said means for measuring (107a-107d) is operative with said logic means (112).

18. The system according to claim 3, characterized in that said means for determining an adjustable starting position and means for adjusting comprises a controller (102) with computer program product means for determining said adjustable starting position.

19. The system according to claim 3, characterized in that said means for sustaining (108) comprises a lockout valve (108) operative to maintain said clamp-up force.

20. The system according to claim 13, further comprising means for rotating (68) said securing/clamping means (22a-22d, 23a-23d, 222a-222d) into engagement with said tiebars (20a-20d, 21a-21d, 220a-220d) and means for determining angular position (216) of said securing/clamping means (22a-22d, 23a-23d, 222a-222d) for obtaining proper alignment with said tiebars (20a-20d, 21a-21d, 220a-220d).

21. The system according to claim 20, characterized in that said means for determining angular position comprises proximity switches (216) located with said means for rotating (68) for detecting a prescribed angular orientation.

**Patentansprüche**

1. Ein Sicherungs-/Schliessystem zur Verwendung mit Platten (12, 14, 16, 212, 214) einer Formmaschine (10, 210) umfasst:

   Führungssäulen (20a-20d, 21a-21d, 220a-220d) zum Führen der Platten (14, 16, 212);

   Bewegungseinrichtungen (25, 27) zum Positionieren einer der Platten (14, 16, 214) relativ zu einer anderen der Platten (12, 212);

   Sicherung-/Schliesseinrichtungen (22a-22d, 23a-23d, 222a-222d) zum kraftvollen Zusammenhalten der einen Platte mit der anderen Platte und an den Führungssäulen (20a-20d, 21a-21d, 220a-220d), um das kraftvolle Zusammenhalten einer der Platten mit der anderen Platte und den Führungssäulen aufrechtzuerhalten und um eine der Platten von der anderen Platte und den Führungssäulen zu lösen;

   diese Sicherungs-/Schliesseinrichtungen (22a-22d, 23a-23d, 222a-222d) umfassen Bauelemente (44a-44d, 244a-244d), welche eine Einrichtungen zum Fetslegen der einen der Platten (12, 14, 16, 212, 214) an zumindest einer der Führungssäulen (20a-20d, 21a-21d, 220a-220d) aufweist;

   die Einrichtung zum Festlegen ist in den und aus dem Eingriff mit zumindest einer Führungssäule (20a-20d, 21a-21d, 220a-220d) drehbar;

   die Platten (14, 16, 214) weisen Bohrungen (35a-35d, 37a-37d, 235a-235d) zur Aufnahme der Bauelemente (44a-44d, 244a-244d) auf;

   dadurch gekennzeichnet, dass

   das Bauelement (44a-44d, 244a-244d) eine Struktur, welche als eine einzelne Einheit bewegbar ist, und eine äussere Ausgestaltung (59a-59d, 62a-62d, 67a-67d) aufweist, welche so ausgebildet ist, dass zwei Räume (65a-65d, 66a-66d) zwischen der äusseren Ausgestaltung (59a-59d, 62a-62d, 67a-67d) und den Bohrungen
ein Raum (66a-66d) für das Aufrechterhalten des kraftvollen Zusammenhaltens einer der Platten mit der anderen Platte und der andere Raum (65a-65d) für das Lösen einer der Platten von der anderen Platten bestimmt ist.

2. System nach Anspruch 1, wobei die Bewegungseinrichtung eine der Platten (14, 16, 214) auf den Führungssäulen (20a-20d, 21a-21d, 220a-220a) der Platten positioniert.

3. System nach Anspruch 1 oder 2, wobei eine der Platten eine bewegbare Platte (14, 16, 214) und eine andere der Platten eine feststehende Platte (12, 212) umfasst und ferner:

   Einrichtungen zum Bestimmen einer einstellbaren Startposition (102) der Sicherungs-/Schliesseinrichtungen (22a-22d, 23a-23d, 222a-222d) und der bewegbaren Platte (14, 16, 214), dadurch gekennzeichnet, dass die einstellbare Startposition einen genügenden Hub für die bewegbare Platte (14, 16, 214) zum Schliessen der Form und zum Öffnen der Form gewährleistet;

   Einrichtungen zum Einstellen (102) der einstellbaren Startposition zum Erreichen grösserer Genauigkeit der einstellbaren Startposition für die Sicherung/Schliesseinrichtung (22a-22d, 23a-23d, 222a-222d) und die bewegbare Platte (14, 16, 214), wobei die Einstelleinrichtung (102) Einrichtungen zum Aktivieren (104) der Sicherungs-/Schliesseinrichtung (22a-22d, 23a-23d, 222a-222d) zum Entwickeln der Schliesskraft der Sicherungs-/Schliesseinrichtung (22a-22d, 23a-23d, 222a-222d) beinhaltet;

   Einrichtungen zum Überwachen und Steuern der Position der Sicherungs-/Schliesseinrichtung (22a-22d, 23a-23d, 222a-222d) und der bewegbaren Platte (14, 16, 214); und

   Einrichtungen zum Aufrechterhalten (108) der Schliesskraft auf einem vorgeschriebenen Level zwischen der bewegbaren Platte (14, 16, 214) und den Führungssäulen (20a-20d, 21a-21d, 220a-220d) und zwischen der bewegbaren Platte (14, 16, 214) und der feststehenden Platte (12, 212).

4. Das System nach einem der Ansprüche 1 bis 3 umfasst:

   die andere der Platten, welche eine feststehende Platte (212) umfasst, weist zumindest eine feststehende Formhälfte (226) auf;

   die eine der Platten weist eine bewegbare Platte (214), die relativ zu der feststehenden Platte (212) bewegbar ist und eine Formhälfte (229) aufweist, welche geeignet ist, um mit der feststehenden Formhälfte (226) in Eingriff zu gelangen, um eine erste Form zu bilden;

   eine Einheit zum Anliefern von Schmelze zu der ersten Form; und

   die Führungssäulen (220a-220d), welche sich zwischen der feststehenden Platte (212) und der bewegbaren Platte (214) erstrecken.

5. Das System nach einem der Ansprüche 1 bis 3 umfasst:

   eine andere der Platten besitzt eine feststehende Platte (12), welche zumindest zwei feststehende Formhälften (26, 30) aufweist, wobei die zumindest zwei Formhälften (26, 30) auf gegenüberliegenden Seiten der feststehenden Platte (12) angeordnet sind;

   die eine der Platten umfasst eine bewegbare Platte (14, 16), welche relativ zu der feststehenden Platte (12) bewegbar ist und eine bewegbare Formhälfte (29, 31) aufweist, die geeignet ist, um mit einer der feststehenden Formhälften (26, 30) in Eingriff zu gelangen, um eine erste Form zu bilden;

   ein andere bewegbar Platte (14, 16), welche gegen die feststehende Platte (12) bewegbar ist und eine andere bewegbare Formhälfte (29, 31) aufweist, die geeignet ist, um mit der anderen der feststehenden Formhälften (26, 30) in Eingriff zu gelangen, um eine zweite Form zu bilden;
Einrichtungen (18) zum Anliefern der Schmelze zu der ersten und zweiten Form;

ferner die Führungssäulen (20a-20d, 21a-21d) zum Erstrecken zwischen und zum Verbinden der feststehenden Platte (12) und einer anderen bewegbaren Platte (14, 16);

dadurch gekennzeichnet, dass zumindest eine der bewegbaren Platte (14, 16), die eine andere bewegbare Platte (14, 16) oder die feststehende Platte (12) eine der Sicherungs/Schliesseinrichtungen und der Einrichtungen zum Sichern (44a-44d) beinhaltet.

6. System nach wenigstens einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass das Bauelement (44a-44d, 244a-244d) einen Aufbau aufweist, welcher als eine einzelne Einheit zum Festlegen der Führungssäulen (20a-20d, 21a-21d, 220a-220d) und zum Übertragen einer Schliesskraft auf die Platten (12, 14, 16, 212, 214) bewegbar ist, wobei das Bauelement (44a-44d, 244a-244d) geeignet ist, um an zumindest einer der Platten (12, 14, 16, 212, 214) angeordnet zu werden, und welche Einrichtungen zum Sichern (44a-44d, 244a-244d) und Einrichtungen zum Übertragen der Schliesskraft auf die Platten zum Schliessen der Platten während des Formens beinhaltet.

7. System nach wenigstens einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass zumindest eine Führungssäule (20a-20d, 21a-21d, 220a-220d) einen eingreifbaren Bereich (38a-38d) beinhaltet, wobei der eingreifbare Bereich (38a-38d) ein erster gezahnter Bereich ist, welcher an einem Ende von zumindest einen Führungssäule (20a-20d, 21a-21d, 220a-220d) vorgesehen ist und das Bauelement eine Muffe (44a-44d, 244a-244d) ist, welche relativ zu der zumindest einen Führungssäule (20a-20d, 21a-21d, 220a-220d) koaxial positioniert ist, wobei die Muffe (44a-44d, 244a-244d) einen inneren gezahnten Bereich (49a-49d) aufweist, nahe der zumindest einer Führungssäule (20a-20d, 21a-21d, 220a-220d) und einem äusseren Bereich, wobei der innere gezahnte Bereich (49a-49d) geeignet ist, um mit dem ersten gezahnten Bereich zusammenzuwirken.

8. System nach Anspruch 7, dadurch gekennzeichnet, dass der erste gezahnte Bereich ein äusserer Bereich ist, welcher an einem Ende von zumindest einer Führungssäule (20a-20d, 21a-21d, 220a-220d) vorgesehen ist, wobei der erste gezahnte Bereich äussere Zahnreihen (39a-39d) aufweist, welche sich in einer axialen Richtung auf der zumindest einen Führungssäule (20a-20d, 21a-21d, 220a-220d) erstrecken und jede der äusseren Zahnreihen (39a-39d) durch eine axial sich erstreckenden äusseren Rinnen (40a-40d) radial von zumindest einer anderen der äusseren Zahnreihen (39a-39d) getrennt ist.

9. System nach Anspruch 8, dadurch gekennzeichnet, dass der innere gezahnte Bereich axial sich erstreckende innere Zahnreihen (49a-49d) aufweist, wobei jede der inneren Zahnreihen (49a-49d) mittels einer axial sich erstreckenden inneren Rinnen (51a-51d) radial getrennt von zumindest einer anderen inneren Reihe ist, und dadurch gekennzeichnet, dass nach Drehung des Bauelements und der Muffe (44a-44d, 244a-244d) in einen schliessenden Eingriff mit zumindest einer Einrichtung zum Verbinden (20a-20d, 21a-21d, 220a-220d) die inneren Zahnreihen (49a-49d) mit den äusseren Zahnreihen (39a-39d) in Eingriff kommen und die inneren Rinnen (51a-51d) sich im wesentlichen mit den äusseren Rinnen (40a-40d) ausrichten, und dadurch gekennzeichnet, dass nach Drehung des Bauelements und der Muffe (44a-44d, 244a-244d) aus dem schliessenden Eingriff mit der zumindest einen Führungssäule (20a-20d, 21a-21d, 220a-220d) die inneren Rinnen (49a-49d) mit dem äusseren Bereich (49a-49d) sich in den äusseren Rinnen (40a-40d) ausrichten und die inneren Rinnen (51a-51d) sich mit den äusseren Zahnreihen (39a-39d) ausrichten.

10. System nach Anspruch 9, dadurch gekennzeichnet, dass die inneren Rinnen (51a-51d) eine grössere radial sich erstreckende Breite haben als die äusseren Zahnreihen (39a-39d) und die äusseren Rinnen (40a-40d) eine grössere radial sich erstreckende Breite haben als die inneren Zahnreihen (49a-49d).

11. System nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die bewegbaren Platten (14, 16, 214) geeignet sind, um in die Richtungen gedruckt zu werden, um das Schliessen mit zumindest einer der anderen bewegbaren Platten (14, 16) oder der feststehenden Platte (12, 212) zu erreichen, und dadurch gekennzeichnet, dass die bewegbaren Platten (14, 16, 214) die Bohrungen (35a-35d, 37a-37d, 235a-235d) zur Aufnahme der Einrichtungen zum Sichern (44a-44d, 244a-244d) aufweisen, wobei die Einrichtungen zum Übertragen, welche einen äusseren Bereich (59a-59d, 62a-62d, 67a-67d) aufweist, der so ausgestaltet ist, um die Räume (65a-65d, 66a-66d) zwischen dem äusseren Bereich (59a-59d, 62a-62d, 67a-67d) und einer der Bohrungen (35a-35d, 37a-37d, 235a-235d) zu bilden und so ausgestaltet ist, um Bereiche (62a-62d, 67a-67d) aufzuweisen, welche sich im wesentlichen quer zu diesen Richtungen erstrecken, dadurch gekennzeichnet, dass die Räume (65a-65d, 66a-66d) für die Einführung von unter Druck stehendem Fluid und die Bereiche (62a-62d, 67a-67d) für die Aufnahme von Druck durch das unter Druck stehende Fluid dagegen zum Bewegen der bewegbaren Platten (14, 16, 214) in
12. Das System nach Anspruch 7 umfasst ferner Einrichtungen zum Drehen (68) des Bauelements (44a-44d, 244a-244d) relativ zu der zumindest einen Führungssäule (20a-20d, 21a-21d, 220a-220d) zum Anordnen der eingreifbaren Einrichtung (49a-49d) in den und aus dem schliessenden Eingriff mit der zumindest einen Führungssäule (20a-20d, 21a-21d, 220a-220d), wobei die Einrichtung zum Drehen (68) eine Verbindungseinheit (78, 80, 82, 84, 86) umfasst, welche mit dem Bauelement (44a-44d, 244a-244d) verbunden ist, welche ferner eine Mehrzahl von synchronisierten Verbindungsantriebsmechanismen (70, 71) zum Anreiben der Verbindungseinheit (78, 80, 82, 84, 86) zum synchronen Anordnen des Bauelements (44a-44d, 244a-244d) in den und aus dem schliessenden Eingriff mit der zumindest einen Führungssäule (20a-20d, 21a-21d, 220a-220d) beinhaltet, wobei jeder der synchronisierten Verbindungsantriebsmechanismen eine Kolben- und Zylindervorrichtung (70, 71) beinhaltet, welche mit einer Vielzahl von Verbindungsstangen (78, 80, 82, 84, 86) verbunden ist, welche die Verbindungseinheit zum Anreiben der Verbindungsstangen (78, 80, 82, 84, 86) mit der zumindest einen Führungssäule (20a-20d, 21a-21d, 220a-220d) gebracht wird.

13. Das System nach Anspruch 3 umfasst ferner Einrichtung (106a-106d) zum Ausschalten und Einschalten der Sicherungs/Schliesseinrichtung (22a-22d, 23a-23d, 222a-222d), wobei die Einrichtung zum Ausschalten und Einschalten (106a-106d) ein Steuerventil für jede der Sicherungs/Schliesseinrichtungen (22a-22d, 23a-23d, 222a-222d) umfasst.

14. System nach Anspruch 3, dadurch gekennzeichnet, dass die Sicherungs-/Schliesseinrichtungen (22a-22d, 23a-23d, 222a-222d) durch unter Druck stehendes Fluid angetrieben werden, wobei die Einrichtung zum Antreiben (104) ein Mehr-Wege-Ventil (104) zum Lenken des unter Druck stehenden Fluids zu den Sicherungs-/Schliesseinrichtungen (22a-22d, 23a-23d, 222a-222d) umfasst.

15. System nach Anspruch 14, dadurch gekennzeichnet, dass die Einrichtung zum Überwachen und Steuern (110) eine geschlossene Schleifendrucksteuereinrichtung (110) zum Steuern des Anstiegsgrades der Schliesskraft durch das Steuern des Öffnens des Mehr-Wege-Ventils (104) umfasst.


17. Das System nach Anspruch 16 beinhaltet ferner Einrichtungen zum Messen der linearen Position (107a-107d) von jeder der Vielzahl von Sicherungs/Schliesseinrichtungen (22a-22d, 23a-23d, 222a-222d), dadurch gekennzeichnet, dass die Einrichtungen zum Messen (107a-107d) mit der Logikeinrichtung (112) in Wirkverbindung steht.


20. Das System nach Anspruch 13 umfasst ferner Einrichtungen zum Drehen (68) der Sicherungs/Schliesseinrichtung (22a-22d, 23a-23d, 222a-222d) in Eingriff mit den Führungssäulen (20a-20d, 21a-21d, 220a-220d) und Einrichtungen (116) zum Bestimmen der Winkelposition der Sicherungs-/Schliesseinrichtung (22a-22d, 23a-23d, 222a-222d) zum Erzielen einer richtigen Ausrichtung mit den Führungssäulen (20a-20d, 21a-21d, 220a-220d).

21. System nach Anspruch 20, dadurch gekennzeichnet, dass die Einrichtung zum Bestimmen der Winkelposition Näherungsschalter (116) umfasst, welche bei der Einrichtung zum Drehen (68) zum Feststellen einer vorgeschriebenen Winkelaufrichtung angeordnet sind.
Revendications

1. Système de fixation/serrage destiné à être utilisé avec des platines (12, 14, 16, 212, 214) d'une machine à mouler (10, 210), comprenant :
   des barres de liaison (20a-20d, 21a-21d, 220a-220d) pour guider les platines (14, 16, 212) ;
   des moyens de déplacement (25, 27) pour positionner l'une des platines (14, 16, 214) par rapport à une autre de ces platines (12, 212) ;
   des moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) pour engager énergiquement l'une de ces platines avec l'autre de ces platines et sur les barres de liaison (20a-20d, 21a-21d, 220a-220d) pour supporter un engagement énergique de l'une des platines avec l'autre de ces platines et avec des barres de liaison, et pour détacher celle ci-dessus des platines de l'autre de ces platines et des barres de liaison ;
   les moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) comprenant des moyens d'élément de corps (44a-44d, 244a-244d) comprenant des moyens de fixation de celle ci-dessus des platines (12, 14, 16, 212, 214) à celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d) ;
   les moyens de fixation pouvant tourner pour venir en prise et se dégager de celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d) ;
   les platines (14, 16, 214) comportant des alésages (35a-35d, 37a-37d, 235a-235d) pour recevoir les moyens d'élément de corps (44a-44d, 244a-244d) ;

   caractérisé en ce que

   les moyens d'élément de corps (44a-44d, 244a-244d) comportent une structure pouvant se déplacer d'un seul bloc et présentant une surface extérieure (59a-59d, 62a-62d, 67a-67d) configurée pour former deux cavités (65a-65d, 66a-66d) entre la surface extérieure (59a-59d, 37a-37d, 235a-235d) et les alésages (35a-35d, 37a-37d, 235a-235d) pour recevoir un fluide sous pression ; et
   la première cavité ci-dessus (66a-66d) est destinée à supporter un engagement énergique de l'une des platines avec l'autre de ces platines, et l'autre cavité (65a-65d) est destinée à détacher la première ci-dessus des platines de l'autre de ces platines.

2. Système selon la revendication 1,
   dans lequel
   les moyens de déplacement positionnent l'une des platines (14, 16, 214) sur les barres de liaison (20a-20d, 231a-21d, 220a-220d) des platines.

3. Système selon la revendication 1 ou 2,
   dans lequel

   la première ci-dessus des platines comprend une platine mobile (14, 16, 214) et l'autre de ces platines comprend une platine fixe (12, 212), le système comprenant en outre :
   des moyens pour déterminer une position de démarrage réglable (102) des moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) et de la platine mobile (14, 16, 214),

   caractérisé en ce que

   la position de démarrage réglable fournit une course suffisante à la platine mobile (14, 16, 214) pour la fermeture et l'ouverture du moule ;
   des moyens de réglage (102) de la position de démarrage réglable, de manière à obtenir une plus grande précision de cette position de démarrage réglable pour les moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) et la platine mobile (14, 16, 214), ces moyens de réglage (102) comprenant des moyens (104) pour actionner les moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) de manière à développer la force de fermeture des moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) ;
   des moyens de surveillance et de commande de la position des moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) et de la platine mobile (14, 16, 214) ; et
   des moyens (108) pour maintenir la force de fermeture à un niveau prédéterminé entre la platine mobile (14, 16, 214) et les barres de liaison (20a-20d, 21a-21d, 220a-220d) et entre la platine mobile (14, 16, 214) et la platine fixe (12, 212).
4. Système selon l'une des revendications 1 à 3, comprenant :

- l'autre des platines comportant une platine fixe (212) incluant au moins une moitié de moule fixe (226) ;
- la première ci-dessus des platines comportant une platine mobile (214) pouvant se déplacer par rapport à la platine fixe (212) et comportant une moitié de moule (229) prévue pour venir en prise avec la moitié de moule fixe (226) de manière à former un premier moule ;
- un module pour délivrer de la matière en fusion au premier moule ; et
- les barres de liaison (220a-220d) s'étendant entre la platine fixe (212) et la platine mobile (214).

5. Système selon l'une des revendications 1 à 3, comprenant :

- l'autre des platines comportant une platine fixe (12) incluant au moins deux moitiés de moule fixes (26, 30), ces deux moitiés de moule fixes au moins (26, 309) étant placées des deux côtés opposés de la platine fixe (12) ;
- la première ci-dessus des platines comprenant une platine mobile (14, 16) pouvant se déplacer par rapport à la platine fixe (12) et comportant une moitié de moule mobile (29, 31) prévue pour venir en prise avec l'une des moitiés de moule fixes (26, 30) de manière à former un premier moule ;
- une autre platine mobile (14, 16) pouvant se déplacer vers la platine fixe (12) et incluant une autre moitié de moule mobile (29, 31) destinée à venir en prise avec d'autres moitiés de moule fixes (26, 30) de manière à former un second moule ;
- des moyens (18) pour délivrer de la matière en fusion au premier moule et au second moule ;
- les barres de liaison (20a-20d, 21a-21d) destinées en outre à s'étendre entre la platine fixe (12) et l'autre platine mobile (14, 16) de manière à les connecter l'une à l'autre ;

caractérisé en ce que

l'une au moins de la patine mobile (14, 16), de l'autre platine mobile (14, 16) et de la platine fixe (12), comprend l'un des moyens de fixation/serrage et des moyens de fixation (44a-44d).

6. Système selon l'une au moins des revendications 1 à 5, caractérisé en ce que

- les moyens d'élément de corps (44a-44d, 244a-244d) comportent une structure pouvant se déplacer d'un seul bloc pour fixer les barres de liaison (20a-20d, 21a-21d, 220a-220d) et pour transmettre une force de serrage aux platines (12, 14, 16, 212, 214), ces moyens d'élément de corps (44a-44d, 244a-244d) étant destinés à se fixer à l'une au moins des platines (12, 14, 16, 212, 214) et incluant les moyens de fixation (44a-44d, 244a-244d) et des moyens de transmission (62a-62d, 67a-67d) de la force de serrage aux platines, pour serrer ces platines pendant le moulage.

7. Système selon l'une au moins des revendications 1 à 6, caractérisé en ce que

- celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d) comprend une surface d'engagement (38a-38d) constituée par une première surface dentée positionnée à une extrémité de celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d), les moyens d'élément de corps étant constitués par un manchon (44a-44d, 244a-244d) positionné coaxialement par rapport à celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d), ce manchon (44a-44d, 244a-244d) comprenant une surface dentée intérieure (49a-49d) adjacente à celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d) et une surface extérieure, la surface dentée intérieure (49a-49d) étant destinée à venir en prise avec la première surface dentée.

8. Système selon la revendication 7, caractérisé en ce que

- la première surface dentée est une surface extérieure située à une extrémité de celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d), cette première surface dentée comprenant des bandes extérieures de dents (39a-39d), ces bandes extérieures s'étendant dans une direction axiale sur celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d), chacune des bandes extérieures de dents (39a-39d) étant séparée radialement d'une autre au moins des bandes extérieures de dents (39a-39d) par l'intermédiaire de l'une des fentes extérieures s'étendant axialement (40a-40d).
9. Système selon la revendication 8, caractérisé en ce que
la surface dentée intérieure comprend des bandes intérieures s’étendant axialement de dents (49a-49d), chacune de ces bandes intérieures de dents (49a-49d) étant séparée radialement d’au moins une autre bande intérieure par l’intermédiaire de l’une des fentes intérieures s’étendant axialement (51a-51d), lorsqu’on fait tourner les moyens d’élément de corps et le manchon (44a-44d, 244a-244d) pour les amener en engagement de verrouillage avec celui au moins des moyens de liaison (20a-20d, 21a-21d, 220a-220d), les bandes intérieures de dents (49a-49d) viennent en prise avec les bandes extérieures de dents (39a-39d) et les fentes intérieures (51a-51d) s’alignent essentiellement avec les fentes extérieures (40a-40d), et lorsqu’on fait tourner l’un des moyens d’élément de corps et le manchon (44a-44d, 244a-244d) pour les déverrouiller de celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d), les bandes intérieures de dents (49a-49d) s’alignent avec les fentes extérieures (40a-40d), et les fentes intérieures (51a-41d) s’alignent avec les bandes extérieures de dents (39a-39d).

10. Système selon la revendication 9, caractérisé en ce que
les fentes intérieures (51a-51d) ont une plus grande largeur radiale que les bandes extérieures de dents (39a-39d), et les fentes extérieures (40a-40d) ont une plus grande largeur radiale que les bandes intérieures de dents (49a-49d).

11. Système selon l’une quelconque des revendications 4 et 5, caractérisé en ce que
les platines mobiles (14, 16, 214) sont conçues pour être poussées de force dans des directions permettant d’obtenir le serrage avec l’une au moins des autres platines mobiles (14, 16) et avec la platine fixe (12, 212), les platines mobiles (14, 16, 214) comportent les alésages (35a-35d, 37a-37d, 235a-235d) pour recevoir les moyens de fixation (44a-44d, 244a-244d), les moyens de transfert (62a-62d, 67a-67d) comportant une surface extérieure (59a-59d, 62a-62d, 67a-67d) configurée pour former les cavités (65a-65d, 66a-66d) entre la surface extérieure (59a-59d, 62a-62d, 67a-67d) et l’un des alésages (35a-35d, 37a-37d, 235a-235d), en étant configurés pour comporter des surfaces (62a-62d, 67a-67d) s’étendant essentiellement transversalement par rapport à ces directions, et les cavités (64a-65d, 66a-66d) sont destinées à l’introduction de fluide sous pression, tandis que les surfaces (62a-62d, 67a-67d) sont destinées à recevoir la pression du fluide comprimé agissant sur celles-ci, pour déplacer les platines mobiles (14, 16, 214) dans les directions ci-dessus.

12. Système selon la revendications 7, comprenant en outre des moyens de rotation (68) pour faire tourner les moyens d’élément de corps (44a-44d, 244a-244d) par rapport à celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d) pour placer les moyens d’engagement (49a-49d) en position de verrouillage et de déverrouillage par rapport à celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d), les moyens de rotation (68) comprenant un dispositif de liaison (70, 71) pour actionner le dispositif de liaison (78, 80, 82, 84, 86) relié aux moyens d’élément de corps (44a-44d, 244a-244d), le système comprenant en outre un certain nombre de mécanismes d’actionnement de liaison synchronisés (70, 71) pour actionner le dispositif de liaison (78, 80, 82, 84, 86) de manière à placer en synchronisme les moyens d’élément de corps (44a-44d, 244a-244d) en position de verrouillage et de déverrouillage par rapport à celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d), chacun de ces mécanismes d’actionnement de liaison synchronisés comprenant un dispositif à piston et cylindre (70, 71) connecté à un certain nombre de barres de liaison (78, 80, 82, 84, 86) pour former le dispositif de liaison destiné à actionner la barre de liaison (78, 80, 82, 84, 86) et pour amener les moyens de fixation (44a-44d, 244a-244d) en position de verrouillage et en position de déverrouillage par rapport à celle au moins des barres de liaison (20a-20d, 21a-21d, 220a-220d).

13. Système selon la revendications 3, comprenant en outre des moyens de coupe et de mise en marche (106a-106d) des moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d), ces moyens de coupe et de mise en marche (106a-106d) comprenant une soupape de commande pour chacun des moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d).
14. Système selon la revendication 3, caractérisé en ce que les moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) sont actionnés par du fluide sous pression, les moyens d’actionnement (104) comprenant une soupape multidirectionnelle (104) pour diriger le fluide sous pression vers les moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d).

15. Système selon la revendication 14, caractérisé en ce que les moyens de surveillance et de commande (110) comprennent des moyens de contrôleur de pression en boucle fermée (110) pour commander le taux d’augmentation de la force de serrage en commandant l’ouverture de la soupape multidirectionnelle (104).

16. Système selon la revendication 15, caractérisé en ce que les moyens de contrôleur de pression en boucle fermée (110) comprennent des moyens logiques (112) pour déterminer un écart tolérable maximum de la position relative entre une pluralité de moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d), et pour couper la commande si l’écart tolérable maximum est dépassé.

17. Système selon la revendication 16, comprenant en outre des moyens pour mesurer la position linéaire (107a-107d) de chacun de la pluralité de moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d), caractérisé en ce que les moyens de mesure (107a-107d) fonctionnent avec les moyens logiques (112).

18. Système selon la revendication 3, caractérisé en ce que les moyens de détermination d’une position de démarrage réglable, et les moyens de réglage, comprennent un contrôleur (102) avec des moyens de production d’un programme d’ordinateur pour déterminer la position de démarrage réglable.

19. Système selon la revendication 3, caractérisé en ce que les moyens de maintien (108) comprennent une soupape de fermeture (108) servant à maintenir la force de fermeture.

20. Système selon la revendication 1, comprenant en outre des moyens de rotation (68) pour faire tourner les moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) de manière à les amener en prise avec les barres de liaison (20a-20d, 21a-21d, 220a-220d), et des moyens (216) de détermination de la position angulaire des moyens de fixation/serrage (22a-22d, 23a-23d, 222a-222d) pour obtenir un alignement convenable avec les barres de liaison (20a-20d, 21a-21d, 220a-220d).

21. Système selon la revendication 20, caractérisé en ce que les moyens de détermination de la position angulaire comprennent des commutateurs de proximité (216) placés avec les moyens de rotation (68) pour détecter une orientation angulaire prescrite.