EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 17.12.1997 Bulletin 1997/51

(21) Application number: 94920416.8

(22) Date of filing: 06.07.1994

(51) Int. Cl.6: B41F 35/00

(86) International application number: PCT/DK94/00276

(54) METHOD AND APPARATUS FOR CLEANING A ROLLER SURFACE
VORRICHTUNG UND VERFAHREN ZUM REINIGEN DER OBERFLÄCHE EINER WALZE
PROCEDE ET APPAREIL DE NETTOYAGE DE LA SURFACE D’UN ROULEAU

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

(30) Priority: 09.07.1993 DK 83193

(43) Date of publication of application: 20.11.1996 Bulletin 1996/47

(70) Proprietor: MASKINFABRIKEN TRESU A/S
DK-6091 Bjert (DK)

(72) Inventor: GYDESEN, Erik
DK-7100 Vejle (DK)

(74) Representative: Nielsen, Leif
c/o Patrade A/S
Store Torv 1
8000 Aarhus C (DK)

(56) References cited:
EP-A- 0 369 565
WO-A-94/12349

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND OF THE INVENTION

The present invention relates to a method for automatic cleaning of a cylinder, especially a cylinder of a printing machine, in which the cylinder is provided with plates and used for printing on a print carrier made of e.g. paper, plastic film, or metal film, and in which the cylinders become smudged, during printing, with printing ink, particles detached from said print carrier such as dust or fibres, and other foreign objects, wherein an area of the cylinder surface is cleaned by exposing said area to a pressurized flow of fluid so that the foreign objects inside the area on the cylinder surface are detached, and wherein said area is exposed to a vacuum to remove said detached foreign objects and any other material originating from said flow of fluid.

So-called flexographic printing on a print carrier of paper, plastic film or metal film uses a system consisting of a first cylinder, around which a web of the print carrier runs, a second cylinder performing the actual printing and being provided with plates for this purpose, and a third cylinder transmitting ink to the second cylinder. When the printing process has continued for a certain time, there will normally arise problems with the printing quality. This is because the second cylinder, the printing cylinder, has become smudged with dust, fibres or other particles from the web of paper, plastic film or metal film. When this occurs, it is necessary to halt the printing process, displace the cylinder from its bearing and then manually brush or wash impurities off the second cylinder. This is a serious inconvenience since it means that the stoppage periods may amount to as much as 30 per cent of the total time in which the machine is in use. This means that the operation time in which printing takes place may risk being reduced to 70 per cent of the time in which the machine is in use. Out of those 30 per cent of time in which the machine is halted, up to 90 per cent is due to cleaning the printing cylinder. Furthermore, the waste of paper, plastic film or metal film is substantial because there is a certain running-in period after a stoppage and the web of paper or film being printed during this period does not have a sufficient quality and must be discarded.

EP-0,369,565 describes a cleaner for automatic cleaning of a cylinder by pressing or otherwise discarding impurities from the surface of the cylinder. The cylinder cleaner comprises a brush extending along the total length of the cylinder or, in another embodiment, a bar for applying pressurized air or ultrasound. The cleaning takes place by rotating or displacing the brush along the entire length of the cylinder or by applying pressurized air or ultrasound along the entire length of the bar. This cleaner, however, has the great inconvenience that the efficiency of the cleaning is strongly reduced. Firstly, cleaning by using a brush quickly results in the brush being worn up together with the surface of the cylinder being worn. Secondly, cleaning by using pressurized air or ultrasound being applied to the total length of the cylinder has the effect that the efficiency of the cleaning is not the same over the total length of the cylinder. The pressurized air or the ultrasound is applied at one end of the bar and, therefore, the efficiency of the cleaning will be highest at the first end of the bar and lowest at a second end of the bar opposite the end at which the pressurized air or the ultrasound is applied.

JP 63-49474 describes a further apparatus for cleaning the surface of a roller in a typographic rotary press. This apparatus comprises a jet nozzle for supplying a jet of pressurized air and also a vacuum duct for evacuating the impurities detached from the surface of the roller. Like in the previous publication, the jet nozzle is located inside in the vacuum duct. Although using pressurized air, this apparatus has the great inconvenience of having only one jet nozzle for supplying the pressurized air. The jet nozzle has to be displaced along the length of the roller very slowly in order to ensure that the whole surface of the roller is cleaned. Therefore, the cleaning process when using the apparatus described in that publication will take a very large amount of time.

Thus, it is the object of the present invention to provide a method which may be carried out automatically, and in which the above-mentioned inconveniences, such as unsuitable cleaning media and very long time for carrying out the cleaning process, are avoided.

This object is achieved by a method characterized in that the cylinder surface is constituted by adjacent areas lengthwise and crosswise on the cylinder surface provided by such area extending over a minor part of the circumference of said cylinder and a minor part of the length of said cylinder, and that said adjacent areas of said cylinder surface are cleaned successively, wherein the pressurized fluid is provided by mixing pressurized air and a liquid in a mixing chamber, and that the so-formed mixture is led to the print plate through nozzles being connected with the mixing chamber.

In addition, apparatuses for use by the method will be disclosed.

By the method according to the present invention it is now possible, during operation, to clean a cylinder, particularly a flexographic printing cylinder. In this manner one avoids the substantial waste previously associated with cleaning the cylinder. Reducing the time waste, one also reduces the waste of material accordingly as cleaning is accomplished during ordinary operational conditions. If cylinder cleaning is carried out before it is so smudged as to deteriorate the printing quality, there will be neither material nor time waste during cleaning.

By using several nozzles or a slot, the area around the length of the cylinder is extended as compared to using only one nozzle. Thereby the amount of time used for cleaning the surface is strongly reduced. A larger area, although still just a small area of the surface, is cleaned and accordingly, an orifice with a cleaning can
be displaced along the length of the roller at a much higher speed. As mentioned before, it is very important to reduce the amount of time used during the cleaning process.

The method is advantageous in that cleaning is performed automatically and preferably while the printing process is running.

As pressurized air containing the admixed liquid is used for detaching the particles from the printing cylinder it is possible to obtain a secure and effective cleaning even if ink and dust stick very hard to the printing cylinder. Surprisingly, and in contradiction to the expectation for the skilled in this art it has shown that it is possible to use such mixture in a cleaning process while the printing process is running. It has shown that the cleaning will not harm the quality of the printing even though it is not a dry cleaning as explained in the JP 63-4947. It is believed that the reason for the effective cleaning is that a mist is produced, which mist is led to the printing cylinder. Such mist may be sucked away very effective in comparison with a liquid even if rather limited level of vacuum is used.

For various reasons, however, it may be advantageous to add other media, e.g. depending on the ink used for printing, the material being printed on, the kind of particles to detach from the cylinder, or the speed at which the printing process is operating. Such media could be an ultrasound field or various kinds of solid matter particles may be added to the fluid media constituting a fluidized medium.

Having become detached from the cylinder surface, the particles will normally have to be removed from the surface. This is accomplished in that, after the particles have been detached from the surface, the cylinder is exposed to a vacuum sucking the particles off the surface. Any other material originating from the cleaning process, e.g. solid matter particles which have been used in the cleaning process, may be sucked off at the same time. It will also be possible to load the particles that are to be detached, or have become detached, with static electricity and subsequently to use an electric voltage field to assist in the removal of the particles from the cylinder surface.

In order to ensure that the cylinder with the plates is cleaned both on and between the plates, the cleaning medium should preferably be directed in an inclined angle in relation to the tangent of the cylinder surface. This will ensure that particles depositing on the sides of the plates are removed as well. Thus, the inclined flow will attack both the cylinder surface and the cylinder sides in an inclined angle, not parallel or perpendicular. The method is further advantageous in that no damage is done to the plates during the cleaning process.

As mentioned, the method is suitable for cleaning printing cylinders in flexography which printing process uses cylinders with printing plates. However, the method may be used for many types of rollers and cylinders, not just printing cylinders.

Apparatuses for use by the method according to the present invention may be designed in many different ways. Two types of apparatuses are disclosed according to the present invention. One apparatus comprises mobile cleaning members in the shape of a cleaning head being slid over the cylinder surface whereby successive cleaning of the surface takes place. The other apparatus comprises fixed cleaning members provided with an internal device likewise conducting a successive surface cleaning. It is a common feature that an antechamber is provided for effecting a mixing of liquid and a pressurized air.

DESCRIPTION OF THE DRAWINGS

The invention will now be described in further detail with reference to the attached drawings, in which

fig. 1 shows a first embodiment of an apparatus according to the invention and for use by the method according to the invention,

fig. 2 shows a cleaning head forming part of the first embodiment of an apparatus,

figs. 3A, 3B and 3C show different embodiments of masking plates for mounting in the cleaning head of the first embodiment,

fig. 4 shows a second embodiment of an apparatus according to the invention,

fig. 5 shows an operating mechanism for nozzle pipes and suction pipes in the second embodiment of the apparatus according to the invention,

fig. 6 shows a suction pipe constituting part of the second embodiment of an apparatus, and

fig. 7 shows a cross section of a pipe member in the second embodiment according to the invention.

Fig. 1 illustrates part of a machine for flexographic printing, which machine is provided with an apparatus according to the invention. The machine comprises a cylinder 1 with plates 2. The cylinder 1 rotates around a shaft 3. The apparatus comprises a boom 4 on which a cleaning head 5 is conveyed. Conveyance is effected by means of a band 6 driven by a motor 7 such as a pneumatic motor, a hydraulic motor or other type of motor. The motor 7 is located at one end 8 of the boom 4, and the band 6 is led over a pulley 9 in the other end 10 of said boom. The cleaning head 5 is fixed to the band 6 by means of a slide 11 which is movable relative to the boom 4. The cleaning head 5 is mounted on said slide, and the cleaning head is provided with three tubes 12, 13, 14 connected thereto. The thin tubes 11, 12 are
used for conveying compressed air from an external pressure source, and liquid is fed to the cleaning head 5 through an antechamber 15 wherein mixing of compressed air and liquid takes place. The thick tube 14 is used, during exposure of the cylinder surface 16 to a vacuum from an external vacuum source, to remove loosened particles and other material from the cylinder surface.

In order to secure sufficient cleaning of the cylinder surface 16, the cleaning head 5 is provided with small nozzles through which the compressed air and the liquid, possibly containing fluidized particles of solid matter, are conveyed to the surface. The direction of cylinder rotation will preferably be oriented in such a manner that the surface areas to be cleaned are led towards the cleaning head front 17, which is opposite the side of the cleaning head 5 mounted on the slide 11. By this arrangement cleaning is effected by means of a combination of one or more of the elements of air, liquid and solid matter particles, immediately succeeded by the application of a vacuum to the cylinder surface. The whole cylinder is cleaned as the cleaning head 5 is moved back and forth along the boom 4 while the cylinder is rotating.

Fig. 2 illustrates a cross-section through a cleaning head 5. The cleaning head 5 comprises two chambers 20, 21, the first chamber 20 of which is connected to the antechamber 15 (see fig. 1), and the second chamber 21 is connected to the thick tube for vacuum application. The underside 22 of the cleaning head 5 constitutes a segment of a circle and when mounted it is immediately adjacent the cylinder surface. An orifice 23 of the first chamber is inclined in relation to the periphery of the cleaning head underside 22. This ensures improved cleaning of the cylinder surface 16. In preferred embodiments, the orifice 23 of the first chamber will be provided with screens which are provided with nozzles or slots, which may have different sizes and different directions (see figs. 3A-3C). For mounting of the screens, the cleaning head is provided with a recess 24 before the orifice 23 of the first chamber 20. The second chamber 21 is provided with an orifice 25 having an extension that ensures that all material from the cylinder surface 16 will be removed.

Figs. 3A, 3B and 3C illustrate different embodiments of screens 30A, 30B, 30C. Fig. 3A shows a screen 30A provided with several small holes 31 the longitudinal axis I of which is directed in a 90° angle αA in relation to the plane P0 of the screen 30A. By this arrangement the cleaning jet is oriented in the same direction compared to the cylinder surface as the inclined direction of the orifice 23 of the first chamber 20. The screen 30A is further provided with bolt holes 32 so that the screen may be affixed to the cleaning head 5. Fig. 3B shows a second screen 30B provided with a slot 33 instead of holes. The slot is also inclined in a 90° angle αA in relation to the plane PO of the screen 30B. Fig. 3C shows an additional screen 30C, likewise provided with a slot 34. However, the slot 34 of this embodiment is directed in a 75° angle αC in relation to the plane PC of the screen. By this arrangement the direction of the jet conveyed through the slot 34 will be deflected and have a direction towards the cylinder surface 16 differing from that of the orifice 23 of the first chamber 20. As will become apparent, it is possible by means of different types of screens to change the flow pattern and flow direction of the cleaning fluid conveyed onto the cylinder surface.

Fig. 4 illustrates part of a machine provided with a second embodiment of an apparatus according to the invention for use by the method according to the invention. Like the machine illustrated in fig. 1, said machine is a machine for flexographic printing. Thus, the machine comprises a cylinder 1 provided with plates 2, said cylinder being supported by a shaft 3. Positioned alongside the cylinder is a pipe member 40. The pipe member 40 comprises two pipes, a nozzle pipe 41 and a suction pipe 42, respectively, and a jacket 43. The pipes 41, 42 are supported in both ends, a first end 44 and a second end 45, respectively. The second end 45 of either pipe is open and connected with compressed air and liquid pipes 46, 47 and, respectively, a suction pipe 48 for the application of a vacuum from an external vacuum source to the suction pipe 42.

Fig. 5 shows that the first end 44 of either pipe 41, 42 is closed and that the pipes are interconnected by means of a gear comprising two gear wheels 49, 50 so that the pipes are rotatable around the longitudinal axes at a given mutual speed of rotation. A motor 51, such as a pneumatic motor, a hydraulic motor or other type of motor, is connected to the suction pipe 42. The motor drives the suction pipe 42, which drives the nozzle pipe 41 via the gear transmission with the latter. The motor 51 and the gear are sheltered by a box 52. The figure illustrates the first end 44 of the pipe member 40 seen from a side 56 facing the cylinder. On this side, the jacket 43 of the pipe member 40 is provided with nozzles 53 and a slot 54. The nozzles 53 are in connection with the outside surface of the nozzle pipe 41, whereas the slot 54 is in connection with the outside surface of the suction pipe 42.

Fig. 6 illustrates the nozzle pipe 41 or, alternatively, the suction pipe 42. A preferred embodiment of either one of the nozzle pipe and the suction pipe is provided with a slot 55 spiraling along the length of either pipe. The slot 55 extends in such a manner that the spiral completes exactly one turn over the extension of the slot from one end of either pipe to the other. In an alternative embodiment, one or both of the pipes are just provided with a rectilinear slot. The function of the two pipes will be described below.

Fig. 7 is a cross-section illustrating the position of the nozzle pipe 41 and the suction pipe 42 relative to each other inside the pipe member 40. Besides the two pipes 41, 42 the pipe member comprises, as mentioned, a jacket 43 enclosing the two pipes which are thus positioned in two cavities in the jacket. As an alternative to the jacket, the nozzle and suction pipes may
be enclosed in the hollow space formed by the inside of additional pipes having an inside diameter corresponding to the outside diameter of the nozzle pipe and the suction pipe, respectively. In that case, these additional pipes would be provided with nozzles 53 and a slot 54 corresponding to the ones provided in the jacket.

The nozzles 53 and the slot 54 in the jacket 43 extend from one side 56 of the pipe member 40, facing the cylinder 1, to the nozzle pipe 41 and the suction pipe 42, respectively. In use, the nozzle pipe 41 will be connected to a source of compressed air and possibly also a source of liquid which may contain fluidized particles of solid matter. As an alternative to the compressed air source, the nozzle pipe 41 may be connected to an ultrasound source which effects a cleaning of the cylinder surface 16 by means of the liquid.

The combination of compressed air, liquid and possibly ultrasound conveyed to the nozzle pipe 41 will, during rotation of the latter, be conveyed out though the nozzles 53 in the jacket 43 every time the slot in the nozzle pipe 41 (see fig. 6) is aligned with the nozzles of the jacket. This way of effecting a step-by-step application of cleaning medium to the cylinder surface reduces the risk of excessive pressure reduction occurring over the extension of the pipe. Since only a minor part of the total extension of the screw-shaped slot in the nozzle pipe 41 overlaps the nozzles 53 in the jacket 43, a uniform pressure will build up in the entire pipe. The cleaning medium is conveyed out through this part of the screw-shaped slot and on through the nozzles 53, and due to the uniform pressure in the pipe, the cleaning effect of the cleaning medium will be equal throughout the extension of the jacket 43. Contrarily, if the cleaning medium were conveyed out through all nozzles 53 at the same time, a pressure reduction would soon arise along the nozzle pipe, the lowest pressure occurring opposite the end where the pressure is conveyed to the pipe. The nozzle pipe 41 of the present invention is thus subject to constant feeding of cleaning medium but the medium is only conveyed to a small area of the cylinder surface corresponding to the location along the extension of the nozzles 53 where the slot of the nozzle pipe overlaps the nozzles. During the rotation of the nozzle pipe, alternating parts of the slot will successively overlap the nozzles.

After the cleaning medium has loosened particles from the cylinder surface 16, these particles and any material deriving from the cleaning medium have to be removed from the cylinder. This is accomplished with the use of the suction pipe 42. Its function is structured in such a manner that cleaning is only effected on minor areas of the cylinder surface, said areas being exposed successively to a vacuum whereby the whole surface of the cylinder is cleaned. The suction pipe 42 is in a constant vacuum from an external vacuum source. The area of the cylinder surface being exposed to the vacuum will be the area positioned adjacent the location where part of the screw-shaped slot 55 in the suction pipe 42 overlaps the rectilinear slot in the jacket 43. This will only be a minor part of the total extension of the slot 54 in the jacket, and thus a strong suction capacity is obtained at this location. Contrarily, if the vacuum had been applied to the whole slot 54 in the jacket at the same time, the suction capacity would be very limited and the suction capacity in the end of the pipe opposite where the suction tube 47 is connected would be reduced. The suction pipe 42 of the present embodiment is thus able to suck off particles successively from adjacent areas of the cylinder surface due to the fact that the overlap of the screw-shaped slot 55 in the suction pipe 42 and the rectilinear slot 54 in the jacket 43 is transposed along the pipe member 40 during the rotation of the suction pipe.

The slot 54 in the jacket 43 of a preferred embodiment is designed so as to extend over a shorter distance than the slot 55 in the suction pipe 42. By this arrangement it is possible in a simple manner, without the use of valves, to cut off the vacuum from the suction pipe. If the suction pipe 42 is rotated to such an extent that the screw-shaped slot 55 in the pipe is moved away from the situation where the slot 55 is aligned with the slot 54 in the jacket 43, there will no longer be any connection between the inside of the suction pipe and the outside of the jacket, and the vacuum will be cut off. Likewise, the nozzles 53 in the jacket 43 extend over a shorter distance than the slot in the nozzle pipe 41. In the same manner as described above, it will thus be possible to turn off the flow of fluid from the nozzle pipe. In a preferred embodiment the mutual gearing between the nozzle pipe and the suction pipe is designed in such a manner that the flow of fluid from the nozzle pipe and the vacuum from the suction pipe are turned off simultaneously.

The figures show specific embodiments of apparatuses according to the invention for use by the method. However, the illustrated apparatuses should not be seen as a complete presentation of conceivable embodiments. Thus, other apparatus designs and other apparatus parts, which are covered by the method and the apparatuses according to the invention as defined by the appended claims, are possible. Besides, the method according to the invention may be used for other types of cylinders than cylinders provided with plates; and rollers and cylinders in machines other than printing machines may be cleaned by means of the method according to the invention.

Claims

1. A method for automatic cleaning of a cylinder, especially a cylinder of a printing machine, in which the cylinder is provided with plates and used for printing on a print carrier made of e.g. paper, plastic film, or metal film, and in which the cylinders become smudged, during printing, with printing ink, particles detached from said print carrier such as dust or fibres, and other foreign objects, wherein an area of the cylinder surface is cleaned by exposing
said area to a pressurized flow of fluid so that the foreign objects inside the area on the cylinder surface are detached, and wherein said area is exposed to a vacuum to remove said detached foreign objects and any other material deriving from said flow of fluid, said cylinder surface is constituted by adjacent areas lengthwise and crosswise on the cylinder surface provided by such area extending over a minor part of the circumference of said cylinder and a minor part of the length of said cylinder, and said adjacent areas of said cylinder surface are cleaned successively, **characterized** in that the pressurized fluid is provided by mixing pressurized air and a liquid in a mixing chamber, and that the so-formed mixture is led to the print plate through nozzles being connected with the mixing chamber.

2. A method according to claim 1, **characterized** in that said flow of fluid is supplied with a granulated solid matter constituting a fluidized medium in said flow of fluid.

3. A method according to claim 1, **characterized** in that said flow of fluid is led to the print carrier through a slot-formed nozzle.

4. A method according to claim 1, **characterized** in that said flow of fluid is exposed to an ultrasonic action.

5. A method according to any of the preceding claims, **characterized** in that said area of the cylinder surface is cleaned during operation of the printing machine, and that successive cleaning is carried out on a multitude of areas of the cylinder surface in order to clean the entire cylinder.

6. An apparatus for automatic cleaning of a cylinder by the method according to any of the preceding claims which apparatus comprises a boom (4) having a cleaning head (5) which comprises a first orifice (23) for supplying a pressurized fluid and which also comprises a second orifice (25) for applying a vacuum to the cylinder surface (16) and which is movable along the boom (4) for successively cleaning adjacent areas lengthwise and crosswise of the cylinder surface (16) while the cylinder (1) is rotating, said second orifice (25) being placed in immediate vicinity of said first orifice (23) and after said first orifice (23) compared to the direction of rotation of the cylinder, said boom (4) is parallel to the cylinder (1), **characterized** in that several nozzles (31) are provided at the first orifice (23) through which the pressurized fluid is directed towards the cylinder surface (16), and that the cleaning head is provided with an antechamber (15) being connected to said first orifice (23) and comprising at least two connecting devices (12,13), said devices being connected to a compressed-air system and a liquid reservoir.

7. An apparatus for automatic cleaning of a cylinder by the method according to any of claims 1-5, which apparatus comprises a boom (4) having a cleaning head (5) which comprises a first orifice (23) for supplying a pressurized fluid and which also comprises a second orifice (25) for applying a vacuum to the cylinder surface (16) and which is movable along the boom (4) for successively cleaning adjacent areas lengthwise and crosswise of the cylinder surface (16) while the cylinder (1) is rotating, said second orifice (25) being placed in immediate vicinity of said first orifice (23) and after said first orifice (23) compared to the direction of rotation of the cylinder, said boom (4) is parallel to the cylinder (1), **characterized** in that a slot (33,34) is provided at the first orifice (23) through which the pressurized fluid is directed towards the cylinder surface (16), and that the cleaning head is provided with an antechamber (15) being connected to said first orifice (23) and comprising at least two connecting devices (12,13), said devices being connected to a compressed-air system and a liquid reservoir.

8. An apparatus according to claims 6 or 7, **characterized** in that the cleaning head further is connected to a solid matter reservoir.

9. An apparatus for automatic cleaning of a cylinder by the method according to any of the claims 1-5, **characterized** in that said apparatus comprises a pressure pipe (41) and a suction pipe (42) the interiors of which are connected with a pressure source and a vacuum source, respectively, and a jacket (43) enclosing said pipes (41,42) which are fixed to said jacket (43), at least said pressure pipe (41) comprises a slot (55) extending according to a screw line along the pipe, said jacket (43) comprises a slot (54) extending in a straight line along said jacket and being connected to the outer periphery of said suction pipe (42) and comprises nozzles parallel to the cylinder which are directed toward the cylinder surface and are connected to the outer periphery of the pressure pipe (41) so that by turning of the pipe inside the jacket adjacent areas can be successively exposed to a pressurized flow of fluid crosswise along the cylinder surface while the cylinder (1) is rotating, said pressure pipe (41) being also connected to a source of liquid in a way that the pressurized air and the liquid are mixed before introduction into the interior of the pressure pipe (41).

10. An apparatus according to claim 9, **characterized** in that said second pipe (41) also comprises a slot extending according to a screw line along the pipe, that said jacket (43) comprises nozzles (53) extending in a straight line along said jacket and being
connected to the outer periphery of said second pipe (41), and that said second pipe is connected to the pressure source.

Patentansprüche

1. Verfahren zum automatischen Reinigen eines Zylinders, insbesondere eines Zylinders einer Druckmaschine, bei der der Zylinder mit Platten versehen ist und dem Drucken auf einen Druckträger, welcher beispielsweise aus Papier, einem Kunststofffilm oder einem Metallfilm besteht, verwen- det wird und bei der die Zylinder während des Druckens mit Drucktinte, vom Druckträger abgelösten Partikeln, wie beispielsweise Staub oder Fasern und anderen Fremdstoffen verschmutzt werden, wobei ein Bereich der Zylinderoberfläche gereinigt wird, indem der Bereich einem druckbeaufschlagten Fluidstrom ausgesetzt wird, so daß die Fremdstoffe im Bereich der Zylinderoberfläche abgelöst werden, der Bereich einem Vacuum ausgesetzt ist, um die abgelösten Fremdstoffe und jegliches andere, vom Fluidstrom stammendes Material zu entfernen, die Zylinderoberfläche aus in Längs- und Querrichtung auf der Zylinderoberflächen benachbarten Bereichen aufgebaut ist, welche sich über einen geringfügigen Teil des Zylinderumfangs und einen geringfügigen Teil der Zylinderränge erstrecken, und die benachbarten Bereiche der Zylinderoberfläche nacheinander gereinigt werden, **dadurch gekennzeichnet, daß** das druckbeaufschlagte Fluid durch Vernischen von druckbeaufschlagter Luft und einer Flüssigkeit in einer Mischkammer bereitgestellt wird, und daß die so gebildete Mischung durch mit der Mischkammer verbundene Düsen zur Druckplatte geleitet wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Fluidstrom ein körniger Feststoff zugeführt wird, der in dem Fluidstrom ein fluidisiertes Medium bildet.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Fluidstrom durch eine schlitzzähnige Düse zum Druckträger geleitet wird.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Fluidstrom durch einen Ultraschallfluß ausgesetzt wird.

5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Bereich der Zylinderoberfläche während des Betriebs der Druckmaschine gereinigt wird und daß das sukzessive Reinigen auf einer Vielzahl von Bereichen der Zylinderoberfläche ausgeführt wird, um den gesamten Zylinder zu reinigen.

6. Vorrichtung zum automatischen Reinigen eines Zylinders nach einem der vorstehenden Ansprüche, wobei die Vorrichtung einen Ausleger (4) mit einem Reinigungskopf (5) aufweist, welcher eine erste Öffnung (23) zum Zuführen eines druckbeaufschlagten Fluids und ebenso eine zweite Öffnung (25) zum Anlegen eines Vakuums an die Zylinderoberfläche (16) aufweist und entlang des Auslegers (4) beweglich ist, um benachbarte Bereiche in Längs- und Querrichtung der Zylinderoberfläche (16) nacheinander zu reinigen, während sich der Zylinder (1) dreht, wobei die zweite Öffnung (25) in unmittelbarer Nachbarschaft der ersten Öffnung (23) und zwar in Drehrichtung des Zylinders nach der ersten Öffnung (23) angeordnet ist und der Ausleger (4) parallel zum Zylinder (1) ist, **dadurch gekennzeichnet, daß** verschiedene Düsen (31) an der ersten Öffnung (23) vorgesehen sind, durch welche das druckbeaufschlagte Fluid zur Zylinderoberfläche (16) gelenkt wird, und der Reinigungskopf mit einer Vorkammer (15) versehen ist, die mit der ersten Mündung (23) in Verbindung steht und mindestens zwei Verbindungsvorrichtungen (12, 13) aufweist, wobei die Vorrichtungen mit einem Drucklufthystem und einem Flüssigkeitsreservoir in Verbindung stehen.

7. Vorrichtung zum automatischen Reinigen eines Zylinders durch das Verfahren nach einem der Ansprüche 1-5, wobei die Vorrichtung einen Ausleger (4) mit einem Reinigungskopf (5) aufweist, welcher eine erste Öffnung (23) zum Zuführen eines druckbeaufschlagten Fluids und ebenso eine zweite Öffnung (25) zum Anlegen eines Vakuums an die Zylinderoberfläche (16) aufweist und entlang des Auslegers (4) beweglich ist, um benachbarte Bereiche in Längs- und Querrichtung der Zylinderoberfläche (16) nacheinander zu reinigen, während sich der Zylinder (1) dreht, wobei die zweite Öffnung (25) in unmittelbarer Nachbarschaft der ersten Öffnung (23) und zwar in Drehrichtung des Zylinders nach der ersten Öffnung (23) angeordnet ist und der Ausleger (4) parallel zum Zylinder (1) ist, **dadurch gekennzeichnet, daß** ein Schlit (33, 34) an der ersten Öffnung (23) vorgesehen sind, durch welche das druckbeaufschlagte Fluid zur Zylinderoberfläche (16) gelenkt wird, und der Reinigungskopf mit einer Vorkammer (15) versehen ist, die mit der ersten Mündung (23) in Verbindung steht und mindestens zwei Verbindungsvorrichtungen (12, 13) aufweist, wobei die Vorrichtungen mit einem Drucklufthystem und einem Flüssigkeitsreservoir in Verbindung stehen.

9. Vorrichtung zum automatischen Reinigen eines
Zylindern durch das Verfahren nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die Vorrichtung ein Druckrohr (41) und ein Saugrohr (42), deren Innenräume mit einer Druckquelle bzw. einer Vakuumquelle in Verbindung stehen, und eine Ummantelung (43) aufweist, welche die Rohre (41, 42), die an der Ummantelung (43) befestigt sind, eingehüllt, wobei zumindest das Druckrohr (41) einen Schlitz (55) aufweist, der sich gemäß einer Schraubenlinie entlang des Rohres erstreckt, die Ummantelung (43) eines Schlitz (54), der sich in einer geraden Linie entlang der Ummantelung erstreckt und mit der Außenfläche des Saugrohres (42) in Verbindung steht, sowie parallel zum Zylinder verlaufende Düsen aufweist, welche zur Zylinderoberfläche gerichtet sind und mit der Außenfläche des Druckrohres (41) in Verbindung stehen, so daß durch Drehen des Rohrs in der Ummantelung benachbarte Bereiche in Querrichtung entlang der Zylinderoberfläche nacheinander einem druckbeaufschlagtem Fluidstrom ausgesetzt werden können, während sich der Zylinder (1) dreht, wobei das Druckrohr (41) ebenso mit einer Flüssigkeitsquelle in Verbindung steht, derart daß die druckbeaufschlagte Luft und die Flüssigkeit vor dem Einbringen in den Innenraum des Druckrohres (41) vermischt werden.

10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das zweite Rohr (41) ebenso einen Schlitz aufweist, der sich gemäß einer Schraubenlinie entlang des Rohres erstreckt, daß die Ummantelung (43) Düsen (53) aufweist, die sich in einer geraden Linie entlang der Ummantelung erstrecken und mit der Außenfläche des zweiten Rohres (41) in Verbindung stehen, und daß das zweite Rohr mit der Druckquelle in Verbindung steht.

Revisions

1. Procédé pour le nettoyage automatique d’un cylindre, particulièrement d’un cylindre d’une machine à imprimer, où le cylindre est pourvu de plaques et utilisé pour imprimer sur un support d’impression réalisé, par exemple, en papier, en film plastique ou en film métallique, et où les cylindres s’encrassent, pendant l’impression, avec l’encrage d’impression, des particules qui se détachent dudit support d’impression comme la poussière ou des fibres, et d’autres objets étrangers, où une zone de la surface du cylindre est nettoyée en exposant ladite zone à un écoulement de fluide sous pression, de façon que les objets étrangers à l’intérieur de la zone sur la surface du cylindre soient détachés, et où ladite zone est exposée à un vide pour retirer lesdits objets étrangers détachés et d’autres matériauux résultant dudit écoulement de fluide, ladite surface de cylindre est constituée de zones adjacentes en longueur et en travers sur la surface du cylindre réalisé par une telle zone s’étendant sur une partie mince de la circonférence dudit cylindre et une partie mince de la longueur dudit cylindre, et lesdites zones adjacentes de ladite surface de cylindre étant nettoyées successivement, caractérisé en ce que le fluide sous pression est réalisé en mélangeant de l’air sous pression et un liquide dans une chambre de mélange, et le mélange ainsi formé est amené à la plaque d’impression, à travers des buses reliées à la chambre de mélange.

2. Procédé selon la revendication 1, caractérisé en ce que le fluide dudit fluide est alimenté en une matière solide granulée, constituant un milieu fluidisé dans ledit écoulement de fluide.

3. Procédé selon la revendication 1, caractérisé en ce que ledit écoulement de fluide est amené au support d’impression à travers une buse en forme de fente.

4. Procédé selon la revendication 1, caractérisé en ce que ledit écoulement de fluide est exposé à une action à ultrasons.

5. Procédé selon l’une des revendications précédentes, caractérisé en ce que ladite zone de la surface du cylindre est nettoyée pendant le fonctionnement de la machine à imprimer et en ce qu’un nettoyage successif est exécuté sur une multitude de zones de la surface du cylindre pour nettoyer le cylindre entier.

6. Appareil pour le nettoyage automatique d’un cylindre par le procédé en accord avec l’une des revendications précédentes, cet appareil comportant une membrane (4) avec une tête de nettoyage (5) qui comprend un premier orifice (23) pour fournir un fluide sous pression et qui comprend également un deuxième orifice (25) pour appliquer un vide à la surface (16) du cylindre et qui est deplaçable le long de la membrane (4) pour nettoyer successivement des zones adjacentes en longueur et en travers de la surface (16) du cylindre pendant que le cylindre (1) tourne, ledit deuxième orifice (25) étant placé au voisinage direct dudit premier orifice (23) et après ledit premier orifice (23), comparé à la direction de rotation du cylindre, ladite membrane (4) est parallèle au cylindre (1), caractérisé en ce que plusieurs buses (31) sont prévues au premier orifice (23) à travers lequel le fluide sous pression est dirigé vers la surface (16) du cylindre, et que la tête de nettoyage présente une antichambre (15) reliée audit premier orifice (23) et comprenant au moins deux dispositifs de connexion (12, 13), lesdits dispositifs étant reliés à un système à air comprimé et à un réservoir de liquide.

7. Appareil pour le nettoyage automatique d’un cylin-
dure par le procédé selon l’une des revendications 1-5, cet appareil comportant une membrane (4) avec une tête de nettoyage (5) qui comprend un premier orifice (23) pour fournir un fluide sous pression et qui comprend également un deuxième orifice (25) pour appliquer un vide à la surface (16) du cylindre et qui est déplaçable le long de la membrane (4) pour nettoyer successivement des zones adjacentes en longueur et en travers de la surface (16) du cylindre pendant que le cylindre (1) tourne, ledit deuxième orifice (25) étant placé au voisinage direct dudit premier orifice (23) et après ledit premier orifice (23) comparé à la direction de rotation du cylindre, ladite membrane (4) est parallèle au cylindre (1), caractérisé en ce qu’une fente (33, 34) est prévue au premier orifice (23) à travers laquelle le fluide sous pression est dirigé vers la surface (16) du cylindre, et en ce que la tête de nettoyage présente une antichambre (15) reliée audit premier orifice (23) et comprenant au moins deux dispositifs de connexion (12, 13), ledits dispositifs étant reliés à un système à air comprimé et à un réservoir de liquide.

8. Appareil selon les revendications 6 ou 7, caractérisé en ce que la tête de nettoyage est reliée en outre à un réservoir de matière solide.

9. Appareil pour le nettoyage automatique d’un cylindre par le procédé selon l’une des revendications 1-5, caractérisé en ce que ledit appareil comporte un tube de pression (41) et une tube d’aspiration (42) dont les intérieurs sont reliés à une source de pression et une source de vide, respectivement, et une chemise (43) enfermant lesdits tubes (41, 42) qui sont fixés à ladite chemise (43), au moins ledit tube de pression (41) comprend une fente (55) s’étendant suivant une ligne de vissage le long du tube, ladite chemise (43) comprend une fente (54) s’étendant suivant une ligne droite le long de ladite chemise et étant reliée à la périphérie extérieure dudit tube d’aspiration (42) et comprend des buses parallèles au cylindre, qui sont dirigées vers la surface du cylindre et sont reliées à la périphérie extérieure du tube de pression (41), de telle sorte que, en faisant tourner le tube à l’intérieur de la chemise, des zones adjacentes peuvent être exposées successivement à un écoulement de fluide sous pression en travers le long de la surface du cylindre pendant que le cylindre (1) tourne, ledit tube de pression (41) étant également relié à une source de liquide de manière que l’air sous pression et le liquide soient mélangés avant l’introduction dans l’intérieur du tube de pression (41).

10. Appareil selon la revendication 9, caractérisé en ce que ledit deuxième tube (41) comporte également une fente s’étendant suivant une ligne de vissage le long du tube, en ce que ladite chemise (43) com-
FIG. 2