EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 18.08.1999 Bulletin 1999/33

(21) Application number: 96105873.2

(22) Date of filing: 15.04.1996

(54) Anti-arrhythmic and cardioprotective substituted indeno[1,2-b]quinolines
Substituées indenopyguanidines mit antiarrhythmischer und cardioprotektiver Wirkung
Indéno[1,2-b]quinolines substituées à activité antiarrhythmique et cardioprotective

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE
Designated Extension States:
SI

(43) Date of publication of application: 23.10.1996 Bulletin 1996/43

(73) Proprietor: HOECHST AKTIENGESELLSCHAFT
65929 Frankfurt am Main (DE)

(72) Inventors:
• Ramakrishna, Nirogi Venkata Satya Mulund (W), Bombay 400 082 (IN)
• More, Tulsiadas Sitaran Dombivli (W), Thane - 421 202 (IN)
• Kulkarni, Anagha Suhas Mojiwada Naka, Thane - 400 601 (IN)
• Lal, Bansi Mulund (W), Bombay 400 080 (IN)
• Vadlamudi, Roa Venkate Satya Veerabadhra Vaahi, New Bombay 400 705 (IN)
• Ghat, Anil Vatantrao Wagle Estate, Thane (W) - 400 604 (IN)
• Scholz, Wolfgang, Dr. 65760 Eschborn (DE)
• Lang, Hans-Jochen, Dr. 65719 Hofheim (DE)
• Gupte, Ravindra Dattatraya Gilbert Hill, Andheri (W), Bombay 400058 (IN)

(56) References cited:
EP-A- 0 556 673
EP-A- 0 639 573
WO-A-84/00875
DE-A- 4 326 005

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The invention relates to indeno[1,2-d]pyrimidines, a process for their preparation, their use as medicaments, their use as diagnostic agents and medicaments containing them. More particularly, the present invention relates to the indeno[1,2-d]pyrimidines having the formula I

\[\text{I} \]

wherein are:

- R(1) and R(2) individually or collectively hydrogen, alkyl having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms; cycloalkyl having 3, 4, 5, or 6 carbon atoms; 0-alkyl having 1, 2, 3, 4 carbon atoms; O-C(=O)-alkyl having 1, 2, 3, or 4 carbon atoms; C_6H_4(CH_3)_2-NH_2; C(=O)-O-alkyl having 1, 2, 3, or 4 carbon atoms; C(=O)-NH_2; C(=O)-N(alkyl)_2 having 1, 2, 3, or 4 carbon atoms in each alkyl group; alkenyl having 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms; alkynyl having 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms; alkylaryl having 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms in the alkyl group; alkynylaryl having 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms in the alkynyl group; C_2-C_4-alkyl-substituted-aryll; C_1-C_4-alkyl-heteroaryl; C_2-C_4-alkenyl-heteroaryl; aminoalkylaryl having 1, 2, 3, or 4 carbon atoms in the alkyl group, substituted-aryll, heteroaryl and substituted heteroaryl;

- R(3), R(4), R(5) and R(6) individually or collectively hydrogen, alkyl having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms, O-alkyl having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms, F, Cl, Br, I, OH, aryl, substituted aryl, heteroaryl, substituted heteroaryl, O-(C_1-C_4)-alkyl, O-aryll, O-(C_1-C_4)-alkenyl, O-arylene, O-(C_1-C_4)-alkynyl, O-arylene, O-(C_1-C_4)-alkyl-substituted aryl, O-(C(=O)-C_1-C_4)-alkylaryl, O-(C(=O)-NH-C_1-C_4)-alkyl, O-(C(=O)-O-(C_1-C_4)-alkyl)_2, NO_2, CN, CF_3, NH_2, NH_C(=O)-C_1-C_4-alkyl, NH_C(=O)-NH_2, COOH, C(=O)-O-(C_1-C_4)-alkyl, C(=O)-NH_2, C(=O)-NH-C_1-C_4-alkyl, C(=O)-O-(C_1-C_4)-alkyl, C(=O)-COOH, C_1-C_4-alkynyl-C(=O)-O-C_1-C_4-alkyl, SO_3H, SO_2(C_1-C_4)-alkyl, SO_2(C_1-C_4)-alkenylaryl, SO_2-N[(C_1-C_4)-alkyl]_2, SO_2-N[(C_1-C_4)-alkyl][[(C_1-C_4)-alkenylaryl], C(=O)-R(11), C_2-C_4-alkenyl-C(=O)-R(11), C_2-C_4-alkenyl-C(=O)-R(11), NH-C(=O)-C_1-C_10-alkenyl-C(=O)-R(11), O-C_1-C_11-alkenyl-C(=O)-R(11));

- R(11) C_1-C_4-alkyl, C_2-C_4-alkenyl, aryl, substituted aryl, NH_2, NH-C_1-C_4-alkyl, N-(C_1-C_4)-alkyl)_2, SO_3H, SO_2(C_1-C_4)-alkyl, SO_2(C_1-C_4)-alkenylaryl, SO_2-N[(C_1-C_4)-alkyl]_2, SO_2-N[(C_1-C_4)-alkenylaryl], X O, S or NH;

- R(7), R(8), R(9) and R(10) individually or collectively hydrogen, (C_1-C_4)-alkyl, (C_2-C_4)-cycloalkyl, aryl, (C_1-C_12)-alkenylaryl;

or

R(8) and R(9) together may be the part of a 5, 6 or 7-membered heterocyclic ring; A absent or a nontoxic organic or mineral acid.
Exemplary acids are hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, benzene sulfonic acid, toluene sulfonic acid, acetic acid, lactic acid, salicylic acid, benzoic acid, nicotinic acid, phthalic acid, oleic acid and oxalic acid.

Throughout this disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:

"Alkyl" means a saturated aliphatic hydrocarbon which may be either straight- or branched-chain. Preferred alkyl groups have no more than 12 carbon atoms and may be methyl, ethyl and structural isomers of propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl.

"Lower alkyl" means an alkyl group as above, having 1 to 6 carbon atoms. Examples of lower alkyl groups are methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, tert-butyl, n-pentyl, isopentyl and neopentyl.

"Cycloalkyl" means an aliphatic monocyclic saturated carbocyclic group. Preferred groups have 3 to 6 carbon atoms, and exemplary groups include cyclopropyl, cyclopentyl and cyclohexyl.

"Alkenyl" means an unsaturated aliphatic hydrocarbon. Preferred groups have no more than 12 carbon atoms. Exemplary groups include any structural and geometric isomers of ethyleny, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl and dodecenyl or butadienyl, pentadienyl.

"Lower alkenyl" means alkenyl of 2 to 6 carbon atoms. Preferred groups include ethenyl, propenyl, butenyl, isobutenyl, and all structural and geometrical isomers thereof.

"Alkynyl" means an unsaturated aliphatic hydrocarbon. Preferred groups have no more than 12 carbon atoms and contain one or more triple bonds, including any structural or isomers of ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl and dodecynyl.

"Lower alkynyl" means alkynyl of 2 to 6 carbon atoms. Preferred groups include structural isomers of propynyl, butynyl, and pentynyl.

"Aryl" means phenyl and substituted phenyl.

"Substituted Phenyl" means a phenyl group in which one or more of the hydrogens have been replaced by the same or different substituents including F, Cl, Br, I, (C1-C6)-alkyl, (C2-C6)-alkenyl, (C1-C6)-alkynyl, fluorinated, chlorinated, brominated or iodated (C1-C6)-alkyl, nitro, amino, acylamino, hydroxy, carbonyl, (C1-C6)-alkoxy, aryloxy (C1-C6)-alkanoyl, cyano, amido, (C1-C6)-alkoxy-amino, (C1-C6)-alkoxy-amino, ar-(C1-C6)-alkyl-amino, or (C1-C6)-alkyl-sulfon.

"Aralkyl" means an alkyl group in which one or more hydrogens have been substituted by an aryl group. Preferred groups are phenylalkyl and substituted phenylalkyl.

"Phenylalkyl" means an alkyl group substituted by a phenyl group.

"Substituted phenylalkyl" means a phenylalkyl group in which one or more phenyl hydrogen are replaced as given above with respect to substituted phenyl.

"Substituted phenalkenyl" means a phenalkenyl group in which the phenyl group is substituted as given above with respect to substituted phenyl.

"Heterocyclic ring" or "heterocycle" means a 3, 5, 6 or 7 membered ring having 1 to 3 hetero atoms which may be nitrogen, oxygen or sulfur, including pyrrole, pyrrolidine, pyridone, heptamethyleneiminiyl, pyrazole, pyridyl, pyrimidyl, pyrazolidyl, imidazolyl, isoxazolyl, furyl, thienyl, oxazolyl, thiazolyl, Piperidyl, morpholiny, oxazolidinyl, thiazolidinyl, pyrazolidinyl, imidazolidinyl, piperazinyln, thiomorpholiny and azepinyln and ethyleneiminiyl.

"Substituted heterocycle" means a heterocycle in which one or more of the hydrogens on the ring carbons have been replaced by substituents as given above with respect to substituted phenyl.

The term "halo" and "halogen" include all four halogens; namely fluorine, chlorine, bromine and iodine. The halo alkyls, halophenyl and halo-substituted pyridyl groups having more than one halo substituent which may be the same or different such as trifluoromethyl, 1-chloro-2-bromo-ethyl, chlorophenyl, and 4-chloropyridyl.

"Acyl" means an organic carbonyl radical of a (C1-C6)-alkanoic acid. Preferred acyl groups are (C1-C6)-alkanoyl groups such as acetyl and propionyl.

"Aryl" means an aromatic acid radical such as benzoyl, toluoyl.

"Lower alkanoyl" means the acyl radical of a lower alkanonic acid such as acetyl, propionyl, butyryl, valeryl, stearoyl.

"Alkoxyl" means an alkloxy group and includes hydroxy alkyl groups. Preferred (C1-C6)-alkoxy groups are methoxy, ethoxy, n-propoxy and isoproxy, isobutoxy, n-butoxy and t-butoxy.

Nontoxic organic or mineral acids A forming the addition salts are for example hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, benzene sulfonic acid, acetic acid, lactic acid, salicylic acid, benzoic acid, nicotinic acid, phthalic acid, steaacid, oleic acid and oxalic acid.

Preferred compounds of the invention are compounds of formula II.
wherein are:

R(1) hydrogen, C_1-C_4-alkyl, NR(12)R(13), C_1-C_4-alkyl-NH_2, aryl-(C_1-C_4)-alkyl-NH_2, O-aryl, C(=O)-NH[(C_1-C_6)-alkyl], C(=O)-N[(C_1-C_6)-alkyl]_2, C(=O)-O-(C_1-C_6)-alkyl, substituted (C_1-C_12)-aryl, substituted aryl;

R(12) and R(13) independently from each other hydrogen or alkyl having 1, 2, 3 or 4 carbon atoms;

R(2) hydrogen, C_1-C_4-alkyl, C_1-C_4-alkyl-NH_2, aryl-(C_1-C_12)-alkyl-NH_2, substituted (C_1-C_12)-alkyl, aryl, substituted aryl;

R(3), R(4), R(5) and R(6) individually or collectively F, Cl, Br, I, OH, O-(C_1-C_6)-alkyl, O-aryl, O-(C_1-C_6)-alkyl-aryl, O-substituted aryl, O-(C_1-C_6)-alkyl-substituted aryl, COOH, C(=O)-O-(C_1-C_6)-alkyl, CN, CF_3, NH_2, NH-(C_1-C_6)-alkyl, N[(C_1-C_6)-alkyl]_2, O-(C_1-C_6)-alkyl-NH_2, O-(C_1-C_6)-alkyl-NH(C_1-C_6)-alkyl, O-(C_1-C_6)-alkyl-NH(NH(C_1-C_6)-alkyl)O-(C_1-C_6)-alkyl-NH(NH(C_1-C_6)-alkyl), O-(C_1-C_6)-alkyl-NH(NH(C_1-C_6)-alkyl), O-(C_1-C_6)-alkyl-N[(C_1-C_6)-alkyl]_2, SO_2-(C_1-C_6)-alkyl, SO_2-(C_1-C_6)-alkyl, SO_2-H, SO_2-NH_2, SO_2-NH-(C_1-C_6)-alkyl, SO_2-N[(C_1-C_6)-alkyl]_2, heteroaryl, substituted heteroaryl;

X O, S or NH, but preferably X is O.

[0026] The compounds of the present invention may contain asymmetric centres, the invention relates to both compounds of the S and of the R configuration. The compounds can exist as optical isomers, as racemates or as mixtures thereof.

[0027] Representative examples of the compounds of this invention are listed in Table 1 and Table 2.

wherein are:

R(1) and R(3) H, CH_3;

R(2) CH_3;

X O

[0026] [0027]
Table 1

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>R(4)</th>
<th>R(5)</th>
<th>R(6)</th>
<th>A</th>
<th>M.P. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td>250-251</td>
</tr>
<tr>
<td>2.</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃SO₂H</td>
<td>226-227</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td>230-231</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>CH₃SO₂H</td>
<td>243-244</td>
</tr>
<tr>
<td>5.</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>CH₃SO₂H</td>
<td>210-212</td>
</tr>
<tr>
<td>6.</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>CH₃SO₂H</td>
<td>230-231</td>
</tr>
<tr>
<td>7.</td>
<td>I</td>
<td>H</td>
<td>H</td>
<td>CH₃SO₂H</td>
<td>215-216</td>
</tr>
<tr>
<td>8.</td>
<td>C₆H₅NSO₂</td>
<td>H</td>
<td>H</td>
<td>CH₃SO₂H</td>
<td>220-221</td>
</tr>
<tr>
<td>9.</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CH₃SO₂H</td>
<td>198-199</td>
</tr>
<tr>
<td>10.</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>CH₃SO₂H</td>
<td>180-181</td>
</tr>
<tr>
<td>11.</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>CH₃SO₂H</td>
<td>225-226</td>
</tr>
<tr>
<td>12.</td>
<td>H</td>
<td>H</td>
<td>I</td>
<td>CH₃SO₂H</td>
<td>235-236</td>
</tr>
</tbody>
</table>

wherein are:
R(1), R(2) and R(3)
H;
X = O
in formula II

Table 2

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>R(4)</th>
<th>R(5)</th>
<th>R(6)</th>
<th>A</th>
<th>M.P. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃SO₂H</td>
<td>164-165</td>
</tr>
<tr>
<td>14.</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>CH₃SO₂H</td>
<td>198-200</td>
</tr>
</tbody>
</table>

wherein X = O and A = CH₃SO₂H

Table 3

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>R(1)</th>
<th>R(2)</th>
<th>R(3)</th>
<th>R(4)</th>
<th>R(5)</th>
<th>R(6)</th>
<th>M.P. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>H</td>
<td>125-126</td>
</tr>
<tr>
<td>16.</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>235-236</td>
</tr>
<tr>
<td>17.</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>215-216</td>
</tr>
<tr>
<td>18.</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>225-226</td>
</tr>
<tr>
<td>19.</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>215-216</td>
</tr>
<tr>
<td>20.</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>210-211</td>
</tr>
<tr>
<td>21.</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>I</td>
<td>H</td>
<td>175-176</td>
</tr>
<tr>
<td>22.</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>220-221</td>
</tr>
<tr>
<td>23.</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>225-226</td>
</tr>
<tr>
<td>24.</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>230-231</td>
</tr>
<tr>
<td>25.</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>215-216</td>
</tr>
<tr>
<td>26.</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>215-216</td>
</tr>
</tbody>
</table>
The compounds of formula I are substituted acylguanidines. The most prominent representatives of the acylguanidines is the pyrazine derivative amiloride, which is used in therapy as a potassium-saving diuretic. Numerous other compounds of the amiloride type are described in the literature, such as, for example, dimethylamiloride or ethylisopropylamiloride.

Studies which indicate antiarrhythmic properties of amiloride moreover have been disclosed [Circulation 79, 1257-1263 (1989)]. However, wide use as an antiarrhythmic is impeded by the fact that this effect is only slight and occurs accompanied by an antihypertensive and saluretic action and these side effects are undesirable in the treatment of disturbances in cardiac rhythm.

Indications of antiarrhythmic properties of amiloride have also been obtained from experiments on isolated animal hearts [Eur. Heart J. 9 (supplement 1): 167 (1988) (book of abstracts)]. Thus, for example, it has been found on rat hearts that it was possible to suppress an artificially induced ventricular fibrillation completely by amiloride. The above mentioned amiloride derivative ethylisopropylamiloride was even more potent than amiloride in this model.

Benzoylguanidines having antiarrhythmic properties are described in European specification No 416 499 laid open to public inspection.

U.S. Patent 3,780,027 describes acylguanidines, which differ fundamentally from the compounds of formula I according to the invention described here in that they are trisubstituted benzoylguanidines which are derived in their substitution pattern from commercially available diuretics, such as bumetanide and furosemide and have an amino group, which is important for the saluretic action sought, in position 2 or 3 relative to the carbonylguanidine group. A potent saluretic activity is correspondingly reported for these compounds.

Circulation 79, 1257 - 1263 discloses antiarrhythmic properties of amiloride - a molecule containing an acylguanidine unit. US patent specifications 3 780, 2 734 904 and 4 544 670 disclose also acylguanidines. They relate to acylguanidines wherein the heterocyclic (Circulation) or phenyl (US patent specifications) residue is attached to the acylguanidine unit.

In the present invention the heterocyclic or aromatic residue is separated from the acylguanidine unit by an ethylenic bond in trans geometry in the form of a five-membered carbocyclic ring. It is found that these compounds have very good antiarrhythmic properties.

These compounds have considerable advantage over currently available antiarrhythmic pharmaceuticals and are useful as cardioprotective compounds for infant treatment and also for the treatment of angina pectoris.

It was surprising that the compounds according to the invention have no undesirable and adverse saluretic properties but very good antiarrhythmic properties, so they can be used for the treatment of health disorders, such as oxygen deficiency symptoms. As the result of their pharmacological properties, the compounds are outstandingly suitable as antiarrhythmic medicaments having a cardioprotective component for prophylaxis of infarction and treatment of infarction and for treatment of angina pectoris, where they also preventively inhibit or greatly reduce the pathophysiological processes in the development of ischémically induced damage, in particular the initiation of ischémically induced cardiac arrhythmias. Because of their protective actions against pathologial hypoxic and ischemic situation, the compounds of the formula I according to the invention, as a result of inhibition of the cellular Na+/H+ exchange mechanism, can be used as medicaments for the treatment of all acute or chronic damage caused by ischemia or diseases thereby induced primarily or secondarily. This applies to their use as medicaments for surgical interventions, for example organ transplants, where the compounds can be used both for protection of the organs in the donor before and during removal, for protection of organs removed, for example during treatment with or storage thereof in physiological bath fluids, and also during transfer to the recipient organism. The compounds are also valuable medicaments which have a protective action while angioplastical surgical interventions are carried out, for example on the heart and also on peripheral vessels. In accordance with their protective action against ischémically induced damage, the compounds are also suitable as medicaments for the treatment of ischemias of the nervous system, in particular the CNS, where they are suitable, for example, for the treatment of apoplexy or cerebral edema. The compounds of the formula I according to the invention moreover are also suitable for treatments of forms of shock, such as, for example, allergic, cardiogenic, hypovolemic and bacterial shock.

The compounds of formula I according to the invention furthermore are distinguished by a potent inhibiting
action on the proliferations of cells, for example fibroblast cell proliferation and proliferation of smooth vascular muscle cells. The compounds of the formula-I are therefore possible valuable therapeutics for diseases in which cell proliferation is a primary or secondary cause, and they can therefore be used as antiatherosclerotics and as agents delayed diabetic complications, cancer diseases, fibrotic diseases, such as pulmonary fibrosis, hepatic fibrosis or renal fibrosis, and organ hypertrophies and hyperplasias, in particular prostate hyperplasia or prostate hypertrophy.

[0038] The compounds according to the invention are effective inhibitors of the cellular sodium/proton antiport (Na+/H+ exchanger), which, in numerous diseases (essential hypertension, atherosclerosis, diabetes and the like) is also increased in those cells which are readily accessible for measurements, such as, for example, in erythrocytes, platelets or leukocytes. The compounds according to the invention are therefore suitable as outstanding and simple scientific tools, for example in their use as diagnostics for determination and differentiation of certain forms of hypertension, but also of atherosclerosis, diabetes, proliferative diseases and the like. The compounds of the formula-I furthermore are suitable for preventive therapy for prevention of the origin of high blood pressure, for example essential hypertension.

[0039] This invention also relates to the process for preparation of compounds of formula-I. The preparation of the compounds of the invention are illustrated, but not limited, by preparation of exemplary compounds of the invention.

[0040] The synthesis of compounds of formula-I, when R(2) other than H, was achieved through intermediate of formula-III,

\[
\begin{array}{c}
R(5) \\
R(4) \\
R(3) \\
(6) \\
(1) \\
O \text{C}_2\text{H}_5 \\
\end{array}
\]

which in turn are made through methods known to men of art in synthesis. One of the methods is by generating the anion on activated methylene by NaH/THF followed by alkylation using substituted benzyl bromides. Compounds of formula-III are converted into 3-substituted-indene-2-carboxylic acids of formula-IV on treatment with concentrated sulfuric acid at room temperature in 10-12 hours and subsequent aqueous work-up.

[0041] The synthesis of compounds of formula-I, when R(2) = H, was achieved through the intermediate of formula-V,

\[
\begin{array}{c}
R(4) \\
R(3) \\
R(6) \\
R(5) \\
(1) \\
O \text{C}_2\text{H}_5 \\
\end{array}
\]

which in turn are made through methods known to men of art in synthesis. One of the methods is by generating the anion on the activated methylene next to carbonyl group using butyl lithium followed by acylation using ethyl chloroformate. Alternatively same product can be achieved using the method of enamine acylation of carbonyl compounds. Compounds of formula-V are converted into indene-2-carboxylic acids of formula-IV.
on reduction of carbonyl group by sodium borohydride followed by acid catalyzed (p-toluenesulfonic acid) dehydration in dry benzene.

Values of R(1), R(2), R(3), R(4), R(5) and R(6) for formula III, IV and formula VI

have same meaning as have been defined for formula I. For formula V R(1), R(3), R(4), R(5) and R(6) have same values as have been defined for formula I. The invention also relates to a process for the preparation of compounds of formula I, which comprises of reacting compounds of formula VI with a free guanidine or with a compound of formula VII

in which R(7), R(8), R(9) and R(10) have values as defined earlier in formula I and Y is a leaving group which can be easily displaced by a nucleophile.

The activated acid derivatives of the formula VI in which Y is an alkoxy group, preferably a methoxy group, an activated phenoxy group, a phenylthio, methylthio, 2-pyridylthio group or a nitrogen heterocycle, such as imidazolyl, which can be prepared from acid chloride (formula VI; Y = Cl) which in turn can be prepared from acid, formula-IV on treatment with thionyl chloride. Other activating ester methods can be used, which are known in peptide area to activate the acid for coupling reaction. The imidazolides of formula VI, Y = imidazolides, can also be prepared from a compound of formula IV, by treating it with 1,1-carbonyldimidazole [C. Staab, Angew. Chem. Int. Eng Edn. 351-367 (1962)]. Compound of formula VI (Y = Cl) on treatment with the compound of formula VII under Schotten-Baumann condition, also gives compound of formula I. Other mixed anhydride related to formula VI may be prepared, such as with CICOCl, tosyl chloride, triethylphosphoryl chloride in the presence of triethylamine or any other base in an inert solvent. Activation of the COOH group in the compounds of the formula IV can also be achieved with DCC. Other methods of preparation of activated carboxylic acid derivative of formula VI type are given with indication of source lit. in J. March, Advanced Organic Chemistry, 3rd Edition (John Wiley & Son, 1985), p. 350. Coupling reaction between compounds of formula VI and VII can be conducted in variety of ways in protic or aprotic polar solvents, but inert organic solvents are preferred. In this connection methanol, THF, DMF, N-methylpyrrolidone, HMPA etc., between room temperature and boiling point of these solvents have proved suitable for the reaction of the formula VI (Y = OMe) with guanidine. Reaction of com-
pounds of formula VI with salt free guanidine are advantageously carried out in aprotic inert solvents such as THF, dimethoxy ethane, DMF or dioxane. In case where compound of formula IV is directly treated with carbonyldimidazole for activating the carbonyl group, aprotic polar solvents such as DMF, dimethoxy ethane are used, followed by the addition of compound of formula VII. Compounds of the formula I may be converted into pharmaceutically acceptable acid addition salts with exemplary salts as described earlier in this disclosure.

[0044] The active compounds of the present invention may be administered orally, parenterally, intravenously, rectally or by inhalation, the preferred administration being dependent on the specific clinical need of the disorder. In this connection, the compounds of formula I can also be used alone or together with pharmaceutical auxiliaries, and indeed both in veterinary and in human medicine. Which auxiliaries are suitable for the desired pharmaceutical formulation is familiar to the person skilled in the art on the basis of his expert knowledge. In addition to solvents, gel-forming agents, suppository bases, tablet auxiliaries and other active compound carriers, antioxidants, dispersants, emulsifiers, deforming agents, flavor correctors, preservatives, solubilizers or colorants can be used.

[0045] For a form for oral use, the active compounds are mixed with the additives suitable for this purpose, such as excipients, stabilizers or inert diluents and are brought into the forms suitable of administration, such as tablets, coated tablets, hard gelatin capsules, aqueous, alcoholic or oily solutions, by the customary methods. Inert carriers which can be used are, for example, gum arabic, magnesium, magnesium carbonate, potassium phosphate, lactose, glucose or starch, in particular corn starch. In this case, preparation can take place both as dry and as moist granules. Suitable oily excipients or solvents are, for example, vegetable or animal oils, such as sunflower oil or cod liver oil.

[0046] For subcutaneous or intravenous administration, the active compounds, of desired with the substances customary for this purpose such solubilizers, emulsifiers or other auxiliaries, are brought into solution, suspension or emulsion. Possible solvents are, for example: water, physiological saline solution or alcohols, for example ethanol, propanol, glycerol, in addition also sugar solutions such as glucose or mannitol solutions, or alternatively, a mixture of the various solvents mentioned.

[0047] Pharmaceutical formulations suitable for administration in the form of aerosols or sprays are, for example, solutions, suspensions or emulsions of the active compound of formula I in pharmaceutically acceptable solvent, such as, in particular, ethanol or water, or a mixture of such solvents. If required, the formulation may also contain other pharmaceutical auxiliaries such as surfactants, emulsifiers and stabilizers and also a propellant gas. Such a preparation customarily contains the active compound in a concentration of about 0.1 to 10%, in particular of about 0.3 to 3% by weight.

[0048] The dosage of the active compound of the formula I to be administered and the frequency of administration depend on the potency and duration of action of the compounds used, and additionally also on the nature and severity of the disease to be treated and on the sex, age, weight and individual responsiveness of the mammal to be treated.

[0049] On an average, the daily dose of a compound of the formula I in a patient of about 75 kg weight is at least 0.001 mg, preferably 0.01 mg to at most 10 mg, preferably at most 1.0 mg per kg of weight. In acute outbreaks of the illness, for example immediately after suffering a cardiac infarction, still higher and above all, more frequent dosages may also be necessary, for example up to 4 individual doses per day. In particular on i.v use, for example in an infarct patient in the intensive care unit, up to 100 mg per day may be necessary.

Experimental Section:

[0050] The synthesis of representative examples, 3-methylindene-2-oylguanidine-monohydrochloride (compound No. 1 of formula I in Table 1) and Indene-2-oylguanidine-methanesulfonic acid (compound no. 13 of formula I in Table-2) are described, other compounds were also synthesized using such/other sequences.

A. Synthesis of Compound No 1 in Table 1:

a. Synthesis of compounds with formula III:

[0051] NaH (13.8 g, 0.6 mole) was washed twice with hexane (2 x 50 ml) and suspended in 250 ml of freshly distilled THF. Next ethyl acetoacetate (75 ml, excess) was added dropwise carefully while the receiving flask was cooled at -10°C. After the addition was complete, it was stirred at -10°C for 2 hours and at room temperature for 30 min. Benzylbromide (51.0 g, 0.3 mole) in THF was added dropwise at room temperature to the above solution. The reaction mixture was stirred overnight at room temperature. The reaction was terminated the next day by pouring into ice cold water, brought to neutral pH, and extracted with ether/ethylacetate. The combined ether/ethylacetate extracts were rinsed over brine and dried over Na₂SO₄. Removal of the solvent followed by carefully vacuum distillation gave ethyl-benzyllactoacetate, bp 276°C.

[0052] IR: (neat), cm⁻¹: 2900-3050, 1690-1760 (broad), 1655.

[0053] NMR (CDCl₃): δ: 1.25 (t, 3H, CH₂CH₃); 2.25 (s, 3H, COCH₃); 3.20 (d, 2H, benzyl CH₂); 3.8 (t, 1H, COCH-
EP 0 738 712 B1

CO); 4.20 (q, 2H, OCH₂CH₃); 7.15-7.36 (m, 5H, Ar-H).

b. Synthesis of Compounds with formula IV:

[0054] Ethyl-benzylacetocetate (37 g) was added to a mixture of sulphuric acid (58%, 360 g) and water (15 g) cooled to -2°C during 45 min, under vigorous stirring. The solution, now dark reddish brown, was stirred at 4°C for 2 hours and then overnight at 15-20°C, it was then poured into ice-water (2.0 l). This mixture was heated to 50-60°C to coagulate the sludge and was then filtered and worked up. The 3-methylindene-2-carboxylic acid was purified by column chromatography followed by recrystallization, mp 200 °C.

[0055] IR: (KBr), cm⁻¹: 2900-3100 (broad), 1640-1660, 1600.

[0056] NMR: (CDCl₃); δ: 2.45 (s, 3H, CH₃); 3.55 (s, 2H, CH₂); 7.20-7.40 (m, 4H, Ar-H).

<table>
<thead>
<tr>
<th>Analysis</th>
<th>C %</th>
<th>H %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcd. for C₁₁H₁₀O₂</td>
<td>76.99</td>
<td>5.79</td>
</tr>
<tr>
<td>Found</td>
<td>76.43</td>
<td>5.86</td>
</tr>
</tbody>
</table>

c. Synthesis of Compounds with formula I:

[0057] 1.0 g of 3-methylindene-2-carboxylic acid and 5 ml thionyl chloride were refluxed for 4 hours. Careful removal of the solvent by distillation under reduced pressure gave 3-methylindene-2-yl chloride. The acid chloride dissolved in THF was dropped into a mixture of guanidine and sodium hydroxide at room temperature over a period of 10 min. and stirred for one hour. The reaction was terminated by work-up and the product was purified by column chromatography. 3-Methylindene-2-ylguanidine-monohydrochloride was obtained by dissolving the free base in methanol followed by adding ethereal HCl up to pH 2.0 and stirring. The salt was precipitated out with cooling in an ice-bath.

White crystalline powder, mp 250 - 251 °C.

IR: (KBr), cm⁻¹: 3100-3350 (broad); 1690, 1655.

NMR: (CDCl₃); δ: 2.45 (s, 3H, CH₃); 4.0 (s, 2H, CH₂); 7.4-7.7 (m, 4H, Ar-H); 8.4 (bs, 2H, NH₂, exchangeable with D₂O)

<table>
<thead>
<tr>
<th>Analysis</th>
<th>C %</th>
<th>H %</th>
<th>N %</th>
<th>Cl %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcd. for C₁₂H₁₆O₂N₂Cl</td>
<td>53.42</td>
<td>5.90</td>
<td>15.57</td>
<td>13.16</td>
</tr>
<tr>
<td>Found</td>
<td>53.12</td>
<td>5.42</td>
<td>15.94</td>
<td>13.68</td>
</tr>
</tbody>
</table>

B. Synthesis of Compound No 13 in Table 2:

d. Synthesis of Compounds with formula V:

[0058] 1-Indanone (1.5 g, 11.36 mmols) was dissolved in dry THF in a three neck flask equipped with nitrogen inlet, septum and a gaurd tube. The flask was cooled to -20 °C for 10 minutes. Then butyl lithium (11.37 ml, 12.48 mmols) was added dropwise through the septum using the syringe. The reaction mixture was allowed to stand at -20 °C for 45 minutes and then ethyl chloroformate (1.08 ml, 10 mmols) was added dropwise using a syringe. The reaction mixture was stirred at -20 °C for 30 minutes and slowly brought to room temperature in about one hour. The reaction was worked-up by evaporating the THF and the product was chromatographed to yield 2-carbethoxy-1-indanone.

NMR: (CDCl₃); δ: 1.25 (t, 3H, OCH₂CH₃); 3.45 (d, 2H, benzylic CH₂); 3.65 (t, 1H, COCHCO); 4.2 (q, 2H, OCH₂CH₃); 7.4-7.5 (m, 4H, Ar-H).

e. Synthesis of compounds with formula IV:

[0059] 2-Carbethoxy-1-indanone was dissolved in dry methanol at room temperature, to which sodium borohydride was added in three lots while the reaction mixture was kept stirring. The reaction mixture was further stirred for 30 minutes, after which the solid was filtered and the filtrate was evaporated to dryness. The residue was dissolved in dry benzene, to which catalytic amount of p-toluenesulfonylic acid was added and the reaction mixture was stirred for one hour. The p-toluenesulfonylic acid was filtered off and the filtrate was concentrated to yield ethyl indene-2-carboxylate.

The ethyl indene-2-carboxylate was dissolved in methanol and 1.0 equivalent of aqueous sodium hydroxide solution was added and the reaction mixture was kept stirring for overnight. The next day, the reaction was terminated by evaporating the methanol, followed by diluting the residue with water, brought to neutral pH and the precipitated indene-2-carboxylic acid was filtered.
EP 0 738 712 B1

[0060] NMR: (CDCl₃); δ: 3.75 (s, 2H, benzylic CH₂); 7.4-7.7 (m, 4H, Ar-H); 7.95 (s, 1H, olefinic H).

1. Synthesis of compounds of formula I:

[0061] The same procedure described earlier in experimental section A-c for the preparation of compound No 1 was followed for the synthesis of compound 15 in table 2 from indene-2-carboxylic acid.

[0062] Indene-2-cyguanine-methanesulfonic acid was obtained by dissolving the free base in ethyl acetate at room temperature followed by addition of methanesulfonic acid (1 eq). The salt was precipitated out with cooling in an ice-bath.

Yellow crystalline powder, mp 164 - 165 °C
NMR: (CDCl₃); δ: 3.75 (s, 2H, benzylic CH₂); 7.4-7.7 (m, 4H, Ar-H); 8.05 (s, 1H, olefinic H); 8.35 and 11.09 (bs, NH and NH₂, exchangeable with D₂O).

Pharmacological methods to evaluate Antiarrhythmic and Cardioprotective action:

Sodium -Proton exchange inhibition in rabbit erythrocytes:

[0063] Albino rabbits of New Zealand strain were fed with 2 % cholesterol diet for six weeks prior to collecting blood for the determination of Na⁺/H⁺-exchanger activity in the erythrocytes. Hypercholesteremia has been reported to increase the exchanger activity in the rabbit erythrocytes (Schoel et al. 1990: Arteriosklrose - Neue Aspekte aus Zellbiologie und Molekulargenetik, Epidemiologie und Klinik; Asamann, G. et al. Eds, Braunschweig, Wiesbaden, Vieweg, 296-302). Blood samples were collected from the ear vein and hematocrit was determined. About 200 µl of blood was incubated at 37°C for 1 hour with hyperosmolar sucrose buffer containing 0.1 mM Ouabain in the presence and absence of test sample. After the incubation period, the reaction was stopped by addition of 5 ml of ice cold MgCl₂ solution containing 0.1 mM MgCl₂ solution. The erythrocytes were washed three times with 5 ml quantities of MgCl₂ solution. They were hemolysed by the addition of 4 ml of distilled water and the sodium content of the hemolyzed was determined by flame-photometry. The activity of the test compound was determined by its ability to reduce the sodium content of the erythrocyte and was expressed as IC₅₀ which is the concentration necessary to reduce the erythrocyte sodium content to 50%.

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.09</td>
</tr>
<tr>
<td>10</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Reperfusion Induced Arrhythmias in the isolated rat heart:

[0064] Male Charles Foster rats of either sex (250 - 300 g) were sacrificed by stunning and exsanguination. Hearts were quickly removed and perfused according to Langendorff’s method. Different concentrations of test compound were added into the perfusing medium. After 20 min of the equilibration period Left Anterior Descending (LAD) coronary artery was ligated. 15 minutes later the ligature was removed and reperfusion was allowed for next 30 minutes. During reperfusion period ECG was monitored. Duration of Ventricular Fibrillation (VFD) was the main parameter of assessment. Anti-arrhythmic activity was examined as the concentration of the test compound required to cause a 50% reduction of the VFD.

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>IC₅₀ for VFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.025 µM</td>
</tr>
<tr>
<td>10</td>
<td>0.017 µM</td>
</tr>
</tbody>
</table>

Ischemia-Induced Arrhythmias in Anaesthetized Rats:

[0065] Male Charles Foster rats (220 - 260 g) were anaesthetized with Pentobarbitone sodium. Animals were artificially ventilated. Blood pressure was recorded through carotid artery. Thoracotomy was performed to expose the heart. Left Anterior Descending (LAD) coronary artery was identified. Test compound was administered either orally 10 min-
utes before anaesthesia (40 minutes before LAD artery ligation) or intravenously (5 minutes before LAD artery ligation). Resulting arrhythmias during the 15 minute period of ligation were recorded and analyzed according to Lambeth Convention (Walker M.J.A., et al, 1968. Cardiovascular Research, 22, 447 - 455). Antiarrhythmic effect of the test compound was expressed as dose dependent inhibition of the duration of Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF).

<table>
<thead>
<tr>
<th>Oral Administration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound No.</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intravenous Administration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound No.</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
</tr>
</tbody>
</table>

*NP - No protection

Myocardial Infarction in the Anaesthetized Rat:

[0066] Rats were prepared as in earlier experiments. Compounds were administered intravenously 5 minutes before ligation. The experiment consisted of one hour of ligation followed by one hour of reperfusion. Myocardial infarction was assessed by double dye technique using Evans blue and 2,3,5-Triphenyltetrazolium to identify area at risk and area of infarction respectively. Extent of infarction was expressed as a percent of area at risk. (Simpson et al, 1967, Circulation Research, 60, 666-673)

<table>
<thead>
<tr>
<th>Table 7:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound No.</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
1. An indenoylguanidine of formula I

wherein are:

R(1) and R(2) individually or collectively hydrogen, alkyl having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, cycloalkyl having 3, 4, 5 or 6 carbon atoms, O-alkyl having 1, 2, 3 or 4 carbon atoms, O-C(=O)-alkyl having 1, 2, 3 or 4 carbon atoms, C_m^1H_{2m-1}NR(12)R(13);

R(12) and R(13) independently from each other hydrogen or alkyl having 1, 2, 3 or 4 carbon atoms, zero, 1, 2, 3 or 4;

NH-C(=O)-NH_2, C(=O)-O-alkyl having 1, 2, 3 or 4 carbon atoms, C(=O)-NH_2, C(=O)-NH-alkyl having 1, 2, 3 or 4 carbon atoms, C(=O)-N(alkyl)_2 having 1, 2, 3 or 4 carbon atoms in each alkyl group, alkenyl having 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, alkenyl having 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms in the alkenyl group, alkenyl-aryl having 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms in the alkenyl group, alkynyl-aryl having 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms in the alkynyl group, C_1-C_4-alkyl-substituted-aryl, C_1-C_4-alkyl-heteroaryl, C_1-C_4-alkenyl-heteroaryl, aminoalkyl-aryl having 1, 2, 3 or 4 carbon atoms in the alkyl group, substituted-aryl, heteroaryl and substituting heteroaryl;

R(3), R(4), R(5) and R(6) individually or collectively hydrogen, alkyl having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, O-alkyl having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, F, Cl, Br, I, OH, aryl, substituted aryl, heteroaryl, substituted heteroaryl, O-(C_1-C_6)-alkyl, O-aryl, O-(C_1-C_6)-aryl, O-substituted aryl, O-(C_1-C_6)-alkyl-substituted aryl, O-C(=O)-C_1-C_4-alkyl-aryl, O-C(=O)-NH-C_1-C_4-alkyl, O-C(=O)-N(C_1-C_4-alkyl)_2, NO_2, CN, CF_3, NH_2, NH-C(=O)-C_1-C_4-alkyl, NH-C(=O)-NH_2, COOH, C(=O)-O-C_1-C_4-alkyl, C(=O)-NH_2, C(=O)-NH-C_1-C_4-alkyl, C(=O)-N(C_1-C_4-alkyl)_2, C_1-C_4-COOH, C_1-C_4-alkyl-C(=O)-O-C_1-C_4-alkyl, SO_3H, SO_2alkyl, SO_2alkylaryl, SO_2-N[(C_1-C_12)-alkyl][(C_1-C_12)-alkylaryl]], C(=O)-R(11), C_1-C_10-alkyl-C(=O)-R(11), C_2-C_10-alkenyl-C(=O)-R(11), NH-C(=O)-C_1-C_10-alkyl-C(=O)-R(11), C_1-C_11-alkyl-C(=O)-R(11), R(11)

C_1-C_4-alkyl, C_1-C_4-alkynyl, aryl, substituted aryl, NH_2, NH-C_1-C_4-alkyl, N-(C_1-C_4-alkyl)_2, SO_3H, SO_2alkylaryl, SO_2-N[(C_1-C_12)-alkyl][(C_1-C_12)-alkylaryl]];

X O, S or NH;

R(7), R(8), R(9) and R(10) individually or collectively hydrogen, alkyl, cycloalkyl, aryl, alkylaryl or together may be the part of a 5, 6 or 7-membered heterocyclic ring;

R(8) and R(9) absent, or a nontoxic organic or mineral acid.

2. A compound as claimed in claim 1 of the formula II
wherein are:

R(1) hydrogen, C₁₋C₄-alkyl, NR(12)R(13), C₁₋C₄-alkyl-NH₂, aryl-(C₁₋C₄)-alkyl-NH₂, O-(C₁₋C₄)-alkyl, C(O)-NH(C₁₋C₄)-alkyl, C(O)-N[(C₁₋C₄)-alkyl]₂, C(O)-O-(C₁₋C₄)-alkyl, substituted (C₁₋C₁₂)-alkyl, aryl, substituted aryl;

R(12) and R(13) independently from each other hydrogen or alkyl having 1, 2, 3 or 4 carbon atoms.

R(2) hydrogen, C₁₋C₄-alkyl, C₁₋C₄-alkyl-NH₂, aryl-(C₁₋C₄)-alkyl-NH₂, substituted (C₁₋C₄)-alkyl, aryl, substituted aryl;

R(3), R(4), R(5) and R(6) individually or collectively F, Cl, Br, I, OH, O-(C₁₋C₆)-alkyl, O-aryl, O-(C₁₋C₆)-alkyl-aryl, O-aryl-substituted aryl, O-(C₁₋C₆)-alkyl-aryl-substituted aryl, COOH, C(O)-O-(C₁₋C₆)-alkyl, CN, CF₃, NH₂, NH-(C₁₋C₆)-alkyl, N[(C₁₋C₆)-alkyl]₂, O-(C₁₋C₆)-alkyl-NH₂, O-(C₁₋C₆)-alkyl-NH[(C₁₋C₆)-alkyl], O-(C₁₋C₆)-alkyl-NH(N(C₁₋C₆)-alkyl), SO₂-(C₁₋C₆)-alkyl, SO₃H, SO₂-NH₂, SO₂-NH-(C₁₋C₆)-alkyl, SO₂-N[(C₁₋C₆)-alkyl]₂, heteroaryl (selected from the group consisting of pyridyl, thiényl, furyl, quinyl and isoquinyl) or heteroaryl, substituted by 1 - 3 substituents selected from the group consisting of F, Cl, Br, I, OH, NH₂, O-(C₁₋C₆)-alkyl, O-(C₁₋C₆)-alkyl-aryl, COOH, C(O)-O-(C₁₋C₆)-alkyl, CN, NH-(C₁₋C₆)-alkyl, N[(C₁₋C₆)-alkyl]₂, SO₃H, SO₂-NH₂, SO₂-NH-(C₁₋C₆)-alkyl, SO₂-N[(C₁₋C₆)-alkyl]₂.

X O, S or NH.

3. A compound of formula I or II as claimed in one or more of claims 1 - 2, wherein are:

R(1) hydrogen, C₁₋C₄-alkyl, NR(12)R(13), C₁₋C₄-alkyl-NH₂, aryl-(C₁₋C₄)-alkyl-NH₂, O-(C₁₋C₄)-alkyl, C(O)-NH(C₁₋C₆)-alkyl, C(O)-N[(C₁₋C₆)-alkyl]₂, C(O)-O-(C₁₋C₆)-alkyl, substituted (C₁₋C₁₂)-alkyl, aryl, substituted aryl;

R(12) and R(13) independently from each other hydrogen or alkyl having 1, 2, 3 or 4 carbon atoms.

R(2) hydrogen, C₁₋C₄-alkyl, C₁₋C₄-alkyl-NH₂, aryl-(C₁₋C₄)-alkyl-NH₂, substituted (C₁₋C₄)-alkyl, aryl, substituted aryl;

R(3), R(4), R(5) and R(6) individually or collectively F, Cl, Br, I, OH, O-(C₁₋C₆)-alkyl, O-aryl, O-(C₁₋C₆)-alkyl-aryl, O-aryl-substituted aryl, O-(C₁₋C₆)-alkyl-aryl-substituted aryl, COOH, C(O)-O-(C₁₋C₆)-alkyl, CN, CF₃, NH₂, NH-(C₁₋C₆)-alkyl, N[(C₁₋C₆)-alkyl]₂, O-(C₁₋C₆)-alkyl-NH₂, O-(C₁₋C₆)-alkyl-NH[(C₁₋C₆)-alkyl], O-(C₁₋C₆)-alkyl-NH(N(C₁₋C₆)-alkyl), SO₂-(C₁₋C₆)-alkyl, SO₃H, SO₂-NH₂, SO₂-NH-(C₁₋C₆)-alkyl, SO₂-N[(C₁₋C₆)-alkyl]₂, heteroaryl (selected from the group consisting of pyridyl, thiényl, furyl, quinyl and isoquinyl) or heteroaryl, substituted by 1 - 3 substituents selected from the group consisting of F, Cl, Br, I, OH, NH₂, O-(C₁₋C₆)-alkyl, O-(C₁₋C₆)-alkyl-aryl, COOH, C(O)-O-(C₁₋C₆)-alkyl, CN, NH-(C₁₋C₆)-alkyl, N[(C₁₋C₆)-alkyl]₂, SO₃H, SO₂-NH₂, SO₂-NH-(C₁₋C₆)-alkyl, SO₂-N[(C₁₋C₆)-alkyl]₂.

X O.
4. A process for the preparation of a compound of formula I as claimed in claim 1 which comprises

a) reacting a compound of formula VI

 \[\text{VI} \]

 in which R(1), R(2), R(3), R(4), R(5) and R(6) are defined as in claim 1, and in which Y is a leaving group
 selected from -O-(C_1-C_4)-alkyl, F, Cl, Br, I or imidazoyl, with a guanidine of formula VII

 \[\text{VII} \]

 in which R(7), R(8), R(9) and R(10) are defined as in claim 1,
 and, if appropriate, converting the product into a pharmaceutically tolerated salt.

5. The use of a compound of formula I as claimed in claim 1 for the production of a medicament for the treatment of
cardiac arrhythmias.

6. The use of a compound of formula I as claimed in claim 1 for the preparation of a medicament for the treatment
or prophylaxis of cardiac infarction.

7. The use of compound of formula I as claimed in claim 1 for the preparation of a medicament for the treatment or
prophylaxis of angina pectoris.

8. The use of a compound of formula I as claimed in claim 1 for the preparation of a medicament for the treatment
or prophylaxis of ischemic states of the heart.

9. The use of a compound of formula I as claimed in claim 1 for the preparation of a medicament for the treatment
or prophylaxis of ischemic states of the peripheral and central nervous system and of apoplexy.

10. The use of a compound of formula I as claimed in claim 1 for the preparation of a medicament for the treatment
or prophylaxis of ischemic states of peripheral organs and extremities.

11. The use of a compound of formula I as claimed in claim 1 for the preparation of a medicament for the treatment
of shock states.

12. The use of a compound of formula I as claimed in claim 1 for the preparation of a medicament for use in surgical
operations and organ transplants.

13. The use of a compound of formula I as claimed in claim 1 for the preparation of a medicament for the preservation
and storage of transplants for surgical measures.
14. The use of a compound of formula I as claimed in claim 1 for the preparation of a medicament for the treatment of diseases in which cell proliferation is a primary or secondary cause.

15. A medicine comprising an effective amount of a compound of formula I as claimed in one or more of claims 1 to 3.

Patentansprüche

1. Indenoylguanidin der Formel I

![Diagram of compound I](image)

worin:

R(1) und R(2) einzeln oder gemeinsam Wasserstoff, Alkyl mit 1, 2, 3, 4, 5, 6, 7, 8, 9, oder 10 Kohlenstoffatomen, Cycloalkyl mit 3, 4, 5 oder 6 Kohlenstoffatomen, O-Alkyl mit 1, 2, 3 oder 4 Kohlenstoffatomen, O-C(=O)-Alkyl mit 1, 2, 3 oder 4 Kohlenstoffatomen, C_{m}^{n}H_{2m-n}NR(12)R(13); R(12) und R(13) unabhängig voneinander Wasserstoff oder Alkyl mit 1, 2, 3 oder 4 Kohlenstoffatomen sind.

m 0, 1, 2, 3 oder 4 beträgt;

NH-C(=O)-NH_{2}, C(=O)-O-Alkyl mit 1, 2, 3 oder 4 Kohlenstoffatomen, C(=O)-NH_{2}, C(=O)-NH-Alkyl mit 1, 2, 3 oder 4 Kohlenstoffatomen, C(=O)-N(Alkyl)_{2} mit 1, 2, 3 oder 4 Kohlenstoffatomen in jeder Alkylgruppe, Alkenyl mit 2, 3, 4, 5, 6, 7, 8, 9 oder 10 Kohlenstoffatomen, Alkynyl mit 2, 3, 4, 5, 6, 7, 8, 9 oder 10 Kohlenstoffatomen, Alkylaryl mit 1, 2, 3 oder 4 Kohlenstoffatomen in der Alkylgruppe, Alkenylaryl mit 2, 3, 4, 5, 6, 7, 8, 9 oder 10 Kohlenstoffatomen in der Alkylgruppe, Alkynylaryl mit 2, 3, 4, 5, 6, 7, 8, 9 oder 10 Kohlenstoffatomen in der Alkylgruppe, C_{1}-C_{4}-Alkyl-substituiertes Aryl, C_{1}-C_{4}-Alkyl-heteroaryl, C_{1}-C_{4}-Alkenyl-heteroaryl, Aminoaalkylaryl mit 1, 2, 3 oder 4 Kohlenstoffatomen in der Alkylgruppe, substituiertes Aryl, Heteroaryl und substituiertes Heteroaryl darstellen;

R(3), R(4), R(5) und R(6) einzeln oder gemeinsam Wasserstoff, Alkyl mit 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 Kohlenstoffatomen, O-Alkyl mit 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 Kohlenstoffatomen, F, Cl, Br, I, OH, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, O-(C_{1}-C_{4})-Alkyl, O-Aryl, O-(C_{1}-C_{4})-Alkylaryl, O-substituiertes Aryl, O-(C_{1}-C_{4})-Alkyl-substituiertes Aryl, O-C(=O)-C_{1}-C_{4}-Alkylaryl, O-C(=O)-NH-C_{1}-C_{4}-Alkyl, O-C(=O)-N(C_{1}-C_{4}-Alkyl)_{2}, NO_{2}, CN, CF_{3}, NH_{2}, NH-C(=O)-C_{1}-C_{4}-Alkyl, NH-C(=O)-NH_{2}, COOH, C(=O)-O-C_{1}-C_{4}-Alkyl, C(=O)-NH_{2}, C(=O)-NH-C_{1}-C_{4}-Alkyl, C(=O)-N(C_{1}-C_{4}-Alkyl), COOH, C_{1}-C_{4}-Alkylaryl, C_{1}-C_{4}-Alkyl-C(=O)-O-C_{1}-C_{4}-Alkyl, SO_{2}H, SO_{2}-Alkyl, SO_{2}-Alkylaryl, SO_{2}-N-[C_{1}-C_{4}-Alkyl]_{2}, SO_{2}-N-[C_{1}-C_{4}-Alkyl]_{2}, [C_{1}-C_{4}-Alkylaryl], C(=O)-R(11), C_{1}-C_{10}-Alkyl-C(=O)-R(11), C_{2}-C_{10}-Alkenyl-C(=O)-R(11), C_{2}-C_{10}-Alkenyl-C(=O)-R(11), NH-C(=O)-C_{1}-C_{10}-Alkyl-C(=O)-R(11), O-C_{1}-C_{11}-Alkyl-C(=O)-R(11) bedeuten;

R(11) C_{1}-C_{4}-Alkyl, C_{1}-C_{4}-Alkiny, Aryl, substituiertes Aryl, NH_{2}, NH-C_{1}-C_{4}-Alkyl, N-(C_{1}-C_{4}-Alkyl)_{2}, SO_{2}H, SO_{2}-Alkyl, SO_{2}-Alkylaryl, SO_{2}-N-[C_{1}-C_{4}-Alkyl]_{2}, SO_{2}-
EP 0 738 712 B1

N[(C₆H₄-C₁₂)-Alkyl][(C₅H₅-C₁₄)-Alkylaryl]] ist;
O, S oder NH darstellt;
oder
einzelner oder gemeinsam Wasserstoff, Alkyl, Cycloalkyl, Aryl, Alkylaryl bedeuten;
or
gemeinsam Teil eines 5-, 6- oder 7gliedrigen heterocyclischen Ringes sein kön-
nen;
A fehlt, oder eine nichttoxische, organische Säure oder Mineralsäure bedeutet.

2. Verbindung nach Anspruch 1 der Formel II

![Chemical Structure](image)

worin

R(1) Wasserstoff, C₁-c₂-Alkyl, NR(12)R(13), C₁-c₂-Alkyl-NH₂, Aryl-[(C₁-c₁₂)-alkyl-
NH₂, O-[(C₁-c₁₂)-Alkyl, C(=O)-NH[(C₁-c₅)-Alkyl], C(=O)-N[(C₁-c₄)-Alkyl]₂
C(=O)-O-[(C₁-c₅)-Alkyl, substituiertes (C₁-c₁₂)-Alkyl, Aryl, substituiertes Aryl be-
deutet;
oder
R(12) und R(13) unabhängig voneinander Wasserstoff oder Alkyl mit 1, 2, 3 oder 4 Kohlenstoff-
atomen darstellen;
R(2) Wasserstoff, C₁-c₂-Alkyl, C₁-c₂-Alkyl-NH₂, Aryl-[(C₁-c₁₂)-alkyl-NH₂, substituier-
tes (C₁-c₁₂)-Alkyl, Aryl, substituiertes Aryl;
30 R(3), R(4), R(5) und R(6) einzeln oder gemeinsam F, Cl, Br, I, OH, O-(C₁-c₅)-Alkyl, O-Aryl, O-(C₁-c₆)-
Alkyl-aryl, O-substituiertes Aryl, O-(C₁-c₂)-Alkyl-substituiertes Aryl, COOH,
C(=O)-O-(C₁-c₅)-Alkyl, CN, CF₃, NH₂, NH₂-CN(C₁-c₅)-Alkyl, N[(C₁-c₅)-Alkyl]₂,
O-(C₁-c₅)-Alkyl-NH₂, O-(C₁-c₆)-Alkyl-NH₂[N(C₁-c₅)-Alkyl], O-(C₁-c₆)-Alkyl-
N[(C₁-c₅)-Alkyl], SO₂(C₁-c₅)-Alkyl, SO₂H, SO₂-NH₂, SO₂-NH(C₁-c₅)-Alkyl, SO₂-
N[(C₁-c₅)-Alkyl]₂, Heteroaryl (ausgewählt von der aus Pyridyl, Thiophen, Furfuryl,
Chinolyl und Isochinolyl bestehenden Gruppe) oder Heteroaryl bedeuten, sub-
stituiert mit 1 bis 3 Substituenten, welche von der aus
F, Cl, Br, I, OH, NH₂, O-(C₁-c₅)-Alkyl, O-(C₁-c₆)-Alkyl-aryl, COOH, C(=O)-O-
(C₁-c₂)-Alkyl, CN, NH[(C₁-c₅)-Alkyl, N[(C₁-c₅)-Alkyl]₂, SO₂H, SO₂-NH₂, SO₂-
NH[(C₁-c₅)-Alkyl, SO₂-N[(C₁-c₅)-Alkyl]₂ bestehenden Gruppe ausgewählt sind;
O, S oder NH bedeutet.

3. Verbindung der Formel I oder II nach einem oder mehreren der Ansprüche 1 bis 2, worin

R(1) Wasserstoff, C₁-c₂-Alkyl, NR(12)R(13), C₁-c₂-Alkyl-NH₂, Aryl-[(C₁-c₁₂)-alkyl-
NH₂, O-[(C₁-c₁₂)-Alkyl, C(=O)-NH[(C₁-c₅)-Alkyl, C(=O)-N[(C₁-c₄)-Alkyl]₂
C(=O)-O-[(C₁-c₅)-Alkyl, substituiertes (C₁-c₁₂)-Alkyl, Aryl, substituiertes Aryl be-
deutet;
oder
R(12) und R(13) unabhängig voneinander Wasserstoff oder Alkyl mit 1, 2, 3 oder 4 Kohlenstoff-
atomen darstellen;
R(2) Wasserstoff, C₁-c₂-Alkyl, C₁-c₂-Alkyl-NH₂, Aryl-[(C₁-c₁₂)-alkyl-NH₂, substituier-
tes (C₁-c₁₂)-Alkyl, Aryl, substituiertes Aryl bedeutet;
oder
R(3), R(4), R(5) und R(6) einzeln oder gemeinsam F, Cl, Br, I, OH, O-(C₁-c₅)-Alkyl, O-Aryl, O-(C₁-c₆)-
Alkyl-aryl, O-substituiertes Aryl, O-(C₁-c₂)-Alkyl-substituiertes Aryl, COOH,
4. Verfahren zur Herstellung einer Verbindung der Formel I nach Anspruch 1, welches

a) das Umsetzen einer Verbindung der Formel VI

\[\text{VI} \]

worin R(1), R(2), R(3), R(4), R(5) und R(6) wie in Anspruch 1 definiert sind, und worin Y eine Leaving-Gruppe darstellt, welche unter \(-O-(C_1-C_4)\)-Alkyl, F, Cl, Br, I oder Imidazolyl ausgewählt ist, mit einem Guanidin der Formel VII

\[\text{VII} \]

worin R(7), R(8), R(9) und R(10) wie Anspruch 1 definiert sind, und gegebenenfalls das Überführen des Produktes in ein pharmazeutisch toleriertes Salz umfaßt.

5. Verwendung einer Verbindung der Formel I nach Anspruch 1 zur Herstellung eines Arzneimittels zur Behandlung von Herzarrhythmien.

8. Verwendung einer Verbindung der Formel I nach Anspruch 1 zur Herstellung eines Arzneimittels zur Behandlung

12. Verwendung einer Verbindung der Formel I nach Anspruch 1 zur Herstellung eines Arzneimittels zur Verwendung bei chirurgischen Eingriffen und mit Organtransplantaten.

15. Arzneimittel, umfassend eine wirksame Menge einer Verbindung der Formel I nach einem oder mehreren der Ansprüche 1 bis 3.

Revidications

1. Indénoylguanidine de formule I

![Chemical Structure]

\(\text{R(1) et R(2)} \)

représentent, individuellement ou collectivement, un atome d'hydrogène ou un groupe alkyle ayant 1, 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone, un groupe cycloalkyle ayant 3, 4, 5 ou 6 atomes de carbone, un groupe O-alkyle ayant 1, 2, 3 ou 4 atomes de carbone, un groupe O-C(=O)-alkyle ayant 1, 2, 3 ou 4 atomes de carbone, un groupe NH-C(=O)-NH2, une C(=O)-O-alkyle ayant 1, 2, 3 ou 4 atomes de carbone, C(=O)-NH-alkyle ayant 1, 2, 3 ou 4 atomes de carbone, C(=O)-N-(alkyle)2 ayant 1, 2, 3 ou 4 atomes de carbone dans chaque fragment alkyle, un groupe alcényl en ayant 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone, un groupe alcynylique ayant 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone, un groupe alkylaryle ayant 1, 2, 3 ou 4 atomes de carbone dans le fragment alkyle, alcénylaryle ayant 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone dans le fragment alcényle, alcynylylaryle ayant 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone dans le fragment alcényle, aryle substitué, alkyl (C1-C4)-aryl substitué, alkyl (C1-C4) hétéroaryl, alcényl(C2-C4) hétéroaryl, aminoalkylaryle ayant 1, 2, 3 ou 4 atomes de carbone dans le fragment alkyle, aryle substitué, hétéroaryl ou
EP 0 738 712 B1

R(12) et R(13) représentent, indépendamment l’un de l’autre, un atome d’hydrogène ou un groupe alkyle ayant 1, 2, 3 ou 4 atomes de carbone;

m représentent, individuellement ou collectivement, un atome d’hydrogène ou un groupe alkyle ayant 1, 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone. O-alkyle ayant 1, 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone, F, Cl, Br, I, OH, un groupe aroyl, aroyle substitué, hétéroatyle, hétéroatyle substitué, O-alkyle(C₁₋₄), O-aryl, O-aryl(C₁₋₄), O-aryl substitué, O-alkyl(C₁₋₄)-aryl substitué, O-C(=O)-alkyl(C₁₋₄), O-C(=O)-NH-alkyle(C₁₋₄), O-C(=O)-N-[alkyle(C₁₋₄)]₂, NO₂, CN, CF₃, NH₂, NH-C(=O)-alkyle(C₁₋₄), NH-C(=O)-NH₂, COOH, C(=O)-O-alkyle(C₁₋₄), C(=O)-OH, C(=O)-NH-alkyl(C₁₋₄), C(=O)-N-[alkyle(C₁₋₄)]₂, C₁₋₄-COOH, alkyl(C₁₋₄)-C(=O)-O-alkyle(C₁₋₄), SO₂H, SO₂-alkyle, SO₂-alkylamyle, SO₂-N-[alkyle(C₁₋₄)]₂, SO₂-N-[alkyle(C₁₋₄)]₂, [alkyle(C₁₋₄)-aryl], C(=O)-R(11), alkyl(C₁₋₄)-C(=O)-R(11), alcynyl(C₂₋₄)-C(=O)-R(11), NH-C(=O)-alkyl(C₁₋₄)-C(=O)-R(11), alkyl(C₁₋₄)-C(=O)-R(11), représente un groupe alkyle en C₁₋₄, alcynyle en C₁₋₄, aroyl substitué, NH₂, NH-alkyle(C₁₋₄), N-[alkyle(C₁₋₄)]₂, SO₂H, SO₂-alkyle, SO₂-alkylamyle, SO₂-N-[alkyle(C₁₋₄)]₂, SO₂-N-[alkyle(C₁₋₄)]₂, [alkyle(C₁₋₄)-aryl] ; représente O, S ou NH;

X représente individuellement ou collectivement, un atome d’hydrogène ou un groupe alkyle, cycloalkyle, aroyl ou aroyle ; ou peuvent ensemble faire partie d’un cycle hétérocyclique à 5, 6 ou 7 chaînons ;
est absent ou représente un acide organique ou minéral non toxique.

2. Composé selon la revendication 1, de formule II

dans laquelle

R(1) représente un atome d’hydrogène ou un groupe alkyle en C₁₋₄, NR(12)R(13), alkyl(C₁₋₄)-NH₂, aryl-alkyl(C₁₋₄)-C(=O)-NH₂, O-alkyle(C₁₋₄), C(=O)-NH-[alkyle(C₁₋₄)]₂, C(=O)-N-[alkyle(C₁₋₄)]₂, C(=O)-O-alkyle(C₁₋₄), alkyle en C₁₋₄ substitué, aroyl, aroyle substitué ;

R(12) et R(13) représentent, indépendamment l’un de l’autre, un atome d’hydrogène ou un groupe alkyle ayant 1, 2, 3 ou 4 atomes de carbone ;

R(2) représente un atome d’hydrogène ou un groupe alkyle en C₁₋₄, alkyl(C₁₋₄)-NH₂, aryl-alkyl(C₁₋₄)-NH₂, alkyle en C₁₋₄ substitué, aroyl, aroyle substitué ;

R(3), R(4), R(5) et R(6) représentent, individuellement ou collectivement, F, Cl, Br, I, OH, un groupe O-alkyle(C₁₋₄), O-aryl, O-alkyl(C₁₋₄)-aryl, O-aryl substitué, O-alkyl(C₁₋₄)-aryl substitué, COOH, C(=O)-O-alkyle(C₁₋₄), CN, CF₃, NH₂, NH-alkyle(C₁₋₄), N-[alkyle(C₁₋₄)]₂, O-alkyl(C₁₋₄)-NH₂, O-alkyl(C₁₋₄)-NH-alkyle(C₁₋₄), O-alkyl(C₁₋₄)-NH-[alkyle(C₁₋₄)]₂, SO₂-alkyle(C₁₋₄), SO₂H, SO₂-NH₂, SO₂-NH-alkyle(C₁₋₄), SO₂-N-[alkyle(C₁₋₄)]₂, hétéroatyle choisi dans l’ensemble.
EP 0 738 712 B1

constitué par les groupes pyridyle, thiényle, furyle, quinyle et isoquinyle) ou hétéroaryle portant 1-3 substituants choisis dans l'ensemble constitué par F, Cl, Br, I, OH, NH₂, les groupes O-alkyle-(C₁₋₃), O-alkyl(C₁₋₃)aryl, COOH, C(=O)-O-alkyle(C₁₋₃), CN, NH-alkyle(C₁₋₃), N-[alkyl-(C₁₋₃)]₂, SO₂H, SO₂-NH₂, SO₂-NH-alkyle(C₁₋₃), SO₂-N-[alkyle(C₁₋₃)]₂.

X est O, S ou NH.

3. Composé de formule I ou II selon une ou plusieurs des revendications 1-2, dans lequel

R(1) représente un atome d'hydrogène ou un groupe alkyle en C₁₋₃, NR(12)R(13), alkyl(C₁₋₃)-NH₂, aryloxy(C₁₋₃)-NH₂, O-alkyle(C₁₋₃), C(=O)-NH-alkyle(C₁₋₃), C(=O)-N-[alkyle(C₁₋₃)]₂, C(=O)-O-alkyle(C₁₋₃), alkyle en C₁₋₃ substitué, aryle, aryle substitué;

R(12) et R(13) représentent, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupe alkyle ayant 1, 2, 3 ou 4 atomes de carbone;

R(2) représente un atome d'hydrogène ou un groupe alkyle en C₁₋₃, alkyl(C₁₋₃)-NH₂, aryloxy(C₁₋₃)-NH₂, alkyle en C₁₋₃ substitué, aryle, aryle substitué;

R(3), R(4), R(5) et R(6) représentent, individuellement ou collectivement, F, Cl, Br, I, OH, NH₂, les groupes O-alkyle-(C₁₋₃), O-aryl(C₁₋₃), O-aryl(C₁₋₃)aryl, O-aryl substitué, O-aryl(C₁₋₃)aryl substitué, COOH, C(=O)-O-alkyle(C₁₋₃), CN, CF₃, NH₂, NH-alkyle(C₁₋₃), N-[alkyle(C₁₋₃)]₂, O-alkyle(C₁₋₃)-NH₂, O-alkyle(C₁₋₃)-NH-alkyle(C₁₋₃), O-alkyle(C₁₋₃)-N-[alkyle(C₁₋₃)]₂, SO₂-alkyle(C₁₋₃), SO₂H, SO₂-NH₂, SO₂-NH-alkyle(C₁₋₃), SO₂-N-[alkyle(C₁₋₃)]₂, hétéroaryle (choisi dans l'ensemble constitué par les groupes pyridyle, thiényle, furyle, quinyle et isoquinyle) ou hétéroaryle portant 1-3 substituants choisis dans l'ensemble constitué par F, Cl, Br, I, OH, NH₂, les groupes O-alkyle-(C₁₋₃), O-alkyl(C₁₋₃)aryl, COOH, C(=O)-O-alkyle(C₁₋₃), CN, NH-alkyle(C₁₋₃), N-[alkyl-(C₁₋₃)]₂, SO₂H, SO₂-NH₂, SO₂-NH-alkyle(C₁₋₃), SO₂-N-[alkyle(C₁₋₃)]₂.

X est O.

4. Procédé pour la préparation d'un composé de formule I selon la revendication 1, comprenant

a) la mise en réaction d'un composé de formule VI

![Diagramme VI](image)

dans laquelle R(1), R(2), R(3), R(4), R(5) et R(6) sont tels que définis dans la revendication 1, et dans laquelle Y est un groupe partant choisi parmi F, Cl, Br, I et un groupe O-alkyle(C₁₋₃) ou imidazolye, avec une guanidine de formule VII

![Diagramme VII](image)
dans laquelle R(7), R(8), R(9) et R(10) sont définis comme dans la revendication 1,

et, si cela est approprié, la conversion du produit en un sel pharmaceutiquement acceptable.

5. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné au traitement d'arythmies cardiaques.

6. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné au traitement ou à la prophylaxie de l'infarctus du myocarde.

7. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné au traitement ou à la prophylaxie de l'angine de poitrine.

8. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné au traitement ou à la prophylaxie d'états ischémiques du cœur.

9. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné au traitement ou à la prophylaxie d'états ischémiques du système nerveux périphérique et central et de l'apoplexie.

10. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné au traitement ou à la prophylaxie d'états ischémiques d'organes périphériques et des membres.

11. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné au traitement d'états de choc.

12. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné à l'utilisation dans des opérations chirurgicales et des greffes d'organes.

13. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné à la conservation et au stockage de transplants pour des opérations chirurgicales.

14. Utilisation d'un composé de formule I selon la revendication 1, pour la fabrication d'un médicament destiné au traitement de maladies dans lesquelles la prolifération cellulaire représente une cause primaire ou secondaire.

15. Médicament, comprenant une quantité efficace d'un composé de formule I tel que revendiqué dans une ou plusieurs des revendications 1 à 3.