SUBSTITUTED MORPHOLINE DERIVATIVES AND THEIR USE AS THERAPEUTIC AGENTS

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE
Designated Extension States:
LT SI

(30) Priority: 29.12.1993 GB 9326480
12.04.1994 GB 9407189
22.04.1994 GB 9408065
15.08.1994 GB 9416428

(43) Date of publication of application:

(60) Divisional application:
01200308.3 / 1 099 702

(73) Proprietor: MERCK SHARP & DOHME LTD.
Hoddesdon Hertfordshire EN11 9NU (GB)

(72) Inventors:
• BAKER, Raymond
Essex CM20 2QR (GB)

• HARRISON, Timothy
Essex CM20 2QR (GB)

• MACLEOD, Angus, Murray
Essex CM20 2QR (GB)

• OWENS, Andrew, Pate
Essex CM20 2QR (GB)

• SEWARD, Eileen, Mary
Essex CM20 2QR (GB)

• SWAIN, Christopher, John
Essex CM20 2QR (GB)

• TEALL, Martin, Richard
Essex CM20 2QR (GB)

(74) Representative: Hiscock, Ian James et al
European Patent Department,
Merck & Co., Inc.,
Terlings Park,
Eastwick Road
Harlow, Essex CM20 2QR (GB)

(56) References cited:
EP-A- 0 528 495
EP-A- 0 577 394

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

[0001] This invention relates to a class of aromatic compounds which are useful as tachykinin antagonists. More particularly, the compounds of the invention contain an amine-substituted azo-heterocyclic moiety.

[0002] The tachykinins are a group of naturally occurring peptides found widely distributed throughout mammalian tissues, both within the central nervous system and in peripheral nervous and circulatory systems.

[0003] The tachykinins are distinguished by a conserved carboxy-terminal sequence:

\[
Phe-X-Gly-Leu-Met-NH_2
\]

[0004] At present, there are three known mammalian tachykinins referred to as substance P, neurokinin A (NKA), substance K, neuropeptide K (NKB), and neurokinin B (NK1, neuromedin K) (for review see J.E. Maggio, Peptides (1985) 6 (suppl. 3), 237-242). The current nomenclature designates the three tachykinin receptors mediating the biological actions of substance P, NKA and NKB as the NK1, NK2 and NK3 receptors, respectively.

[0005] Evidence for the usefulness of tachykinin receptor antagonists in pain, headache, especially migraine, Alzheimer's disease, multiple sclerosis, attenuation of morphine withdrawal, cardiovascular changes, oedema, such as oedema caused by thermal injury, chronic inflammatory diseases such as rheumatoid arthritis, asthma/bronchial hyperreactivity and other respiratory diseases including allergic rhinitis, inflammatory diseases of the gut including ulcerative colitis and Crohn's disease, ocular injury and ocular inflammatory diseases, proliferative vitreoretinopathy, irritable bowel syndrome and disorders of bladder function including cystitis and bladder detrusor hyper-reflexia is reviewed in "Tachykinin Receptors and Tachykinin Receptor Antagonists", C.A. Maggi, R. Patacchini, P. Rovero and A. Giachetti, J. Auton. Pharmacol. (1993) 13, 23-93.

[0006] For instance, substance P is believed inter alia to be involved in the neurotransmission of pain sensations.
wherein

\[R^{1a} \] is a large variety of substituents;
\[R^{2a} \text{ and } R^{3a} \] are \textit{inter alia} hydrogen;
\[R^{4a} \] is \textit{inter alia}

\[R^{5a} \] is \textit{inter alia} optionally substituted phenyl;
\[R^{6a}, R^{7a} \text{ and } R^{8a} \] are a variety of substituents;
\[X^{a} \] is O, S, SO or SO$_2$;
\[Y^{a} \] is \textit{inter alia} O; and
\[Z^{a} \] is hydrogen or C$_{1-4}$ alkyl.

[0011] European patent specification no. 0 528 495 (published 24th February 1993) discloses azacyclic derivatives useful as tachykinin antagonists, which compounds have the general formula:

\[
\begin{align*}
&\text{wherein} \\
&\text{n is 1, 2 or 3;} \\
&\text{X}^{b} \text{ is O or S;} \\
&\text{R}^{1b} \text{ is optionally substituted phenyl;} \\
&\text{R}^{2b} \text{ is aryl, heteroaryl, benzhydryl or benzyl;} \\
&\text{R}^{4b} \text{ and R}^{5b} \text{ are independently H, halo, CH$_2$OR}^{9b}, \text{ C$_{1-6}$alkyl, oxo, CO$_2$R}^{10b} \text{ or CONR}^{10b}R^{11b}; \\
&\text{R}^{8b} \text{ is H, COR}^{9b}, \text{ CO$_2$R}^{10b} \text{ or optionally substituted C$_{1-6}$alkyl;} \\
&\text{R}^{9b} \text{ is H, C$_{1-6}$alkyl or phenyl; and} \\
&\text{R}^{10b} \text{ and R}^{11b} \text{ are independently H or C$_{1-6}$alkyl.}
\end{align*}
\]

[0012] We have now found a further class of non-peptides which are potent antagonists of tachykinins, especially of substance P.

[0013] It is desirable that compounds may be administered orally and by injection. Compounds have now been discovered which act as potent non-peptide tachykinin antagonists and which, by virtue of their advantageous aqueous solubility, are particularly easily formulated for administration by both the oral and injection routes, for example in
aqueous media.

Furthermore, the compounds of the present invention possess a particularly advantageous profile of activity having potent antagonist activity at the NK$_1$ receptor and a long duration of action. The compounds of the present invention, and in particular their pharmaceutically acceptable acid addition salts, are also particularly suited to a wide variety of pharmaceutical formulations by virtue of their stability.

The present invention provides compounds of the formula (I):

\[
\text{wherein} \\
R^1 \text{ is hydrogen, halogen, } C_{1-6} \text{alkyl, } C_{1-4} \text{alkoxy, } CF_3, \text{NO}_2, \text{CN, SR}^a, \text{SOR}^a, \text{SO}_2 R^a, \text{CO}_2 R^a, \text{CONR}^a R^b, C_{2-6} \text{alkenyl, } \\
C_{2-6} \text{alkynyl or } C_{1-4} \text{alkyl substituted by } C_{1-4} \text{alkoxy, where } R^a \text{ and } R^b \text{ each independently represent hydrogen or } C_{1-4} \text{alkyl; } \\
R^2 \text{ is hydrogen, halogen, } C_{1-6} \text{alkyl, } C_{1-6} \text{alkoxy substituted by } C_{1-4} \text{alkoxy or } CF_3; \\
R^3 \text{ is hydrogen, halogen or } CF_3; \\
R^4 \text{ is hydrogen, halogen, } C_{1-6} \text{alkyl, } C_{1-6} \text{alkoxy, } CF_3, \text{NO}_2, \text{CN, SR}^a, \text{SOR}^a, \text{SO}_2 R^a, \text{CO}_2 R^a, \text{CONR}^a R^b, C_{2-6} \text{alkenyl, } \\
C_{2-6} \text{alkynyl or } C_{1-4} \text{alkyl substituted by } C_{1-4} \text{alkoxy, where } R^a \text{ and } R^b \text{ each independently represent hydrogen or } C_{1-4} \text{alkyl; } \\
R^5 \text{ is hydrogen, halogen, } C_{1-6} \text{alkyl, } C_{1-6} \text{alkoxy substituted by } C_{1-4} \text{alkoxy or } CF_3; \\
R^6 \text{ is a 5-membered or 6-membered heterocyclic ring containing 2 or 3 nitrogen atoms optionally substituted by } \\
\text{=O, } \text{=S, and substituted by a group of the formula ZNR}^7 R^8 \text{ where } \\
Z \text{ is } C_{1-2} \text{alkylene; } \\
R^7 \text{ is hydrogen or } C_{1-4} \text{alkyl, or } C_{2-4} \text{alkyl substituted by } C_{1-4} \text{alkoxy or hydroxyl; } \\
R^8 \text{ is hydrogen or } C_{1-4} \text{alkyl, or } C_{2-4} \text{alkyl substituted by } C_{1-4} \text{alkoxy or hydroxyl; } \\
or R^7, R^8 \text{ and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms which } \\
\text{may optionally contain an oxygen ring atom or a second nitrogen atom which will be part of a } \text{NH or } NR^c \text{ moiety where } R^c \text{ is } C_{1-4} \text{alkyl optionally substituted by hydroxy or } C_{1-4} \text{alkoxy; } \\
or Z, R^7 \text{ and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms which } \\
\text{may optionally contain an oxygen ring atom; } \\
R^9a \text{ and } R^9b \text{ are each independently hydrogen or } C_{1-4} \text{alkyl, or } R^9a \text{ and } R^9b \text{ are joined so, together with the carbon } \\
\text{atoms to which they are attached, there is formed a } C_{5-7} \text{ ring; } \\
\text{X is an alkylene chain of 1 to 4 carbon atoms optionally substituted by oxo; and } \\
Y \text{ is a } C_{1-4} \text{alkyl group; } \\
or a pharmaceutically acceptable salt thereof.

Certain particularly apt compounds of the present invention include those wherein R1 is hydrogen, C$_{1-4}$alkyl, C$_{1-4}$alkoxy, halo or CF$_3$.

Most aptly R2 is hydrogen, C$_{1-4}$alkyl, C$_{1-4}$alkoxy, halogen or CF$_3$.

Most aptly R3 is hydrogen, fluorine, chlorine or CF$_3$.

Favourably R1 is fluorine, chlorine or CF$_3$.

Favourably R2 is hydrogen, fluorine, chlorine or CF$_3$.

Favourably R3 is hydrogen, fluorine, chlorine or CF$_3$.

Preferably R1 and R2 are in the 3 and 5 positions of the phenyl ring.
More preferably R_1 is 3-fluoro or 3-CF$_3$.

More preferably R_2 is 5-fluoro or 5-CF$_3$.

More preferably R_3 is hydrogen.

Most preferably R_1 is 3-F or 3-CF$_3$, R_2 is 5-CF$_3$ and R_3 is hydrogen.

Most aptly R_4 is hydrogen.

Most aptly R_5 is hydrogen, fluorine, chlorine or CF$_3$.

Preferably R_4 is hydrogen and R_5 is hydrogen or 4-fluoro.

Most aptly R_{9a} and R_{9b} are each independently hydrogen or methyl.

Most aptly R_{9a} is hydrogen. Preferably R_{9b} is hydrogen. Most preferably R_{9a} and R_{9b} are both hydrogen.

From the foregoing it will be appreciated that a particularly apt sub-group of compounds of this invention are those of the formula (Ia) and pharmaceutically acceptable salts thereof:

![Chemical Structure (Ia)](image)

wherein

A_1 is fluorine or CF$_3$;

A_2 is fluorine or CF$_3$;

A_3 is fluorine or hydrogen;

and X, Y and R_6 are as defined in relation to formula (I).

Another preferred group Y for compounds of the formulae (I) or (Ia) is the CH$_3$ group.

Particularly apt values for X for compounds of the formulae (I) or (Ia) include CH$_2$, CH(CH$_3$) and CH$_2$CH$_2$ of which the CH$_2$ group is preferred.

Favourably R_6 is a 5-membered ring.

In particular, R_6 may represent a heterocyclic ring selected from:

![Chemical Structures](image)
Particularly preferred heterocyclic rings represented by R^6 are selected from:

Most especially, R^6 may represent a heterocyclic ring selected from:

A particularly preferred heterocyclic ring represented by R^6 is:

One favoured group of compounds of this invention are of the formula (Ib) and pharmaceutically acceptable salts thereof:

wherein A^1, A^2 and A^3 are defined in relation to formula (Ia) and wherein Z, R^7 and R^8 are as defined in relation to formula (I).

Another favoured group of compounds of the present invention are of the formula (Id) and pharmaceutically acceptable salts thereof:
acceptable salts thereof:

wherein \(A_1, A_2 \) and \(A_3 \) are defined in relation to formula (Ia), \(Q^2 \) is CH or N and \(R^7 \) and \(R^8 \) are as defined in relation to formula (I)

[0042] A particularly favourable group \(Z \) is \(CH_2 \).

[0043] With respect to compounds of the formulae (I), (Ia), (Ib), and (Id), \(R^7 \) may aptly be a \(C_{1-4} \)alkyl group or a \(C_{2-4} \)alkyl group substituted by a hydroxy or \(C_{1-2} \)alkoxy group, \(R \) may aptly be a \(C_{1-4} \)alkyl group or a \(C_{1-4} \)alkyl group substituted by a hydroxy or \(C_{1-2} \)alkoxy group, or \(R^7 \) and \(R^8 \) may be linked so that, together with the nitrogen atom to which they are attached, they form an azetidinyl, pyrrolidinyl, piperidyl, morpholino, thiomorpholino, piperazino or piperazine group substituted on the nitrogen atom by a \(C_{1-4} \)alkyl group or a \(C_{2-4} \)alkyl group substituted by a hydroxy or \(C_{1-2} \)alkoxy group.

[0044] Particularly suitable moieties \(ZNR^7 R^8 \) include those wherein \(Z \) is \(CH_2 \) or \(CH_2 CH_2 \) and \(NR^7 R^8 \) is amino, methylamino, dimethylamino, diethylamino, azetidinyl, pyrrolidino and morpholino.

[0045] In particular, \(Z \) is preferably \(CH_2 \) and \(NR^7 R^8 \) is preferably dimethylamino, azetidinyl or pyrrolidino, especially dimethylamino.

[0046] With regard to compounds of the formulae (Ia), (Ib) and (Id), \(A_1 \) is preferably fluorine or \(CF_3 \); \(A^2 \) is preferably fluorine, and \(A^3 \) is preferably fluorine.

[0047] As used herein, the term "alkyl" or "alkoxy" as a group or part of a group means that the group is straight or branched. Examples of suitable alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl and t-butyl. Examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy and t-butoxy.

[0048] As used herein, the terms "alkenyl" and "alkynyl" as a group or part of a group means that the group is straight or branched. Examples of suitable alkenyl groups include vinyl and allyl. A suitable alkynyl group is propargyl.

[0049] When used herein the term halogen means fluorine, chlorine, bromine and iodine. The most apt halogens are fluorine and chlorine of which fluorine is preferred.

[0050] Specific compounds within the scope of this invention include:

\[
\begin{align*}
&2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(2,3-dihydro-5-(N,N-dimethylamino)methyl-2-oxo-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; \\
&4-(2,3-dihydro-5-(N,N-dimethylamino)methyl-2-oxo-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorophenyl) ethoxy)morpholine; \\
&3-(S)-(4-fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl) ethoxy)-4-(2,3-dihydro-2-oxo-5-pyrrolidinomethyl-1,3-imidazol-4-yl)methylmorpholine; \\
&2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-2-oxo-5-pyrrolidinomethyl-1,3-imidazol-4-yl)methylmorpholine; \\
&3-(S)-(4-fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl) ethoxy)-4-(2,3-dihydro-2-oxo-5-morpholinomethyl-2-oxo-1,3-imidazol-4-yl)methylmorpholine; \\
&2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-5-morpholinomethyl-2-oxo-1,3-imidazol-4-yl)methylmorpholine; \\
&4-(5-azetidinylmethyl-2,3-dihydro-2-oxo-1,3-imidazol-4-yl)methyl-2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(4-fluorophenyl) methylmorpholine; \\
&2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-5-(N-methylpiperazinyl)methyl-2-oxo-1,3-imidazol-4-yl)methylmorpholine;
\end{align*}
\]
Further preferred compounds within the scope of the present invention include:

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylamino)methyl-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; 4-(5-(aminomethyl)-1,2,3-triazol-4-yl)methyl-2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; 4-(5-(azetidinylmethyl)-1,2,3-triazol-4-yl)methyl-2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(pyrrolidinomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(morpholinomethyl)-1,2,3-triazol-4-yl)methylmorpholine; 4-(5-(N,N-dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylaminomethyl)-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylaminomethyl)-1,2,4-triazol-3-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-diisopropylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dibutylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; and pharmaceutically acceptable salts thereof.

[0052] Further preferred compounds within the scope of the present invention are described in the Examples described herein.

[0053] In a further aspect of the present invention, the compounds of formula (I) will preferably be prepared in the form of a pharmaceutically acceptable salt, especially an acid addition salt.

[0054] For use in medicine, the salts of the compounds of formula (I) will be non-toxic pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation of the compounds according to the invention or of their non-toxic pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound according
to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, fumaric acid, p-toluenesulphonic acid, maleic acid, succinic acid, acetic acid, citric acid, tartaric acid, carbonic acid, phosphoric acid or sulphuric acid. Salts of amine groups may also comprise quaternary ammonium salts in which the amino nitrogen atom carries a suitable organic group such as an alkyl, alkenyl, alkynyl or aralkyl moiety. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include metal salts such as alkali metal salts, e.g. sodium or potassium salts; and alkaline earth metal salts, e.g. calcium or magnesium salts.

The present invention includes within its scope solvates of the compounds of formula (I) and salts thereof, for example, hydrates.

The compounds according to the invention have at least three asymmetric centres, and may accordingly exist both as enantiomers and as diastereoisomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention.

The preferred compounds of the formula (I), (Ia), (Ib) and (Id) will have the 2- and 3- substituent cis and the preferred stereochemistry at the 2-position is that possessed by the compound of Example 1 (i.e. 2-(R)-), the preferred stereochemistry of the 3-position is that possessed by the compound of Example 1 (i.e. 3-(S)), and the preferred stereochemistry of the carbon to which the group Y is attached is (R).

Thus for example as shown in formula (II)

The present invention further provides pharmaceutical compositions comprising one or more compounds of formula (I) in association with a pharmaceutically acceptable carrier.

Preferably the compositions according to the invention are in unit dosage forms such as tablets, pills, capsules, powders, granules, solutions or suspensions, or suppositories, for oral, parenteral or rectal administration, or administration by inhalation or insufflation.

For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention, or a non-toxic pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 500 mg of the active ingredient of the present invention. The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.

The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions, suitably flavoured syrups, aqueous or oil suspensions, and flavoured emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinylpyrrolidone or gelatin.
Preferred compositions for administration by injection include those comprising a compound of formula (I), as the active ingredient, in association with a surface-active agent (or wetting agent or surfactant) or in the form of an emulsion (as a water-in-oil or oil-in-water emulsion).

Suitable surface-active agents include anionic agents such as sodium bis-(2-ethylhexyl)sulfosuccinate (dodecyl sulfate sodium), cationic agents, such as alklytrimethylammonium bromides, (e.g. cetyltrimethylammonium bromide (cetrimide)), and in particular, non-ionic agents, such as polyoxylene sorbitan esters (e.g. Tween™ 20, 40, 60, 80 or 85) and other sorbitans (e.g. Span™ 20, 40, 60, 80 or 85). Compositions with a surface-active agent will conveniently comprise between 0.05 and 5% surface-active agent, and preferably between 0.1 and 2.5%. It will be appreciated that other ingredients may be added, for example mannitol or other pharmaceutically acceptable vehicles, if necessary.

Suitable emulsions may be prepared using commercially available fat emulsions, such as Intralipid™, Liposyn™, Infonutrol™, Lipofundin™ and Lipiphysan™. The active ingredient may be either dissolved in a pre-mixed emulsion composition or alternatively it may be dissolved in an oil (e.g. soybean oil, safflower oil, cottonseed oil, sesame oil, corn oil or almond oil) and an emulsion formed upon mixing with a phospholipid (e.g. egg phospholipids, soybean phospholipids or soybean lecithin) and water. It will be appreciated that other ingredients may be added, for example glycerol or glucose, to adjust the tonicity of the emulsion. Suitable emulsions will typically contain up to 20% oil, for example, between 5 and 20%. The fat emulsion will preferably comprise fat droplets between 0.1 and 1.0 µm, particularly 0.1 and 0.5 µm, and have a pH in the range of 5.5 to 8.0.

Particularly preferred emulsion compositions are those prepared by mixing a compound of formula (I) with Intralipid™ or the components thereof (soybean oil, egg phospholipids, glycerol and water).

Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as set out above. Preferably the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably sterile pharmaceutically acceptable solvents may be nebulised by use of inert gases. Nebulised solutions may be breathed directly from the nebulising device or the nebulising device may be attached to a face mask, tent or intermittent positive pressure breathing machine. Solution, suspension or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulation in an appropriate manner.

The present invention further provides a process for the preparation of a pharmaceutical composition comprising a compound of formula (I), which process comprises bringing a compound of formula (I) into association with a pharmaceutically acceptable carrier or excipient.

The compounds of formula (I) are of value in the treatment of a wide variety of clinical conditions which are characterised by the presence of an excess of tachykinin, in particular substance P, activity. These may include disorders of the central nervous system such as anxiety, depression, psychosis and schizophrenia; epilepsy; neurodegenerative disorders such as dementia, including senile dementia of the Alzheimer type, Alzheimer’s disease and Down’s syndrome; demyelinating diseases such as MS and ALS and other neuropathological disorders such as peripheral neuropathy, for example diabetic and chemotherapy-induced neuropathy, and postherpetic and other neuralgias; small cell carcinomas such as small cell lung cancer; respiratory diseases, particularly those associated with excess mucus secretion such as chronic obstructive pulmonary disease, bronchopneumonia, chronic bronchitis, cystic fibrosis and asthma, and bronchospasm; inflammatory diseases such as inflammatory bowel disease, psoriasis, fibrositis, osteoarthritis, rheumatoid arthritis, pruritus and sunburn; allergies such as eczema and rhinitis; hypersensitivity disorders such as poison ivy; ophthalmic diseases such as conjunctivitis, vernal conjunctivitis, and the like; ophthalmic conditions associated with cell proliferation such as proliferative vitreoretinopathy; cutaneous diseases such as contact dermatitis, atopic dermatitis, urticaria, and other eczematoid dermatitis; addiction disorders such as alcoholism; stress related somatic disorders; reflex sympathetic dystrophy such as shoulder/hand syndrome; dysthymic disorders; adverse immunological reactions such as rejection of transplanted tissues and disorders related to immune enhancement or suppression such as systemic lupus erythematosus; gastrointestinal (GI) disorders and diseases of the GI tract such as disorders associated with the neuronal control of viscera, ulcerative colitis, Crohn’s disease, irritable bowel syndrome and emesis, including acute, delayed or anticipatory emesis such as emesis induced by chemotherapy, radiation, toxins, viral or bacterial infections, pregnancy, vestibular disorders, motion, surgery, migraine, and variations in intracranial pressure, in particular, for example, drug or radiation induced emesis or post-operative nausea and vomiting; disorders of bladder function such as cystitis, bladder detrusor hyper-reflexia and incontinence; fibrosing and collagen diseases such as scleroderma and eosinophilic fasciitis; disorders of blood flow caused by vasodilatation and vasospastic diseases such as angina, migraine and Reynaud’s disease; and pain or noception, for example, that attributable to or associated with any of the foregoing conditions, especially the transmission of pain in migraine.

The compounds of formula (I) are also of value in the treatment of a combination of the above conditions, in particular in the treatment of combined post-operative pain and post-operative nausea and vomiting.

The compounds of formula (I) are particularly useful in the treatment of emesis, including acute, delayed or anticipatory emesis, such as emesis induced by chemotherapy, radiation, toxins, pregnancy, vestibular disorders, mo-
tion, surgery, migraine, and variations in intracranial pressure. Most especially, the compounds of formula (I) are of use in the treatment of emesis induced by antineoplastic (cytotoxic) agents including those routinely used in cancer chemotherapy.

[0071] Examples of such chemotherapeutic agents include alkylating agents, for example, nitrogen mustards, ethyleneimine compounds, alkyl sulphonates and other compounds with an alkylating action such as nitrosoureas, cisplatin and dacarbazine; antimetabolites, for example, folic acid, purine or pyrimidine antagonists; mitotic inhibitors, for example, vinca alkaloids and derivatives of podophyllotoxin; and cytotoxic antibiotics.

[0073] The compounds of formula (I) are also of use in the treatment of emesis induced by radiation including radiation therapy such as in the treatment of cancer, or radiation sickness; and in the treatment of post-operative nausea and vomiting.

[0074] It will be appreciated that the compounds of formula (I) may be presented together with another therapeutic agent as a combined preparation for simultaneous, separate or sequential use for the relief of emesis. Such combined preparations may be, for example, in the form of a twin pack.

[0075] A further aspect of the present invention comprises the compounds of formula (I) in combination with a 5-HT₃ antagonist, such as ondansetron, granisetron or tropisetron, or other anti-emetic medicaments, for example, a dopamine antagonist such as metoclopramide. Additionally, a compound of formula (I) may be administered in combination with an anti-inflammatory corticosteroid, such as dexamethasone. Furthermore, a compound of formula (I) may be administered in combination with a chemotherapeutic agent such as an alkylating agent, antimetabolite, mitotic inhibitor or cytotoxic antibiotic, as described above. In general, the currently available dosage forms of the known therapeutic agents for use in such combinations will be suitable.

[0076] When tested in the ferret model of cisplatin-induced emesis described by F. D. Tattersall et al, in *Eur. J. Pharmacol.* (1993) 250, R5-R6, the compounds of the present invention were found to attenuate the retching and vomiting induced by cisplatin.

[0077] The compounds of formula (I) are also particularly useful in the treatment of pain or nociception and/or inflammation and disorders associated therewith such as, for example, neuropathy, such as diabetic and chemotherapy-induced neuropathy, postherpetic and other neuralgias, asthma, osteoarthritis, rheumatoid arthritis and especially migraine.

[0078] The present invention further provides a compound of formula (I) for use in therapy.

[0079] According to a further or alternative aspect, the present invention provides a compound of formula (I) for use in the manufacture of a medicament for the treatment of physiological disorders associated with an excess of tachykinins, especially substance P.

[0080] For the treatment of certain conditions it may be desirable to employ a compound according to the present invention in conjunction with another pharmacologically active agent. For example, for the treatment of respiratory diseases such as asthma, a compound of formula (I) may be used in conjunction with a bronchodilator, such as a β₂-adrenergic receptor agonist or tachykinin antagonist which acts at NK-2 receptors. The compound of formula (I) and the bronchodilator may be administered to a patient simultaneously, sequentially or in combination.

[0081] The present invention also provides a composition comprising a compound of formula (I), a bronchodilator, and a pharmaceutically acceptable carrier.

[0082] The excellent pharmacological profile of the compounds of the present invention offers the opportunity for their use in therapy at low doses thereby minimising the risk of unwanted side effects.

[0083] In the treatment of the conditions associated with an excess of tachykinins, a suitable dosage level is about 0.001 to 50 mg/kg per day, in particular about 0.01 to about 25 mg/kg, such as from about 0.05 to about 10 mg/kg per day.

[0084] For example, in the treatment of conditions involving the neurotransmission of pain sensations, a suitable dosage level is about 0.001 to 25 mg/kg per day, preferably about 0.005 to 10 mg/kg per day, and especially about 0.005 to 5 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

[0085] In the treatment of emesis using an injectable formulation, a suitable dosage level is about 0.001 to 10 mg/kg per day, preferably about 0.005 to 5 mg/kg per day, and especially about 0.01 to 2 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

[0086] It will be appreciated that the amount of a compound of formula (I) required for use in any treatment will vary not only with the particular compounds or composition selected but also with the route of administration, the nature of
the condition being treated, and the age and condition of the patient, and will ultimately be at the discretion of the attendant physician.

According to a general process (A), the compounds according to the invention may be prepared from compounds of formula (II)

![Image](II)

wherein R₁, R₂, R₃, R₄, R₅ and Y are as defined in relation to formula (I) by reaction with a compound of formula (III):

![Image](III)

where X is as defined in relation to formula (I), R₆ₐ is a group of the formula R as defined in relation to formula (Ia) or a precursor therefor and X is a leaving group such as bromine or chlorine; and, if R₆ₐ is a precursor group, converting it to a group R₆ (in which process any reactive group may be protected and thereafter deprotected if desired).

This reaction may be performed in conventional manner, for example in an organic solvent such as dimethylformamide in the presence of an acid acceptor such as potassium carbonate.

According to another process (B), compounds of formula (I) wherein R₆ represents 1,2,3-triazol-4-yl substituted by CH₂NR₇R₈, and X is -CH₂-, may be prepared by reaction of a compound of formula (IV)

![Image](IV)

with an azide, for example, sodium azide in a suitable solvent such as dimethylsulphoxide at a temperature of between 40°C and 100°C, followed by reduction of the carbonyl group adjacent to -NR₇R₈ using a suitable reducing agent such as lithium aluminium hydride at a temperature between -10°C and room temperature, conveniently at room temperature.

Alternatively, according to a process (C), compounds of formula (I) wherein R₆ represents 1,2,3-triazol-4-yl substituted by CH₂NR₇R₈, and X is -CH₂-, may be prepared by reaction of a compound of formula (V)
with an amine of formula NHR₇R₈, in a suitable solvent such as an ether, for example, dioxan, at elevated temperature, for example, between 50°C and 100°C, in a sealed tube, or the like. This reaction is based upon that described in *Chemische Berichte* (1989) 122, p. 1963.

Further details of suitable procedures will be found in the accompanying Examples.

Compounds of formula (I) may also be prepared from other compounds of formula (I) using suitable interconversion procedures. For example, compounds of formula (I) wherein X represents C₁₋₄ alkyl may be prepared from compounds of formula (I) wherein X represents C₁₋₄ alkyl substituted by oxo by reduction, for example, using borane or lithium aluminium hydride. Suitable interconversion procedures will be readily apparent to those skilled in the art.

Intermediates of formula (IV) may be prepared from intermediates of formula (II) by reaction with an acetylene compound of formula HC≡C-CH₂-Hal in the presence of a base such as potassium carbonate in a suitable solvent such as dimethylformamide, conveniently at room temperature, followed by reaction of the resultant acetylene intermediate with an amide of formula Hal-CO-NR₇R₈ in the presence of suitable catalysts including bis(triphenylphosphine) palladium(II) chloride, copper(I) iodide and triphenylphosphine in a suitable solvent such as triethylamine, preferably at reflux.

Intermediates of formula (V) may be prepared from intermediates of formula (II) by reaction with an azide, for example, sodium azide in a suitable solvent such as dimethylsulphoxide at or below room temperature.

Compounds of formula (XI) may be prepared by a dropwise addition of an intermediate of formula (II) to a dihaloacetylene of formula Hal-CH₂-C≡C-CH₂-Hal where each Hal is independently chlorine, bromine or iodine, especially chlorine. The reaction is conveniently effected in a suitable solvent such as dimethylformamide in the presence of a base such as potassium carbonate.

For compounds wherein R₆ is a heterocycle substituted by a ZNR₇R₈ group where Z is CH₂, certain favoured compounds of formula (I) may be prepared from a corresponding compound with a hydrogen atom in place of the ZNR₇R₈. Thus, for example a compound of the formula (I) wherein R⁶ is an imidazolinone group carrying a CH₂NR₇R₈ moiety may be prepared from a corresponding compound lacking the CH₂NR₇R₈ moiety by reaction with formaldehyde and an amine NHR₇R₈ under conventional Mannich reaction conditions, for example in methanol with heating. If desired
a pre-formed reagent such as $R^7 R^8 N^+ = CH_2$. A tertiary amine such as triethylamine may be employed as acid acceptor.

Alternatively a compound of formula (I) wherein R is an imidazolinone group lacking a $CH_2 NR^7 R^8$ may be reacted with paraformaldehyde and an amine for example a secondary amine such as pyrrolidine to give a compound wherein the imidazolinone ring is substituted by $CH_2 NR^7 R^8$ where R^7, R^8 and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms which may optionally contain an oxygen ring atom or a second nitrogen atom which will be part of a NH or NR group, where R^c is as previously defined.

This reaction may be performed in a conventional manner, for instance, in a suitable solvent such as an alcohol, for example, methanol at an elevated temperature up to the boiling point of the solvent.

A further alternative method (D) for the preparation of certain compounds of formula (I) involves the reaction of an intermediate of formula (II) as defined above with one of the compounds of formula (XII):

wherein each LG, which may be the same or different, is a leaving group, such as an alkyl- or arylsulphonyloxy group (e.g. mesylate or tosylate) or, in particular, a halogen atom, (e.g. bromine, chlorine or iodine) and X and Z are as defined in formula (I), followed by reaction of the resultant compound with an amine $NHR^7 R^8$ to complete the $ZN R^7 R^8$ moiety.

This reaction is conveniently effected in an organic solvent such as dimethylformamide in the presence of an acid acceptor such as potassium carbonate.

It will be appreciated that, where necessary, reactive groups may be protected, thus for example, the NH groups of an imidazolinone of formula (XIIa) may be protected by any suitable amine protecting group such as an acetyl group.

The compounds of the formula (II) may be prepared as shown in the following Scheme in which Ar represents the R^1, R^2, R^3 substituted phenyl group; Ar^2 represents the R^4, R^5 substituted phenyl group and Ph represents phenyl:
L-Selectride is lithium tri-sec-butylborohydride.

The following references describe methods which may be applied by the skilled worker to the chemical synthesis set forth above once the skilled worker has read the disclosure herein:

The Examples disclosed herein produce predominantly the preferred isomers. The unfavoured isomers are also produced as minor components. If desired they may be isolated and employed to prepare the various stereoisomers in conventional manner, for example chromatography using an appropriate column. However, the skilled worker will appreciate that although the Examples have been optimized to the production of the preferred isomers, variation in solvent, reagents, chromatography etc can be readily employed to yield the other isomers.

It will be appreciated that compounds of the formula (I) wherein R6 contains an =O or =S substituent can exist in tautomeric forms. All such tautomeric forms and mixtures thereof are included within this invention. Most aptly the =O or =S substituent in R6 is the =O substituent.

Where they are not commercially available, the intermediates of formula (III) above may be prepared by the procedures described in the accompanying Examples or by alternative procedures which will be readily apparent to one skilled in the art.

During any of the above synthetic sequences it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups,

0109] The exemplified compounds of this invention were tested by the methods set out at pages 36 to 39 of International Patent Specification No. WO 93/01165. The compounds or, in the case of prodrugs, the parent compounds, were found to be active with IC50 at the NK1 receptor of less than 10 nM on said test method.

DESCRIPTION 1

(S)-(4-Fluorophenyl)glycine

Via Chiral Synthesis:

Step A: 3-(4-Fluorophenyl)acetyl-4-(S)-benzyl-2-oxazolidinone

[0110] An oven-dried, 1 L 3-necked flask, equipped with a septum, nitrogen inlet, thermometer, and a magnetic stirring bar, was flushed with nitrogen and charged with a solution of 5.09g (33.0mmol) of 4-fluorophenylacetic acid in 100ml of anhydrous ether. The solution was cooled to -10°C and treated with 5.60ml (40.0mmol) of triethylamine followed by 4.30ml (35.0mmol) of trimethylacetyl chloride. A white precipitate formed immediately. The resulting mixture was stirred at -10°C for 40 minutes, then cooled to -78°C.

[0111] An oven-dried, 250ml round bottom flask, equipped with a septum and a magnetic stirring bar, was flushed with nitrogen and charged with a solution of 5.31 g (30.0mmol) of 4-(S)-benzyl-2-oxazolidinone in 40ml of dry THF. The solution was stirred in a dry ice/acetone bath for 10 minutes, then 18.8ml of 1.6M n-butyl lithium solution in hexanes was added. After 10 minutes, the lithiated oxazolidinone solution was added, via cannula, to the above mixture in the 3-necked flask. The cooling bath was removed from the resulting mixture and the temperature was allowed to rise to 0°C. The reaction was quenched with 100ml of saturated aqueous ammonium chloride solution, transferred to a 1l flask, and the ether and THF were removed in vacuo. The concentrated mixture was partitioned between 300ml of methylene chloride and 50ml of water and the layers were separated. The organic layer was washed with 100ml of 2N aqueous hydrochloric acid solution, 300ml of saturated aqueous sodium bicarbonate solution, dried over magnesium sulfate and concentrated in vacuo. Flash chromatography on 400g of silica gel using 3:2 v/v hexanes/ether as the eluant afforded 7.89g (83%) of the title compound as a white solid: mp 64-66°C. Anal. Calcd. for C18H15FN4O3: C, 64.89; H, 4.27; N, 15.81; F, 5.36. Found: C, 60.99; H, 4.19; N, 15.80; F, 5.34.

Step B: 3-((S)-Azido-(4-fluorophenyl))acetyl-4-(S)-benzyl-2-oxazolidinone

[0112] An oven-dried, 1 L 3-necked flask, equipped with a septum, nitrogen inlet, thermometer, and a magnetic stirring bar, was flushed with nitrogen and charged with a solution of 58.0ml of 1M potassium bis(trimethylsilyl)amide solution in 2N aqueous hydrochloric acid solution, 300ml of saturated aqueous sodium bicarbonate solution, dried over magnesium sulfate and concentrated in vacuo. Flash chromatography on 500g of silica gel using 3:2 v/v hexanes/methylene chloride as the eluant afforded 8.95g of an oil that slowly solidified on standing. Recrystallisation from 10:1 hexanes/ether afforded 5.45g (67%) of the title compound as an oil. IR Spectrum (neat, cm⁻¹): 2104, 1781, 1702. ¹H NMR (400MHz, CDCl₃) δ 2.76 (1H, dd, J=13.2, 9.2), 3.26 (dd, J=13.2, 3.2), 4.16-4.34 (4H, m), 4.65 (1H, m), 7.02-7.33 (9H, m). Anal. Calcd. for C₁₈H₁₆FNO₅: C, 69.00; H, 5.15; N, 4.47; F, 6.06; Found: C, 68.86; H, 5.14; N, 4.48; F, 6.08.

EP 0 737 192 B1
Step C: (S)-Azido-(4-fluorophenyl)acetic acid

[0113] A solution of 5.40g (15.2mmol) of 3-((S)-azido-(4-fluorophenyl))acetyl-4-(S)-benzyl-2-oxazolidinone (from Step B) in 200ml of 3:1 v/v THF/water was stirred in an ice bath for 10 minutes. 1.28g (30.4mmol) of lithium hydroxide monohydrate was added in one portion and the resulting mixture was stirred cold for 30 minutes. The reaction mixture was partitioned between 100ml of methylene chloride and 100ml of 25% saturated aqueous sodium bicarbonate solution and the layers were separated. The aqueous layer was washed with 2 x 100ml of methylene chloride and acidified to pH 2 with 2N aqueous hydrochloric acid solution. The resulting mixture was extracted with 2 x 100ml of ethyl acetate; the extracts were combined, washed with 50ml of saturated aqueous sodium chloride solution, dried over magnesium sulfate, and concentrated in vacuo to afford 2.30g (77%) of the title compound as an oil that was used in the following step without further purification. IR Spectrum (neat, cm⁻¹): 2111, 1724. ¹H NMR (400MHz, CDCl₃) δ 5.06 (1 H, s), 7.08-7.45 (4H, m), 8.75 (1 H, br s).

Step D: (S)-(4-Fluorophenyl)glycine

[0114] A mixture of 2.30g (11.8mmol) of (S)-azido-(4-fluorophenyl)acetic acid (from Step C), 250mg 10% palladium on carbon catalyst and 160ml 3:1 v/v water/acetic acid was stirred under an atmosphere of hydrogen for 18 hours. The reaction mixture was filtered through Celite and the flask and filter cake were rinsed well with ~1l of 3:1 v/v water/acetic acid. The filtrate was concentrated in vacuo to about 50ml of volume. 300ml of toluene was added and the mixture concentrated to afford a solid. The solid was suspended in 1:1 v/v methanol/ether, filtered and dried to afford 1.99g (100%) of the title compound. ¹H NMR (400MHz, D₂O+ NaOD) δ 3.97 (1H, s), 6.77 (2H, app t, J=8.8), 7.01 (2H, app t, J=5.6).

Via Resolution:

Step A': (4-Fluorophenyl)acetyl chloride

[0115] A solution of 150g (0.974mol) of 4-(fluorophenyl)acetic acid and 1ml of N,N-dimethylformamide in 500ml of toluene at 40°C was treated with 20ml of thionyl chloride and heated to 40°C. An additional 61.2ml of thionyl chloride was added dropwise over 1.5 hours. After the addition, the solution was heated at 50°C for 1 hour, the solvent was removed in vacuo and the residual oil was distilled at reduced pressure (1.5mmHg) to afford 150.4g (89.5%) of the title compound, bp=68-70°C.

Step B': Methyl 2-bromo-3-(4-fluorophenyl)acetate

[0116] A mixture of 150.4g (0.872mol) of 4-(fluorophenyl)acetyl chloride (from Step A') and 174.5g (1.09mol) of bromine was irradiated at 40-50°C with a quartz lamp for 5 hours. The reaction mixture was added dropwise to 400ml of methanol and the solution was stirred for 16 hours. The solvent was removed in vacuo and the residual oil was distilled at reduced pressure (1.5mmHg) to afford 150.4g (89.5%) of the title compound, bp=106-110°C.

Step C': Methyl (-)-(4-fluorophenyl)glycine

[0117] A solution of 24.7g (0.1mol) of methyl 2-bromo-2-(4-fluorophenyl)acetate (from Step B') and 2.28g (0.01 mol) of benzyl triethylammonium chloride in 25ml of methanol was treated with 6.8g (0.105mol) of sodium azide and the resulting mixture was stirred for 20 hours at room temperature. The reaction mixture was filtered; the filtrate was diluted with 50ml of methanol and hydrogenated in the presence of 0.5g of 10% Pd/C at 50 psi for 1 hour. The solution was filtered and the solvent removed in vacuo. The residue was partitioned between 10% aqueous sodium carbonate solution and ethyl acetate. The organic phase was washed with water, saturated aqueous sodium carbonate solution dried over magnesium sulfate and concentrated in vacuo to afford 9.8g of the title compound as an oil.

Step D': Methyl (S)-(4-fluorophenyl)glycinate

[0118] A solution of 58.4g of methyl (±)-(4-fluorophenyl)glycinate (from Step C') in 110ml of 7:1 v/v ethanol/water was mixed with a solution of 28.6g (0.0799mol) of O,O'-(+)-dibenzoyltartaric acid ((+)-DBT) (28.6g, 0.0799mol) in 110ml of 7:1 v/v ethanol:water and the resulting solution was allowed to age at room temperature. Ethyl acetate (220ml) was added after crystallisation was complete and the resulting mixture was cooled to -20°C and filtered to afford 32.4g of methyl (S)-(4-fluorophenyl)glycinate, (+)-DBT salt (ee=93.2%). The mother liquors were concentrated in vacuo and the free base was liberated by partitioning between ethyl acetate and aqueous sodium carbonate solution. A solution
of free base, so obtained, in 110ml of 7:1 v/v ethanol/water was mixed with a solution of 28.6g (0.0799mol) of O,O'-(—)- dibenzyoltartaric acid ((—)-DBT) (28.6g, 0.0799mol) in 110ml of 7:1 v/v ethanol:water and the resulting solution was allowed to age at room temperature. Ethyl acetate (220ml) was added after crystallisation was complete and the resulting mixture was cooled to -20°C and filtered to afford 47.0g of methyl (R)-(4-fluorophenyl)glycinate, (-)-DBT salt (ee=75.8%). Recycling of the mother liquors and addition of (+)-DBT gave a second crop of 7.4g of (S)-(4-fluorophenyl)glycinate, (+)-DBT salt (ee=96.4%). The two crops of the (S)-amino ester (39.8g) were combined in 200ml of 7:1 v/v ethanol/water, heated for 30 minutes and cooled to room temperature. Addition of ethyl acetate, cooling, and filtration afforded 31.7g of (S)-(4-fluorophenyl)glycinate, (+)-DBT salt (ee > 98%). Enantiomeric excess was determined by chiral HPLC (Crownpak CR(+): 5% MeOH in aq HClO4 pH2:1.5ml/min 40°C 200nm).

[0119] A mixture of 17.5g of (S)-(4-fluorophenyl)glycinate, (+)-DBT salt and 32ml of 5.5N HCl (32ml) was heated at reflux for 1.5 hours. The reaction mixture was concentrated in vacuo and the residue was dissolved in 40ml of water. The aqueous solution was washed (3 x 30ml of ethyl acetate) and the layers were separated. The pH of the aqueous layer was adjusted to 7 using ammonium hydroxide and the precipitated solid was filtered to afford 7.4g of the title compound (ee=98.8%).

DESCRIPTION 2

4-Benzyl-3-(S)-(4-fluorophenyl)-2-morpholinone

Step A: N-Benzyl-(S)-(4-fluorophenyl)glycine

[0120] A solution of 1.87g (11.05mmol) of (S)-(4-fluorophenyl)-glycine (from Description 1) and 1.12ml (11.1mmol) of benzaldehyde in 11.1ml of 1N aqueous sodium hydroxide solution and 11ml of methanol at 0°C was treated with 165mg (4.4mmol) of sodium borohydride. The cooling bath was removed and the resulting mixture was stirred at room temperature for 30 minutes. Second portions of benzaldehyde (1.12ml (11.1mmol)) and sodium borohydride (165mg (4.4mmol) were added to the reaction mixture and stirring was continued for 1.5hours. The reaction mixture was partitioned between 100ml of ether and 50ml of water and the layers were separated. The aqueous layer was separated and filtered to remove a small amount of insoluble material. The filtrate was acidified to pH 5 with 2N aqueous hydrochloric acid solution and the solid that had precipitated was filtered, rinsed well with water, then ether, and dried to afford 1.95g of the title compound. 1 H NMR (400MHz, D 2 O + NaOD) δ 3.33 (2H, AB q, J=8.4), 3.85 (1H, s), 6.79-7.16 (4H, m).

Step B: 4-Benzyl-3-(S)-(4-fluorophenyl)-2-morpholinone

[0121] A mixture of 1.95g (7.5mmol) of N-benzyl (S)-(4-fluorophenyl)glycine, 3.90ml (22.5mmol) of N,N-diisopropylethylamine, 6.50ml (75.0mmol) of 1,2-dibromoethane and 40ml of N,N-dimethylformamide was stirred at 100°C for 20 hours (dissolution of all solids occurred on warming). The reaction mixture was cooled and concentrated in vacuo. The residue was partitioned between 250ml of ether and 100ml of 0.5N potassium hydrogen sulfate solution and the layers were separated. The organic layer was washed with 100ml of 100% saturated aqueous sodium bicarbonate solution, 3 x 150ml of water, dried over magnesium sulfate, and concentrated in vacuo. Flash chromatography on 150g of silica gel using 37:3 v/v hexanes/ether as the eluant afforded 4.06g (80%) of the title compound as a solid. 1H NMR (400MHz, CDCl 3) δ 2.50 (1H, dt, J=3.4, 12.0), 2.97 (1H, dt, J=13.3, 2.4), 2.99 (1H, dt, J=12.8, 3.2), 3.07 (1H, t, J=13.3, 2.4), 4.24 (1H, s), 4.54 (1H, dt, J=13.3, 2.4), 7.07-7.56 (9H, m).

DESCRIPTION 3

4-Benzyl-2-(R)-(3,5-bis(trifluoromethyl)benzoyloxy)-3-(S)-(4-fluorophenyl)morpholine

[0122] A solution of 2.67g (10.0mmol) of 4-benzyl-3-(S)-(4-fluorophenyl)-2-morpholinone (Description 2) in 40ml of dry THF was cooled to -78°C. The cold solution was treated with 12.5ml of 1.0M L-Selectride® solution in THF, maintaining the internal reaction temperature below -70°C. The resulting solution was stirred cold for 45 minutes and the reaction was charged with 3.60ml (20.0mmol) of 3,5-bis(trifluoromethyl)benzoyl chloride. The resulting yellow mixture was stirred cold for 30 minutes and the reaction was quenched with 50ml of saturated aqueous sodium bicarbonate solution. The quenched mixture was partitioned between 300ml of ether and 50ml of water and the layers were separated. The organic layer was dried over magnesium sulfate. The aqueous layer was extracted with 300ml of ether; the extract was dried and combined with the original organic layer. The combined organics were concentrated in vacuo. Flash chromatography on 150g of silica gel using 37:3 v/v hexanes/ether as the eluant afforded 4.06g (80%) of the title compound as a solid. 1H NMR (200MHz, CDCl 3) δ 2.50 (1H, dt, J=3.4, 12.0), 2.97 (1H, app d, J=12.0), 2.99 (1H, dt, J=13.3, 2.4), 4.24 (1H, s), 4.54 (1H, dt, J=13.3, 2.4), 7.07-7.56 (9H, m).
DESCRIPTION 4
4-Benzyl-2-(R)-(1-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine

Step A: Dimethyl titanocene

A solution of 2.49g (10.0mmol) of titanocene dichloride in 50ml of ether in the dark at 0°C was treated with 17.5ml of 1.4M methyllithium solution in ether maintaining the internal temperature below 5°C. The resulting yellow/orange mixture was stirred at room temperature for 30 minutes and the reaction was quenched by adding 25g of ice. The quenched reaction mixture was diluted with 50ml of ether and 25ml of water and the layers were separated. The organic layer was dried over magnesium sulfate and concentrated in vacuo to afford 2.03g (98%) of the title compound as a light-sensitive solid. The dimethyl titanocene could be stored as a solution in toluene at 0°C for at least 2 weeks without apparent chemical degradation. 1H NMR (200MHz, CDCl3) δ -0.15 (6H, s), 6.06 (10H, s).

Step B: 4-Benzyl-2-(R)-(1-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine

A solution of the compound of Description 3 (2.50g, 4.9mmol) and 2.50g (12.0mmol) of dimethyl titanocene (from Step A) in 35ml of 1:1 v/v THF/toluene was stirred in an oil bath at 80°C for 16 hours. The reaction mixture was cooled and concentrated in vacuo. Flash chromatography on 150g of silica gel using 3:1 v/v hexanes/methylene chloride as the eluant afforded 1.71g (69%) of the title compound as a solid. An analytical sample was obtained via recrystallisation from isopropanol: 1H NMR (400MHz, CDCl3) δ 2.42 (1H, dt, J=3.6, 12.0), 2.90 (1H, app d, J=12.0), 3.62-3.66 (1H, m), 3.72 (1H, d, J=2.6), 3.94 (1H, d, J=13.6), 4.09 (1H, dt, J=2.4, 12.0), 4.75 (1H, d, J=3.2), 4.82 (1H, d, J=3.2), 5.32 (1H, d, J=2.6), 7.09 (2H, t, J=8.8), 7.24-7.33 (5H, m), 7.58-7.62 (2H, m), 7.80 (1H, s), 7.90 (2H, s); MS (FAB) 526 (M+H, 75%), 270 (100%). Anal. Calcd for C27H22F7NO2: C, 61.72; H, 4.22; N, 2.67; F, 25.31. Found: C, 61.79; H, 4.10; N, 2.65; F, 25.27%.

DESCRIPTION 5
2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine

The compound of Description 4 (4.0g) was dissolved in ethyl acetate (50ml) and isopropanol (16ml). To this solution was added palladium on charcoal (1.5g) and the mixture was hydrogenated at 40 psi for 36h. The catalyst was removed by filtration through Celite and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica using 100% ethyl acetate and then 1-10% methanol in ethyl acetate. This afforded isomer A 500mg (15%) and isomer B 2.6g (80%) as clear oils - isomer B crystallised on standing. For the title compound: 1H NMR (400MHz, CDCl3) δ 1.16 (3H, d, J=6.8MHz), 1.80 (1H, br s), 3.13 (1H, dd, J=3.2, 12.4Hz), 3.23 (1H, dt, J=3.6, 12.4Hz), 3.63 (1H, dd, J=2.4, 11.2Hz), 4.01 (1H, d, J=2.4Hz), 4.13 (1H, dt, J=3.2, 12.0Hz), 4.42 (1H, d, J=2.4Hz), 4.19 (1H, q, J=6.8Hz), 7.04-7.09 (2H, m), 7.27-7.40 (4H, m), 7.73 (1H, s); MS (FAB) 438 (M+H, 75%), 180 (100%).

HCl salt formation. To a solution of the free base (0.77g) in diethyl ether (10ml) was added 1M-HCl in methanol (1.75ml). The solution was evaporated to dryness and on addition of diethyl ether crystals formed. The solution was filtered and the residue washed with diethyl ether to give the title compound hydrochloride salt mp 248-250°C. Found: C, 50.46; H, 3.85; N, 3.01; Cl, 7.31. C20H18F7NO2.HCl requires C, 50.70; H, 4.04; N, 2.96; Cl, 7.48%.

DESCRIPTION 6
4-Benzyl-3-(S)-(4-fluorophenyl)-2-(R)-(3-fluoro-5-(trifluoromethyl)benzoyloxy)morpholine

The title compound was prepared from the reaction of the compound of Description 2 with 3-fluoro-5-(trifluoromethyl)benzoyl chloride according to the procedure illustrated in Description 3. 1H NMR (360MHz, CDCl3) δ 2.50 (1H, dt, J=3.3, 12.0), 2.96 (1H, d, J=12.0), 2.98 (1H, d, J=13.6), 3.75 (1H, dd, J=1.7, 11.5), 3.80 (1H, d, J=2.5), 3.92 (1H, d, J=13.6), 4.19 (1H, dt, J=2.1, 12.0), 6.20 (1H, d, J=2.5), 6.99 (2H, t, J=8.7), 7.2-7.37 (5H, m), 7.51-7.55 (3H, m), 7.89 (1H, d, J=8.4), 8.09 (1H, s). MS (Cl+) m/z 478 (M+1, 100%). Anal. Calcd. for C25H18F7NO2: C, 62.88; H, 4.23; N, 3.07. Found: C, 62.59; H, 4.03; N, 3.07%.
DESCRIPTION 7

4-Benzyl-3-(S)-(4-fluorophenyl)-2-(R)-(1-(3-fluoro-5-(trifluoromethyl)phenyl)ethenyloxy)morpholine

[0128] The title compound was prepared in 85% yield from the compound of Description 6 according to the procedure illustrated in Description 4. 1H NMR (360MHz, CDCl₃) δ 2.42 (1H, dt, J=3.6, 12.0), 2.90 (1H, dt, J=12.0), 2.91 (1H, d, J=13.6), 3.60-3.62 (1H, m), 3.72 (1H, d, J=12.0), 3.92 (1H, d, J=13.6), 4.09 (1H, dt, J=2.4, 12.0), 4.67 (1H, d, J=2.9), 4.76 (1H, d, J=2.9), 5.28 (1H, d, J=2.6), 7.07 (2H, t, J=8.7), 7.2-7.37 (7H, m), 7.53 (1H, s), 7.57-7.61 (2H, m). MS (Cl⁺) 476 (M⁺1, 100%).

DESCRIPTION 8

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl)ethoxy)morpholine

[0129] The compound of Description 7 was hydrogenated according to the method illustrated in Description 5. This afforded a mixture of 2 epimeric products isomer A and isomer B (the major product) as clear oils. For the title compound: 1H NMR (360MHz, CDCl₃) δ 1.42 (3H, d, J=6.6Hz), 1.91 (1H, s), 3.11 (1H, dd, J=3.2, 12.4Hz), 3.22 (1H, dt, J=3.6, 12.4Hz), 3.58-3.62 (1H, m), 4.01 (1H, d, J=2.3Hz), 4.11 (1H, dt, J=3.2, 12.0Hz), 4.41 (1H, d, J=2.3Hz), 4.80 (1H, q, J=6.6Hz), 6.41 (1H, d, J=9.2Hz), 6.86 (1H, s), 7.02 (2H, t, J=8.7Hz), 7.08 (2H, d, J=9.2Hz), 7.21-7.26 (2H, m). MS (Cl⁺) m/z 387 (M⁺1, 100%). Anal. Calcd. for C₁₉H₁₈F₅NO₂: C, 58.91; H, 4.69; N, 3.62. Found: C, 58.88; H, 4.81; N, 3.76%.

DESCRIPTION 9

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-2-oxo-1,3-imidazol-4-yl)methylmorpholine

[0130] A mixture of the compound of Description 5 (1g), N,N-diacetyl-4-bromomethyl-2-imidazolinone (0.62g) (prepared according to the procedure of Dolan and Dushinsky JACS 1948, 70, 657) and potassium carbonate (0.63g) in 10ml of dimethylformamide was stirred at room temperature for 15 min. The reaction mixture was diluted with ethyl acetate (100ml) and was washed with water and brine. The ethyl acetate layer was dried (MgSO₄) and evaporated in vacuo. The resulting oil was dissolved in ethanol (10ml), 33% ethanolic methylamine (1ml) was added and the mixture stirred at room temperature for 10 min. The mixture was concentrated in vacuo to afford a solid. Recrystallisation from ethyl acetate/methanol afforded the title compound (0.63g). mp 192-194°C. 1H NMR (360MHz, DMSO-d₆) δ 1.35 (3H, d, J=6.5Hz), 2.25 (1H, dt, J=8.7Hz), 2.60 (1H, d, J=13.8Hz), 3.62 (1H, d, J=11.6Hz), 3.89 (1H, t, J=10.0Hz), 4.29 (1H, d, J=2.7Hz), 4.92 (1H, q, J=6.5Hz), 5.97 (1H, s), 7.06 (2H, t, J=8.8Hz), 7.36 (2H, s), 7.53-7.85 (2H, m), 7.82 (1H, s), 9.58 (1H, s), 9.8 (1H, s).

DESCRIPTION 10

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl)ethoxy)-4-(2,3-dihydro-2-oxo-1,3-imidazol-4-yl)methylmorpholine

[0131] The title compound was prepared from the compound of Description 8 using a procedure analogous to that of Description 9. mp 209-210°C. [α]D₂⁺ =+92.8 (c=1.0, methanol). 1H NMR (360MHz, DMSO-d₆) δ 1.31 (3H, d, J=6.5Hz), 2.25 (1H, dt, J=3.0, 11.9Hz), 2.6 (1H, d, J=13.9Hz), 2.89 (1H, d, J=11.6Hz), 3.28-3.36 (2H, m), 6.00 (1H, d, J=10.2Hz), 4.1 (1H, t, J=10.0Hz), 4.29 (1H, d, J=2.3Hz), 4.8 (1H, q, J=6.5Hz), 5.97 (1H, s), 7.06 (2H, t, J=8.8Hz), 7.36 (2H, s), 7.53-7.85 (2H, m), 7.82 (1H, s), 9.58 (1H, s), 9.8 (1H, s).

DESCRIPTION 11

2-(R)-(1-(R)-3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(1,2,4-triazol-3-yl)methylmorpholine

[0132] A solution of the compound of Description 5 (3.77g) and potassium carbonate (3.59g) in dry dimethylformamide (7ml) was stirred at room temperature for 10 min. N-Formyl-2-chloroacetamidrazone (prepared according to I. Yanagisawa, J. Med Chem. (1984), 27, 849) was added and the reaction mixture was heated at 60°C for 1 hour. The temperature was then increased to 140°C for 2h. The mixture was cooled and partitioned between ethyl acetate and water and the organic phase was washed with water, brine, dried (MgSO₄) and evaporated to give a brown oil. The
The residue was purified by chromatography on silica using 1-5% methanol in dichloromethane. This afforded the product as a white foam (2.99g). 1H NMR (360MHz, DMSO) δ 8.25 (1H, s), 7.85 (1H, s), 7.50 (2H, t), 7.37 (2H, s), 7.11 (2H, t, J=9.0Hz), 4.93 (1H, q, J=6.6Hz), 4.32 (1H, d, J=2.8Hz), 4.09 (1H, dt, J=11.5Hz), 3.63 (1H, d, J=14.1Hz), 3.59 (1H, d, J=3.0Hz), 3.17 (1H, d, J=14.0Hz), 2.49 (1H, dt, J=15.7Hz), 1.36 (3H, d, J=6.6Hz). MS (Cl+) m/z 519. Anal. Calcd. for C23H19F7N4O2: C, 53.29; H, 4.08; N, 10.81; Found: C, 52.92; H, 3.94; N, 10.33.

DESCRIPTION 12

4-Benzyl-3-(S)-(4-fluorophenyl)-2-(R)-3-(trifluoromethyl)benzoyloxy)morpholine

[0133] The title compound was prepared from the reaction of the compound of Description 2 with 3-(trifluoromethyl)benzoyl chloride according to the procedure illustrated in Description 3. 1H NMR (360MHz, CDCl3) δ 2.48 (1H, dt, J=12.0, 3.5), 2.94 (1H, d, J=13.5Hz), 3.73 (1H, app. d, J=11.4), 3.78 (1H, d, J=13.6), 3.91 (1H, d, J=13.6), 4.21 (1H, dt, J=11.7, 2.4), 6.20 (1H, d, J=2.8), 6.97 (2H, t, J=8.7), 7.25-7.37 (5H, m), 7.53 (2H, m), 7.61 (1H, t, J=7.8), 7.84 (1H, d, J=8.0), 8.21 (1H, d, J=7.8), 8.30 (1H, s). MS (Cl+) m/z 460 (M+1, 100%).

DESCRIPTION 13

4-Benzyl-3-(S)-(4-fluorophenyl)-2-(R)-(1-(3-(trifluoromethyl)phenyl)ethoxy)morpholine

[0134] The title compound was prepared from the compound of Description 12 according to the procedure illustrated in Description 4. 1H NMR (360MHz, CDCl3) δ 2.40 (1H, dt, J=11.9, 3.6Hz), 2.87 (1H, app. d, J=11.8Hz), 2.90 (1H, d, J=13.5Hz), 3.62 (1H, app.d, J=11.5Hz), 3.70 (1H, d, J=2.7Hz), 3.91 (1H, d, J=13.5Hz), 4.12 (1H, dt, J=11.7, 2.4Hz), 4.62 (1H, d, J=2.7Hz), 4.74 (1H, d, J=2.7Hz), 5.30 (1H, d, J=2.7Hz), 7.07 (2H, t, J=8.7Hz), 7.21-7.32 (5H, m), 7.40 (1H, t, J=7.8Hz), 7.53-7.63 (4H, m), 7.74 (1H, s). MS (Cl+) m/z 458 (M+1, 100%).

DESCRIPTION 14

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-(trifluoromethyl)phenyl)ethoxy)morpholine

[0135] The compound of Description 13 was hydrogenated according to the method illustrated in Description 5. This afforded a mixture of 2 epimeric products isomer A and isomer B in approximately equal mass as yellow oils. The title compound (isomer B): 1H NMR (360MHz, CDCl3) δ 1.43 (3H, d, J=6.6), 3.11 (1H, dd, J=12.6, 2.9), 3.22 (1H, dt, J=12.4, 3.7), 3.60 (1H, dd, J=11.1, 2.8), 3.99 (1H, d, J=2.2), 4.13 (1H, dt, J=11.6, 3.2), 4.42 (1H, d, J=2.2), 4.81 (1H, q, J=6.6), 6.84 (1H, d, J=7.8), 6.96-7.03 (3H, m), 7.16-7.27 (3H, m), 7.38 (1H, d, J=7.5). MS (Cl+) m/z 370 (M+1, 100%). Anal. Calcd. for C19H19F4NO2: C, 61.77; H, 5.20; N, 3.79. Found: C, 61.60; H, 5.16; N, 3.95%.

DESCRIPTION 15

4-Benzyl-3-(S)-phenyl-2-morpholinone

Step A: N-Benzyl-(S)-phenylglycine

[0136] A solution of 1.51g (10.0mmol) of (S)-phenylglycine in 5ml of 2N aqueous sodium hydroxide solution was treated with 1.0ml (10.0mmol) of benzaldehyde and stirred at room temperature for 20 minutes. The solution was diluted with 5ml of methanol, cooled to 0°C, and carefully treated with 200mg (5.3mmol) of sodium borohydride. The cooling bath was removed and the reaction mixture was stirred at room temperature for 1.5 hours. The reaction was diluted with 20ml of water and extracted with 2 x 25ml of methylene chloride. The aqueous layer was acidified with concentrated hydrochloric acid to pH 6 and the solid that precipitated was filtered, washed with 50ml of water, 50ml of 1:1 v/v methanol/ethyl ether and 50ml of ether, and dried to afford 1.83g (76%) of product, mp 230-232°C. Anal. Calcd for C15H15NO2: C, 74.66; H, 6.27; N, 5.81. Found: C, 74.17; H, 6.19; N, 5.86.

Step B: 4-Benzyl-3-(S)-phenyl-2-morpholinone

[0137] A mixture of 4.00g (16.6mmol) of N-benzyl-(S)-phenylglycine (from Step A) 5.00g (36.0mmol) of potassium carbonate, 10.0ml of 1,2-dibromoethane and 25ml of N,N-dimethylformamide was stirred at 100°C for 20 hours. The mixture was cooled and partitioned between 200ml of ethyl ether and 100ml of water. The layers were separated and the organic layer was washed with 3 x 50ml of water, dried over magnesium sulfate and concentrated in vacuo. The
residue was purified by flash chromatography on 125g of silica gel eluting with 9:1 v/v, then 4:1 hexanes/ethyl ether to afford 2.41g (54%) of the product as a solid, mp 98-100°C. ¹H NMR (250MHz, CDCl₃) δ 2.54-2.68 (1H, m), 2.96 (1H, dt, J=12.8, 2.8), 3.14 (1H, d, J=13.3), 3.75 (1H, d, J=13.3), 4.23 (1H, s), 4.29-4.37 (1H, m), 4.53 (dt, J=3.2, 11.0), 7.20-7.56 (10H, m). MS (FAB): m/z 268 (M+H; 100%). Anal. Calcd for C₁₇H₁₇NO₂: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.06; H, 6.40; N, 5.78.

DESCRIPTION 16

4-Benzyl-2-(R)-(3,5-bis(trifluoromethyl)benzoyloxy)-3-(S)-phenylmorpholine

A solution of 2.67g (10.0mmol) of the compound of Description 15 in 40ml of dry THF was cooled to -78°C. The cold solution was treated with 12.5ml of 1.0M L-Selectride® solution in THF, maintaining the internal reaction temperature below -70°C. The resulting solution was stirred cold for 45 minutes and the reaction was charged with 3.60ml (20.0mmol) of 3,5-bis(trifluoromethyl) benzoyl chloride. The resulting yellow mixture was stirred cold for 30 minutes and the reaction was quenched with 50ml of saturated aqueous sodium bicarbonate solution. The quenched mixture was partitioned between 300ml of ether and 50ml of water and the layers were separated. The organic layer was dried over magnesium sulfate. The aqueous layer was extracted with 300ml of ether; the extract was dried and combined with the original organic layer. The combined organics were concentrated in vacuo. Flash chromatography on 150g of silica gel using 37:3 v/v hexanes/ether as the eluant afforded 4.06g (80%) of the title compound as a solid. ¹H NMR (200MHz ppm, CDCl₃) δ 2.50 (1H, dt, J=3.4, 12.0), 2.97 (1H, app d, J=12.0), 2.99 (1H, d, J=13.6), 3.72-3.79 (1H, m), 3.82 (1H, d, J=2.6), 6.22 (1H, d, J=2.6), 7.22-7.37 (7H, m), 7.57 (2H, app d, J=6.8), 8.07 (1H, s), 8.47 (2H, s). Anal. Calcd. for C₂₆H₂₁F₆NO₃: C, 61.29; H, 4.16; N, 2.75; F, 22.38. Found: C, 61.18; H, 4.14; N, 2.70; F, 22.13.

DESCRIPTION 17

4-Benzyl-2-(R)-(1-(3,5-bis(trifluoromethyl)phenyl) ethenyloxy)-3-(S)-phenylmorpholine

A solution of 2.50g (4.9mmol) of the compound of Description 16 and 2.50g (12.0mmol) of dimethyl titanocene (Description 4a), in 35ml of 1:1 v/v THF/toluene was stirred in an oil bath at 80°C for 16 hours. The reaction mixture was cooled and concentrated in vacuo. Flash chromatography on 150g of silica gel using 3:1 v/v hexanes/methylene chloride as the eluant afforded 1.71g (69%) of the title compound as a solid. ¹H NMR (400MHz, CDCl₃) δ 1.46 (3H, d, J=6.8Hz), 1.92 (1H, brs), 3.13 (1H, dd, J=3.0, 12.6Hz), 3.24 (1H, dt, J=3.6, 12.6Hz), 3.62 (1H, dd, J=3.6, 11.2Hz), 4.04 (1H, d, J=2.4Hz), 4.14 (1H, dt, J=3.0, 11.2Hz), 4.48 (1H, d, J=2.4Hz), 4.90 (1H, q, J=6.8Hz), 7.21-7.32 (7H, m), 7.64 (1H, s). MS (Cl⁺) m/z 508 (M⁺+1, 25%). Anal. Calcd. for C₂₇H₂₃F₆NO₂: C, 63.90; H, 4.57; N, 2.76; F, 22.46. Found: C, 63.71; H, 4.53; N, 2.68; F, 22.66.

DESCRIPTION 18

2-(R)-(1-(S)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenylmorpholine

A mixture of the compound of Description 17 (1.5g) and 10% palladium on carbon catalyst (750mg) in a mixture of isopropanol/ethyl acetate (25ml, 3:2 v/v) was stirred under an atmosphere of hydrogen for 48h. The catalyst was removed by filtration through celite and the reaction flask and filter pad were rinsed with ethyl acetate (500ml). The filtrate was concentrated in vacuo, flash chromatography afforded epimer A (106mg) and epimer B (899mg) as clear oils. The title compound, epimer B had the following analysis:

1H NMR (CDCl₃, 400MHz) δ 1.46 (3H, d, J=6.8Hz), 1.92 (1H, brs), 3.13 (1H, dd, J=3.0, 12.6Hz), 3.24 (1H, dt, J=3.6, 12.6Hz), 3.62 (1H, dd, J=3.6, 11.2Hz), 4.04 (1H, d, J=2.4Hz), 4.14 (1H, dt, J=3.0, 11.2Hz), 4.48 (1H, d, J=2.4Hz), 4.90 (1H, q, J=6.8Hz), 7.21-7.32 (7H, m), 7.64 (1H, s). MS (Cl⁺) m/z 420 (M⁺+1, 20%), 178 (100%). Anal. Calcd. for C₂₀H₁₉F₆NO₂: C, 57.28; H, 4.57; N, 3.34; F, 27.18. Found: C, 57.41; H, 4.61; N, 3.29; F, 27.23.

DESCRIPTION 19

2-(R)-(1-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(1,2,4-triazol-3-yl)methylmorpholine

This compound was prepared from the compound of Description 18 following the procedure illustrated in Description 11. MS (Cl⁺) m/z 501 (M⁺+1, 100%).
EXAMPLE 1

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(2,3-dihydro-5-(N,N-dimethylaminomethyl)-2-oxo-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

[0142] The compound of Description 9 (0.35g) was treated with N,N-dimethylmethyleneammonium iodide (0.48g) and triethylamine (111 ml) in tetrahydrofuran (10ml) and the mixture was heated at reflux for 4h. The solvent was removed in vacuo and the residue was purified by chromatography on silica using 1-10% methanol in dichloromethane as eluant to afford the title compound (0.2g). 1H NMR (250MHz, CDCl3) δ 9.72 (1H, s), 9.68 (1H, s), 7.86 (1H, s), 7.50-7.60 (2H, m), 7.36 (2H, s), 7.07 (2H, t, J=8.8Hz), 4.96-4.89 (1H, q, J=6.5Hz), 4.31 (1H, d, J=2.7Hz), 4.08 (1H, t, J=13.6Hz), 3.00 (1H, d, J=13.4Hz), 2.85 (1H, d, J=11.1 Hz), 2.62 (1H, d, J=13.6Hz), 2.25 (1H, t, J=11Hz), 2.01 (6H, s), and 1.35 (3H, d, J=6.5Hz). MS (Cl+) m/z 591 (M+1).

EXAMPLE 2

4-(2,3-Dihydro-5-(N,N-dimethylaminomethyl)-2-oxo-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl)ethoxy)morpholine

[0143] Prepared from the compound of Description 10 by a procedure analogous to that of Example 1. 1H NMR (250MHz, CDCl3) δ 1.38 (3H, d, J=6.2Hz), 2.22 (6H, s), 2.78 (1H, d, J=14Hz), 3.14-3.50 (5H, m), 3.60 (1H, d, J=11.2Hz), 4.22 (2H, m), 4.26 (1H, d, J=2.8Hz), 4.74 (1H, q, J=6.2Hz), 6.32 (1H, d, J=8.4Hz), 6.75 (1H, s), 7.06 (3H, t, J=8.4Hz), 7.34 (2H, br s), 8.86 (1H, br s), 9.14 (1H, br s). MS (Cl+) m/z 567 (M+H).

EXAMPLE 3

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl)ethoxy)-4-(2,3-dihydro-2-oxo-5-pyrrolidinomethyl-1,3-imidazol-4-yl)methylmorpholine

[0144] A mixture of the compound of Description 10, (0.1g), paraformaldehyde (0.012g) and pyrrolidine (0.04ml) in methanol (2ml) was heated at 90°C for 1h. An additional aliquot of paraformaldehyde (12mg) was added to the mixture and heating was continued for a further 30 min. The mixture was cooled and the solvent was removed in vacuo. The residue was purified by chromatography on silica using 0.5% aqueous ammonia and 5% methanol in dichloromethane. This afforded the product as a foam. The product was further purified as the hydrochloride salt: mp 157-9°C. 1H NMR (250MHz, (free base) CDCl3) δ 1.40 (3H, t, J=6.2Hz), 1.72 (4H, br s), 2.41 (4H, br s), 2.76 (1H, d, J=12.9Hz), 4.16 (1H, d, J=12.9Hz), 4.61 (1H, d, J=12.9Hz), 4.26 (1H, d, J=2.8Hz), 4.71 (1H, q, J=6.2Hz), 6.30 (1H, d, J=8.4Hz), 6.75 (1H, s), 7.06 (3H, t, J=8.4Hz), 7.34 (2H, br s), 8.86 (1H, br s), 9.14 (1H, br s). MS (Cl+) m/z 567 (M+H).

EXAMPLE 4

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-2-oxo-5-pyrrolidinomethyl-1,3-imidazol-4-yl)methylmorpholine

[0145] A solution of the compound of Description 5 (1.5g) in anhydrous dimethylformamide (15ml) was added drop wise during 5 min to a stirred solution of 4,5-bis(bromomethyl)-1,3-diacetyl-2-imidazolinone (1.8g) (prepared by the method of Dolan and Dushinsky JACS (1948) 70, 657) in dimethylformamide (10ml) containing potassium carbonate (1.4g) with ice-cooling. The reaction mixture was stirred for 10 min and pyrrolidine (1.1g) was added in one portion and stirring was continued for 20 min. The reaction mixture was diluted with water (250ml) and extracted with ethyl acetate (3 x 50ml). The combined organic extracts were washed with water (2 x 50ml) and brine (1 x 50ml) and then dried (K2CO3) and concentrated in vacuo. The residue was purified by chromatography on silica using a gradient elution of dichloromethane (100%) to dichloromethane/methanol/aqueous ammonia mixtures (85:15:0.5) to provide the title compound as a foam. 1H NMR (360MHz, DMSO-d6) δ 9.63 (2H, br s), 7.84 (1H, s), 7.53 (2H, br t), 7.36 (2H, s), 7.06 (2H, t, J=8.7Hz), 4.94-4.90 (1H, q, J=6.5Hz), 4.31 (1H, d, J=2.68Hz), 4.07 (1H, t, J=11.4Hz), 3.61 (1H, d, J=11.2Hz), 3.34 (1H, J=2.7Hz), 3.27 (1H, d, J=13.7Hz), 3.17 (1H, d, J=13.4Hz), 3.00 (1H, d, J=13.4Hz), 2.86 (1H, d, J=11.6Hz), 2.62 (1H, d, J=13.6Hz), 2.40-2.20 (5H, m), 1.64-1.58 (2H, m), 1.35 (3H, d, J=6.5Hz). MS (Cl+) m/z 615 (M+H).

EXAMPLE 5

Examples 6 to 9 in Table 1 were prepared in a similar manner to that described in Example 4 from the appropriate morpholine, 4,5-bis(bromomethyl)-1,3-diacytelp-2-oxidazoline and the appropriate amine.
EXAMPLE 12

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy-4-(5-(dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

Method A

a) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy-3-(S)-(4-fluorophenyl)-4-propargylmopholine

[0147] Propargyl bromide (1.9ml) was added to a stirred mixture of the compound of Description 5 (5g) and potassium carbonate (4.76g) in dry dimethylformamide at 23°C. After 15 min the reaction mixture was diluted with water (250ml) and extracted with ethyl acetate (3 x 100ml). The combined organic phases were washed with brine (1 x 100ml) then dried (K₂CO₃) and concentrated to leave an oil. This was purified by chromatography on silica using ethyl acetate in hexane (1:9 then 1:4) as eluent to afford the title compound as an oil. ¹H NMR (250MHz, CDCl₃) δ 1.50 (3H, d, J=6.6Hz), 2.21 (1H, s), 2.84 (1H, d, J=11.1Hz), 2.97 (1H, td, J=3.2, 11.7Hz), 3.26 (2H, d, J=1.8Hz), 3.62 (1H, d, J=2.2Hz), 3.71 (1H, dd, J=2.3, 11.1Hz), 4.33 (2H, m), 4.89 (1H, q, J=6.6Hz), 7.03 (2H, t, J=8.6Hz), 7.18 (2H, s), 7.38 (2H, br s), 7.63 (1H, s). MS (Cl⁺) m/z 476 (MH, 100%).

b) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(4-dimethylamino-4-oxo-but-2-ynyl)-3-(S)-(4-fluorophenyl)morpholine

[0148] A mixture of N,N-dimethylcarbamoyl chloride (0.195ml), cuprous iodide (2mg), bis(triphenylphosphine)palladium (II) chloride (2mg), triphenylphosphine (3mg) and the compound described in (a) above (1g) in triethylamine (4ml) was heated at 90°C for 5h in an inert atmosphere. The mixture was cooled to 23°C and methanol (1 ml) was added and the solvent was removed in vacuo. The residue was partitioned between water and ethyl acetate and the layers were separated. The aqueous phase was extracted with ethyl acetate (2 x 20ml). The combined organic phases were washed with water, brine, dried (MgSO₄) and concentrated to leave an oil. The residue was purified by chromatography on silica using ethyl acetate in hexane (1:1) then ethyl acetate as eluant to provide the title compound as an oil. ¹H NMR (250MHz, CDCl₃) δ 1.49 (3H, d, J=6.6Hz), 2.84-3.06 (2H, m), 3.00 (3H, s), 3.17 (3H, s), 3.44 (2H, s), 3.64 (1H, br s), 3.73 (1H, dd, J=2.0, 11.1Hz), 4.33 (2H, m), 4.88 (1H, q, J=6.6Hz), 7.03 (2H, t, J=8.7Hz), 7.17 (2H, s), 7.38 (2H, br s), 7.63 (1H, s). MS (Cl⁺) m/z 547 (MH, 100%).

c) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(5-N,N-dimethylcarboxamido-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

[0149] A mixture of the compound described in (b) above (1.1g) and sodium azide (0.65g) in dimethylsulphoxide (7.5ml) was heated at 70°C for 17h. The mixture was cooled to 23°C and excess dimethylsulphoxide was removed by distillation in vacuo. The residue was partitioned between brine and ethyl acetate. The layers were separated and the organic layer was washed with brine (2 x 20ml) then dried (MgSO₄) and concentrated to leave an oil. This was purified by chromatography on silica using ethyl acetate in hexane:acetone (1:1) then ethyl acetate as eluant to provide the title compound as a pale yellow foam. ¹H NMR (360MHz, CDCl₃) δ 1.47 (3H, d, J=6.6Hz), 2.6 (1H, m), 2.90 (1H, d, J=11.7Hz), 3.09 (3H, s), 3.34 (3H, s), 3.65 (3H, m), 3.92 (1H, d, J=15.5Hz), 4.27 (1H, td, J=2.1, 9.5Hz), 4.35 (1H, d, J=2.6Hz), 4.89 (1H, q, J=6.6Hz), 7.01 (2H, t, J=8.7Hz), 7.16 (2H, s), 7.39 (2H, br s), 7.64 (1H, s). m/z 590 (MH, 100%).

d) 2-(R)-(1-(R)-3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

[0150] Lithium aluminium hydride (0.47ml, 1M in tetrahydrofuran) was added dropwise to a solution of the compound described in (c) above (0.11g) in dry tetrahydrofuran (1ml) under an inert atmosphere at 23°C. After 30 min sodium hydroxide (10 drops, 1M) was added followed by water (5 drops). Ethyl acetate (50ml) was then added and the resulting mixture was filtered through a pad of Hyflo. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica using ethyl acetate in methanol (9:1 then 4:1) as eluant to provide the title compound as a foam. ¹H NMR (360MHz, CDCl₃) δ 1.44 (3H, d, J=6.6Hz), 2.25 (6H, s), 2.57 (1H, td, J=3.4, 8.55Hz), 2.90 (1H, d, J=11.7Hz), 3.25 (1H, d, J=14.0Hz), 3.43 (1H, d, J=13.6Hz), 3.45 (1H, d, J=2.2Hz), 3.53 (1H, d, J=13.6Hz), 3.61 (1H, d, J=11.2Hz), 3.78 (1H, d, J=14.0Hz), 4.22 (1H, t, J=9.3Hz), 4.32 (1H, d, J=2.2Hz), 4.86 (1H, q, J=6.6Hz), 7.06 (2H, t, J=8.7Hz), 7.16 (2H, s), 7.48 (2H, br s), 7.63 (1H, s). m/z 576 (MH).
Method B

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(4-chlorobut-2-ynyl)morpholine

[0151] a) A solution of the product of Description 5 (free base, 5g) in N,N-dimethylformamide (20ml) was slowly added to a heated (50°C) solution of 1,4-dichlorobut-2-ynie (2.2ml) and potassium carbonate (4.8g) in N,N-dimethylformamide (20ml). The solution was heated for a further 5h at 50°C and then the solvent removed in vacuo. To the residue was added water (400ml) and the product extracted into ethyl acetate (3 x 150ml). The combined organic phase washed with water, saturated brine and dried (MgSO4). The solvent was removed in vacuo and the residue chromatographed on silica gel (eluting with 10% ethyl acetate in petroleum ether bp 60-80°C) to give the title compound. 1 H NMR (250MHz, CDCl3) δ 1.41 (3H, d, J=6.6Hz), 2.80 (1H, app. t, J=10.8Hz), 2.87 (1H, td, J=3.5Hz, 11.7Hz), 3.22 (2H, t, J=1.9Hz), 3.52 (1H, d, J=2.8Hz), 3.68 (1H, d, J=1.4Hz, 11.1Hz), 4.00 (2H, t, J=1.9Hz), 4.22-4.32 (2H, m), 4.81 (1H, q, J=6.6Hz), 6.96 (2H, t, J=8.7Hz), 7.10 (2H, s), 7.31 (2H, br s), 7.56 (1H, s). m/z (Cl+) 524 (M+H, 100%).

b) N-(4-Azidobut-2-ynyl)-2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine

[0152] To a solution of 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(4-chlorobut-2-ynyl)morpholine (4g) in dimethyl sulphoxide (17ml) was added sodium azide (0.562g). The solution was stirred for 20h and aqueous ammonium chloride and ethyl acetate were added. The organic phase was washed with water (2 times), saturated brine and dried (MgSO4). The solvent was removed in vacuo and the residue chromatographed on silica gel (eluting with 20% ethyl acetate in petroleum ether bp 60-80°C) to give the title compound. 1 H NMR (360MHz, CDCl3) δ 1.46 (3H, s, J=6.6Hz), 2.87 (1H, app t, J=10.2Hz), 2.98 (1H, td, J=3.6, 11.7Hz), 3.35 (2H, t, J=1.9Hz), 3.61 (1H, d, J=2.8Hz), 3.72 (1H, dq, J=1.4Hz, 10.0Hz), 3.92 (2H, t, J=1.9Hz), 4.30-4.40 (2H, m), 4.89 (1H, q, J=6.6Hz), 7.03 (2H, t, J=8.7Hz), 7.17 (2H, s), 7.27 (2H, br s), 7.63 (1H, s).

c) 2-(R)-(1-(R)-3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

[0153] Dimethylamine (approximately 10ml) was condensed at -80°C in a pressure tube and to this was added a solution of N-(4-azidobut-2-ynyl)-2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine (4g) in dimethyl sulphoxide (17ml) and added sodium azide (0.562g). The solution was stirred for 20h and aqueous ammonium chloride and ethyl acetate were added. The organic phase was washed with water (2 times), saturated brine and dried (MgSO4). The solvent was removed in vacuo and the residue chromatographed on silica gel (eluting with 20% ethyl acetate in petroleum ether bp 60-80°C) to give the title compound. 1 H NMR (360MHz, DMSO) δ 7.89 (1H, s), 7.84 (1H, s), 7.48 (3H, s), 7.33-7.30 (3H, m, J=10.1), 5.26 (1H, d, J=17.8), 5.07 (1H, d, J=17.8), 4.96 (1H, q, J=6.5), 4.39 (1H, d, J=2.8), 4.04 (1H, b, J=10.1 Hz), 3.72 (3H, s), 3.58 (2H, d, J=14.0), 3.51 (1H, d, J=2.8), 3.20 (1H, d, J=14.0), 2.55 (1H, d, J=11.5), 2.37 (1H, b, J=3.5), 1.40 (3H, d, J=6.6).

EXAMPLE 13

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(N-(2-methylaminoethyl)-1,2,4-triazol-3-yl)methylmorpholine: Regioisomer B

a) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(N-carbomethoxymethyl-1,2,4-triazol-3-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

[0154] The compound of Description 11 (2.94g), potassium carbonate (2.03g) and methyl bromoacetate (0.74ml) were heated for 45 min in dimethylformamide. The reaction was partitioned between ethyl acetate and water, washed (brine), dried (MgSO4) and purified on silica using petrol-ethyl acetate mixtures. Two products, isomer A and isomer B were obtained as white foams.

[0155] Isomer A: 1 H NMR (360MHz, DMSO) δ 7.89 (1H, s), 7.84 (1H, s), 7.48 (3H, s), 7.33-7.30 (3H, m, J=10.1), 5.26 (1H, d, J=17.8), 5.07 (1H, d, J=17.8), 4.96 (1H, q, J=6.5), 4.39 (1H, d, J=2.8), 4.04 (1H, b, J=10.1 Hz), 3.72 (3H, s), 3.58 (2H, d, J=14.0), 3.51 (1H, d, J=2.8), 3.20 (1H, d, J=14.0), 2.55 (1H, d, J=11.5), 2.37 (1H, b, J=3.5), 1.40 (3H, d, J=6.6).

[0156] Isomer B: 1 H NMR (360MHz, DMSO) δ 8.43 (1H, s), 7.82 (1H, s), 7.44 (2H, d, J=1.4), 7.37 (2H, s), 7.31-7.25 (3H, m, J=3.2), 5.16 (2H, s), 4.91 (1H, q, J=6.5), 4.35 (1H, d, J=2.8), 4.08 (1H, br t, J=10.1), 3.69 (3H, s), 3.60 (1H, d, J=8.8), 3.55 (1H, d, J=2.7), 3.30 (1H, d, J=8.7), 3.08 (1H, d, J=13.7), 2.95 (1H, d, J=11.5), 2.47 (1H, br t, J=3.4), 1.35 (3H, d, J=6.5). MS (Cl+) m/z 573 (M+1).
b) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(N-(N'-methylcarboxamido)methyl-1,2,4-triazol-3-yl)methylmorpholine

[0157] Monomethylamine gas was bubbled through a solution of the compound of (a) above (375mg Isomer b) in methanol (25ml) for 10 min and then sealed for 16h. Reaction mixture was evaporated, redissolved in ethyl acetate and concentrated in vacuo to a white solid (374mg). 1 H NMR (250MHz, CDCl 3) δ 8.09 (1H, s), 7.61 (1H, s), 7.45 (2H, br s), 7.33 (2H, s), 7.31 (1H, br s), 7.13 (2H, br s), 4.85 (1H, q, J=6.5Hz), 4.76 (2H, s), 4.37 (1H, br s), 4.36 (1H, br s), 3.85 (1H, d), 3.66 (1H, br s), 3.63 (1H, br s), 3.49 (1H, d), 3.03 (1H, br s), 2.82 (3H, d), 2.80 (1H, br s), 1.46 (3H, d). MS (Cl+) 573 (M+1).

c) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(N-(2-methylaminoethyl)-1,2,4-triazol-3-yl)methylmorpholine

[0158] A cooled solution of the compound of (b) above (302mg) in tetrahydrofuran (5ml) and borane-tetrahydrofuran complex (1.59ml, 1M) was stirred for 60 min before heating (60 °C) for a further 60 min. The reaction was evaporated and redissolved in CH 3 OH with K 2 CO 3 before heating to reflux for 30 min. The reaction was poured into ethyl acetate, washed (water x 2, brine), dried (MgSO 4). Purification on silica using CH 3 OH-dichloromethane mixtures gave the title compound as colourless oil (54mg). 1 H NMR (250MHz, CDCl 3) δ 7.97 (1H, s), 7.53 (1H, s), 7.39 (2H, br s), 7.29-7.23 (3H, m, J=2.6), 7.06 (2H, s), 4.77 (1H, q, J=6.6), 4.29 (1H, d, J=2.9), 4.25 (1H, br t, J=2.6), 4.13 (2H, t, J=5.7), 3.76 (1H, d, J=14.2), 3.57 (1H, t, J=3.5), 3.53 (1H, d, J=2.8), 3.31 (1H, d, J=14.1), 2.95 (1H, t, J=5.9), 2.56 (1H, br t, J=3.5), 2.36 (3H, s), 2.16 (1H, br s), 1.37 (3H, d, J=6.6). MS (Cl+) m/z 558 (M + +1).

[0159] Examples 14 to 21 in Table 2 were prepared in a similar manner to that described in Example 12, Method B, via the appropriate N-(4-azidobut-2-ynyl)morpholine and the appropriate amine.

EXAMPLE 22
2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(1-(2-pyrrolidinoethyl)-1,2,4-triazol-3-yl)methylmorpholine

a) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(1-(2-oxo-2-pyrrolidinoethyl)-1,2,4-triazol-3-yl)methyl-3-(S)-phenylmorpholine

[0160] A solution of the compound of Description 19 (2.86g), potassium carbonate (2.37g) and I-bromoacetylpyrrolidine (1.21g) was heated at 60 °C in dimethylformamide (15ml). The mixture was cooled and partitioned between water and ethyl acetate. The organic phase was washed with water, brine and dried (MgSO 4). The solvent was removed in vacuo and the residue was purified on silica using 1.5% methanol in dichloromethane as eluent. This afforded 2 products isomer A and isomer B.

[0161] Isomer A (Alkylation at 2 position of 1,2,4-triazole): 1 H NMR (250MHz, CDCl 3) δ 7.83 (1H, s), 7.61 (1H, s), 7.39-7.30 (5H, m), 7.16 (2H, s), 5.00 (1H, d, J=16.4Hz), 4.88 (1H, q, J=6.6Hz), 4.67 (1H, d, J=16.4Hz), 4.35 (1H, d, J=2.8Hz), 4.20 (1H, br t, J=11.6Hz), 3.77 (1H, d, J=14.4Hz), 3.62 (1H, dd, J=11.3Hz), 3.51-3.44 (4H, m), 3.39 (1H, s), 3.33 (1H, d, J=14.4Hz), 2.90 (1H, d, J=11.4Hz), 2.74 (1H, br t, J=11.8Hz), 2.12-2.02 (2H, m), 1.97-1.86 (2H, m), 1.45 (3H, d, J=6.6Hz).

[0162] Isomer B (Alkylation at 1 position of 1,2,4-triazole). 1 H NMR (250MHz, CDCl 3) δ 8.19 (1H, s), 7.60 (1H, s), 7.47 (2H, br s), 7.36-7.27 (3H, m), 7.14 (2H, s), 4.89 (2H, s), 4.85 (1H, q, J=6.6Hz), 4.36 (1H, d, J=2.6Hz), 4.31 (1H, brt, J=11.4Hz), 3.86 (1H, d, J=14.0Hz), 3.60 (1H, dd, J=11.3Hz), 3.59 (1H, d, J=2.7Hz), 3.53-3.48 (4H, m), 3.35 (1H, d, J=14.1Hz), 3.03(1H, d, J=11.8Hz), 2.60 (1H, brt, J=11.9Hz), 2.08-2.00 (2H, m), 1.94-1.84 (2H, m), 1.44 (3H, d, J=6.6Hz).

b) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(1-(2-pyrrolidinoethyl)-1,2,4-triazol-3-yl)methylmorpholine

[0163] Lithium aluminium hydride (1.0M solution in tetrahydrofuran, 1.9ml) was added to a solution of the compound described in (a) above (isomer B) in tetrahydrofuran (5ml) at 0°C. The mixture was warmed to room temperature and was stirred for 1h. The mixture was quenched (sodium hydroxide and water) and filtered through celite to remove inorganics. The filtrate was evaporated and purified on silica using 10% methanol in dichloromethane as eluent. This afforded the product as a yellow oil. 1 H NMR (250MHz, CDCl 3) δ 8.08 (1H, s), 7.60 (1H, s), 7.49 (2H, br s), 7.37-7.31 (3H, m), 7.13 (2H, s), 4.85 (1H, q, J=6.6Hz), 4.36 (1H, d, J=2.8Hz), 4.33-4.24 (1H, m), 4.22 (2H, t, J=6.5Hz), 3.86 (1H, dd, J=14.1Hz), 3.63 (1H, d, J=9.2Hz), 3.60 (1H, d, J=2.9Hz), 3.38 (1H, dd, J=14.0Hz), 3.00 (1H, d, J=11.7Hz).
EXAMPLE 23

5 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(2-(2-pyrrolidinoethyl)-1,2,4-triazol-3-yl) methylmorpholine

[0164] The compound described in Example 22a (isomer A) was reacted according to the procedure described in Example 22b to afford the title compound as a yellow oil. \(^1\)H NMR (250MHz, CDCl\(_3\)) δ 7.80 (1H, s, CH), 7.61 (1H, s, ArH), 7.53-7.48 (2H, s), 7.38-7.34 (3H, m), 7.17 (2H, s), 4.88 (1H, q, J=6.5Hz), 4.36 (1H, d, J=2.9Hz), 4.34-4.20 (1H, m), 4.23-4.07 (3H, m), 3.83 (1H, d, J=14.0Hz), 3.66 (1H, m), 3.42 (1H, d, J=2.8Hz), 3.27 (1H, d, J=14.1Hz), 2.88-2.73 (1H, m), 2.88-2.73 (2H, m), 2.88-2.73 (1H, m), 2.50 (3H, br s), 1.73 (4H, br s), 1.4 (4H, d, J=6.6Hz).

EXAMPLE 24

5 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(5-morpholinomethyl-1,2,3-triazol-4-yl) methylmorpholine

[0165] This compound was prepared by the method described in Example 12 (Method A) and purified by chromatography on silica using ethyl acetate, petroleum ether (60-80°C) and methanol (3:10:0, then 1:0:0 followed by 9:0:1) as eluent to afford the title compound as a white foam. \(^3\)H NMR (360MHz, CDCl\(_3\)) δ 1.44 (3H, d, J=6Hz), 2.43 (4H, m), 2.57 (1H, dd, J=11.9, 3.4Hz), 2.90 (1H, d, J=11.6Hz), 3.27 (1H, d, J=14.1Hz), 3.46-3.67 (8H, m), 3.82 (1H, d, J=14.1Hz), 4.23 (1H, m), 4.32 (1H, d, J=2.8Hz), 4.87 (1H, m), 7.06 (2H, t, J=8.7Hz), 7.16 (2H, s), 7.48 (2H, br s), 7.64 (1H, s). MS (ES\(^+\)) m/z 618 (MH\(^+\), 54%).

[0166] Examples 25 and 27 in Table 2 were prepared in a similar manner to that described in Example 12, Method B, via the appropriate N-(4-azidobut-2-ynyl)morpholine and the appropriate amine.

EXAMPLE 29

3 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylaminomethyl)imidazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

[0167] 4,5-Bis(chloromethyl)imidazole hydrochloride (British Patent Specification No.GB-2,068,362-A) was reacted with the compound of Description 5 according to the procedure illustrated in Example 4 to afford the title compound as a white solid. \(^3\)H NMR (250MHz, CDCl\(_3\)) δ 1.42 (3H, d, J=6Hz), 2.19 (3H, s), 2.43-2.62 (1H, m), 3.25-3.44 (3H, m), 3.56-3.70 (2H, m), 4.16-4.33 (2H, m), 4.85 (1H, q, J=6Hz), 7.01-7.17 (4H, m), 7.38-7.67 (4H, m). MS (ES) m/z 575 (M+1\(^+\), 100%).

EXAMPLE 30

3 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylaminomethyl)-1,2,4-triazol-3-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

[0168] 3,5-Bis(chloromethyl)triazole (J. Het. Chem. (1986) 23, 361-368) was reacted with the compound of Description 5 according to the procedure illustrated in Example 4 to afford the title compound as a solid. \(^3\)H NMR (250MHz, CDCl\(_3\)) δ 1.27 (3H, d, J=6.6Hz), 2.15 (6H, s, CH\(_3\)), 2.43 (1H, dt, J=11.7, 3.2Hz), 2.79-2.83 (1H, m), 3.16 (1H, d, J=14.5Hz), 3.38 (1H, d, J=2.8Hz), 3.43-3.48 (1H, m), 3.48 (2H, s, CH\(_2\)), 3.63 (1H, d, J=14.5Hz), 4.12 (1H, dt, J=11.7, 3.2Hz), 4.15 (1H, d, J=2.8Hz), 4.69 (1H, q, J=6.6Hz), 6.85 (2H, t, J=8.75Hz), 6.97 (2H, s), 7.27 (2H, br t), 7.45 (1H, s). MS (ES) m/z 576 (M+1\(^+\), 100%).

[0169] Examples 31 to 34, 36 and 37 in Table 2 were prepared in a similar manner to that described in Example 12, Method B, via the appropriate N-(4-azidobut-2-ynyl)morpholine and the appropriate amine.

[0170] Examples 39 to 41 in Table 1 were prepared in a similar manner to that described in Example 4 from the appropriate morpholine, 4,5-bis(bromomethyl)-1,3-diacetyl-2-imidazolinone and the appropriate amine.

[0171] Examples 43 to 45, 48, 49, 51 to 55, 57, 58 and 60 in Table 2 were prepared in a similar manner to that described in Example 12, Method B, via the appropriate N-(4-azidobut-2-ynyl)morpholine and the appropriate amine.
EXAMPLE 63

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(1-(2-(N,N-disopropylamino)ethyl)-1,2,4-triazol-3-yl)methyl-3-(S)-phenylmorpholine

(a) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(1-(2-hydroxyethyl)-1,2,4-triazol-3-yl)methyl-3-(S)-phenylmorpholine

[0172] The compound of Description 19 (3.90g, 7.8mM) was heated (60°C) in dimethylformamide (20ml) containing 2-bromoethanol (1.66ml, 23.4mM) and potassium carbonate (3.23g, 23.4mM) for 2 hrs. The reaction was poured into ethyl acetate and washed with water and brine, dried (MgSO4) and evaporated. The two isomers were purified and separated on silica eluting with methanol-dichloromethane mixtures (3.06g). MS (ES+) m/z 545.

(b) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(1-(2-tosyloxyethyl)-1,2,4-triazol-3-yl)methylmorpholine

[0173] The alcohol from step (a), above, (1.81g, 3.22mM) was dissolved in dichloromethane (20ml), tosyl chloride (1.84g, 9.66mM) and triethylamine (1.34ml, 9.66mM) were added and the reaction stirred at room temperature for 18hrs. The solvent was removed and the residue redissolved in ethyl acetate and washed with water and brine, dried (MgSO4) and evaporated. The product was purified on silica eluting with methanol-dichloromethane mixtures (1.87g).

(c) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(1-(2-(N,N-disopropylamino)ethyl)-1,2,4-triazol-3-yl)methyl-3-(S)-phenylmorpholine

[0174] The tosylate from step (b), above, (0.29g, 0.41mM) was dissolved in dimethylformamide (5ml), dipropylamine (0.18ml, 1.24mM) and triethylamine (0.18ml, 1.24mM) were added and the reaction heated in a sealed tube for 18hrs. The residue was dissolved in ethyl acetate, washed with water and brine, dried (MgSO4) and evaporated. Purification on silica eluting with methanol-dichloromethane mixtures afforded the title compound (0.095g). 1H NMR (360MHz, d6 DMSO) δ 8.31 (1H, s), 7.82 (1H, s), 7.46-7.42 (2H, m), 7.36 (2H, s), 7.32-7.22 (3H, m), 4.89-4.92 (1H, q, J=6.5Hz), 4.34 (1H, d, J=2.8Hz), 4.18-4.04 (3H, m), 3.60-3.56 (3H, m), 3.09 (1H, d, J=13.6Hz), 3.94 (1H, d, J=11.5Hz), 2.71 (2H, t, J=5.8Hz), 2.44-2.40 (1H, m), 2.30 (4H, t, J=7.0Hz), 1.34 (3H, d, J=6.5Hz), 1.32-1.20 (4H, m) and 0.73 (6H, t, J=7.4Hz). M/S+ 628.

[0175] Examples 64 to 68, 72 and 73 in Table 3 were prepared in a similar manner to that described in Example 63 from the appropriate 1,2,4-triazol-3-ylmethylmorpholine and the appropriate amine.

EXAMPLE 75

2-(R)-(1-(R)-3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylaminomethyl)-1,2,4-triazol-3-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

(a) 2-(R)-(1-(R)-3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(1-(tetrahydro-2-pyranyl)-5-(N,N-dimethylaminomethyl)-1H-1,2,4-triazol-3-yl)methylmorpholine

[0176] The compound of Description 5 (1g, 2.28mM) was dissolved in isopropanol (20ml), 3,5-bis(chloromethyl)-1-(tetrahydro-2-pyranyl)-1H-1,2,4-triazole (1.14g, 4.57mM) (prepared by method of Bradshaw, J. Het. Chem. (1986), 23, 361) and potassium carbonate (0.95g, 6.84mM) were added and the reaction heated to 60°C for 18hrs. Dimethylamine (3eq) was then added and the reagents transferred to a sealed tube and heated for a further 18hrs. The solvents were then removed and the residue purified on silica eluting with methanol dichloromethane-ammonia mixtures to yield the title compound (0.62g).

(b) 2-(R)-(1-(R)-3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(N,N-dimethylaminomethyl)-1,2,4-triazol-3-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

[0177] The protected amine from step (a), above, (0.62g, 0.94mM) was dissolved in methanol (15ml) and treated with HCl in methanol (1N, 25ml) and stirred at room temperature for 1 hour. The solvent was then removed and the residue purified on silica eluting with methanol dichloromethane-ammonia mixtures to yield the title compound (0.48g). 1H NMR (250MHz, CDCl3) δ 7.45 (1H, s), 7.30-7.22 (2H, m), 6.97 (2H, s), 6.85 (2H, t, J=8.7Hz), 4.72-4.66 (1H, q, J=6.5Hz). 4.15 (1H, d, J=2.8Hz), 4.15-4.07 (1H, m), 3.63 (1H, d, J=14.4Hz), 3.48 (4H, s), 3.44-3.41 (1H, m), 3.38
EXAMPLE 76

4-((N,N-Dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)-2-(R)-(3-methylthio-5-(trifluoromethyl)phenyl)ethoxy)morpholine

[0178] The compound of Example 57 (270mg, 0.51 mmol) was heated to 120°C with sodium thiomethoxide (178mg, 2.55mmol) in anhydrous DMF (10ml) for between 2-5 hours. The cooled solution was diluted with water (150ml), extracted with ethyl acetate (4 x 40ml), dried (MgSO₄) and concentrated in vacuo to a crude oil (372mg) which was purified by flash silica gel chromatography in 5-10% methanol/dichloromethane to yield the title compound as a viscous gum/glass (170mg, 60%). 1H NMR (360MHz, CDCl₃) δ 1.31 (3H, d, J=6.6Hz), 2.17 (6H, s), 2.28 (3H, s), 2.47 (1H, dt, J=12.1, 3.4Hz), 2.82 (1H, dt, J=13.9Hz), 3.14 (1H, d, J=11.6Hz), 3.23 (1H, m), 3.35 (2H, m), 3.46 (1H, d, J=13.5Hz), 3.51 (1H, dd, J=11.2, 1.9Hz), 3.70 (1H, d, J=14.0Hz), 4.14 (1H, dt, J=2.7Hz), 4.26 (1H, d, J=2.7Hz), 4.66 (1H, q, J=6.5Hz), 6.64 (2H, s), 6.99 (2H, t, J=8.6Hz), 7.11 (1H, s), 7.41 (2H, br s), 10.0-10.8 (1H, vbr s); MS (ES+) m/z 554 (M+1, 100%).

EXAMPLE 77

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-methylthio-5-(trifluoromethyl)phenyl)ethoxy)-4-(5-pyrrolidinomethyl-1,2,3-triazol-4-yl)methylmorpholine

[0179] The title compound was prepared from the compound of Example 18 according to the method of Example 76 as a foam (620mg, 81%). 1H NMR (360MHz, CDCl₃) δ 1.40 (3H, d, J=6.6Hz), 1.79 (4H, br s), 2.36 (3H, s), 2.5-2.6 (5H, m), 2.87 (1H, d, J=11.7Hz), 3.23 (1H, d, J=13.9Hz), 3.43 (1H, d, J=2.8Hz), 3.57-3.64 (2H, m), 3.71 (1H, d, J=13.7Hz), 3.78 (1H, d, J=14.0Hz), 4.21 (1H, m), 4.33 (1H, d, J=2.8Hz), 4.74 (1H, q, J=6.5Hz), 6.71 (2H, s), 7.06 (2H, t, J=8.7Hz), 7.19 (1H, s), 7.47 (2H, brs); MS (ES+) m/z 580 (M+1, 100%).

EXAMPLE 78

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-methylthio-5-(trifluoromethyl)phenyl)ethoxy)-4-(5-morpholinomethyl-1,2,3-triazol-4-yl)methylmorpholine

[0180] The title compound was prepared from compound of Example 19 according to the method of Example 76 as a foam (126mg, 66%). 1H NMR (360MHz, CDCl₃) δ 1.40 (3H, d, J=6.6Hz), 2.37 (3H, s), 2.32-2.49 (4H, m), 2.54 (1H, dt, J=11.9, 3.4Hz), 2.90 (1H, d, J=11.7Hz), 3.25 (1H, d, J=13.9Hz), 3.48 (1H, d, J=2.8Hz), 3.57-3.68 (2H, m), 3.82 (1H, d, J=14.1Hz), 4.23 (1H, m), 4.35 (1H, d, J=2.8Hz), 4.75 (1H, q, J=6.5Hz), 6.71 (2H, s), 7.06 (2H, t, J=8.7Hz), 7.19 (1H, s), 7.49 (2H, br s); MS (ES+) m/z 596 (M+1, 55%), 203 (100%).

EXAMPLE 79

4-(5-(N,N-Dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-2-(R)-(1-(R)-(3-methylthio-5-(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenylmorpholine

[0181] The title compound was prepared from the triazole of Example 102 according to the method of Example 76 as a foam (116mg, 36%). 1H NMR (250MHz, CDCl₃) δ 1.39 (3H, d, J=6.5Hz), 2.24 (6H, s), 2.32 (3H, s), 2.59 (1H, dt, J=11.8, 3.3Hz), 3.25 (1H, d, J=13.8Hz), 3.38-3.44 (2H, m), 3.52 (1H, d, J=13.6Hz), 3.62 (1H, dd, J=11.2, 1.8Hz), 3.81 (1H, d, J=13.9Hz), 4.23 (1H, m), 4.39 (1H, d, J=2.6Hz), 4.75 (1H, q, J=6.5Hz), 6.71 (2H, s), 7.17 (1H, s), 7.34-7.41 (3H, m), 7.49 (2H, br s); MS (ES+) m/z 536 (M+1, 100%).

EXAMPLE 80

4-(5-(N,N-Dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)-2-(R)-(1-(R)-(3-tert-butylthio-5-(trifluoromethyl)phenyl)ethoxy)morpholine

[0182] The title compound was prepared from the compound of Example 57 according to the method of Example 76 as a foam (117mg, 68%). 1H NMR (360MHz, CDCl₃) δ 1.19 (3H, s), 1.42 (3H, d, J=6.6Hz), 2.23 (6H, s), 2.57 (1H, dt, J=12.0, 3.5Hz), 2.92 (1H, d, J=11.6Hz), 3.24 (1H, d, J=13.9Hz), 3.39-3.44 (2H, m), 3.51 (1H, d, J=14.8Hz), 3.62 (1H,
EXAMPLE 81

4-(5-(N,N-Dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)-2-(R)-(1-(R)-(3-methylsulphinyl-5-(trifluoromethyl) phenyl)ethoxy)morpholine

- **[0183]** The thioether of Example 76 (155mg, 0.28mmol) was dissolved in trifluoroacetic acid (800µl) cooled to 0°C and treated with a 2.0M solution of trifluoroperacetic acid in trifluoroacetic acid (153µl, 0.308mmol), with stirring for 30 minutes. The reaction mixture was poured into 0.5M sodium bicarbonate solution (50ml), extracted with dichloromethane (3 x 15ml), dried (MgSO₄) and concentrated in vacuo. The resulting crude solid (200mg) was purified by flash silica gel chromatography in 8% methanol: dichloromethane to yield the title compound as unresolved stereoisomers as a white foam (81mg, 51%).

 - **1H NMR (360MHz, CDCl₃)** δ 1.44 and 1.46 (3H total, 2 x d, J=6.6Hz), 2.24 (6H, s), 2.56 (1H, m), 2.59 and 2.62 (3H total, 2 x s), 2.88 (1 H, d, J=11.9Hz), 3.23 and 3.26 (1 H total, 2 x d, J=13.9Hz), 3.42-3.55 (3H, m), 3.62 (1H, br d, J=11.3Hz), 3.75 and 3.79 (1H total , 2 x d, J=14.4Hz), 4.22 (1H, m), 4.32 and 4.35 (1H total, 2 x d, J=2.7Hz), 4.89 (1H, m), 6.85 (½H, s), 7.04-7.13 (3H, m), 7.24 (½H, s), 7.50 (2H, br s), 7.73 and 7.75 (1H total, 2 x s); MS (ES⁺) m/z 570 (M+1, 100%).

EXAMPLE 82

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-methylsulphinyl-5-(trifluoromethyl) phenyl)ethoxy)-4-(5-pyrrolidinomethyl-1,2,3-triazol-4-yl)methylmorpholine

- **[0184]** The title compound as an unresolved mixture of stereoisomers was prepared from Example 77 according to the method of Example 81 as a foam (90mg, 63%).

 - **1H NMR (360MHz, CDCl₃)** δ 1.3 and 1.41 (3H total, 2 x d, J=6.6), 2.54 and 2.57 (3H total, 2 x s), 2.54-2.65 (1H, m), 2.82-2.89 (1H, m), 3.05-3.25 (4H, vbr s), 3.35 (1H, m), 3.50 (1H, m), 3.61 (1H, m), 3.72 and 3.74 (1H, 2 x d, J=14.5Hz), 4.22 (1H, m), 4.35 (1H, d, J=2.5), 4.81 (1H, m), 6.99-7.09 (3½H, m), 7.30 (½H, s), 7.42 (2H, br s), 7.64 and 7.66 (1H total, 2 x s); MS (ES⁺) m/z 596 (M+1, 100%).

EXAMPLE 83

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-methylsulphinyl-5-(trifluoromethyl) phenyl)ethoxy)-4-(5-morpholinomethyl-1,2,3-triazol-4-yl)methylmorpholine

- **[0185]** The title compound as an unresolved mixture of stereoisomers was prepared from Example 78 according to the method of Example 81 as a foam (113mg, 92%).

 - **1H NMR (360MHz, CDCl₃)** δ 1.47 (3H, d, J=6.6Hz), 2.38-2.45 (4H, m), 2.57 (1H, dt, J=11.9, 3.5), 2.90 (1H, d, J=11.7Hz), 2.96 (3H, s), 3.26 (1H, d, J=14.0Hz), 3.46-3.51 (2H, m), 3.56-3.68 (6H, m), 3.79 (1H, d, J=14.1Hz), 4.22 (1H, m), 4.35 (1H, d, J=2.8Hz), 4.90 (1H, q, J=6.8Hz), 7.07 (2H, t, J=8.6Hz), 7.17 (1H, s), 7.50 (2H, br d), 7.67 (1H, s), 7.97 (1H, s); MS (ES⁺) m/z 612 (M+1, 100%).

EXAMPLE 84

3-(S)-(4-Fluorophenyl)-2-(R)-(1-(R)-(3-methylsulphonyl-5-(trifluoromethyl) phenyl)ethoxy)-4-(5-morpholinomethyl-1,2,3-triazol-4-yl)methylmorpholine

- **[0186]** The sulphoxide of Example 83 (78mg, 0.128mmol) was dissolved in trifluoroacetic acid (500µl) cooled to 0°C and treated with a 2.0M solution of trifluoroperacetic acid in trifluoroacetic acid (70µl, 0.140mmol) with stirring for 2½ hours. A further equivalent of trifluoroperacetic acid (70µl, 0.140mmol) was added after this time and the product purified after 3 hours according to the method of Example 81 to yield the title compound as a foam (27mg, 34%).

 - **1H NMR (360MHz,CDCl₃)** δ 1.47 (3H, d, J=6.6Hz), 2.38-2.45 (4H, m), 2.57 (1H, dt, J=11.9, 3.5), 2.90 (1H, d, J=11.7Hz), 2.96 (3H, s), 3.26 (1H, d, J=14.0Hz), 3.46-3.51 (2H, m), 3.56-3.68 (6H, m), 3.79 (1H, d, J=14.1Hz), 4.22 (1H, m), 4.35 (1H, d, J=2.8Hz), 4.90 (1H, q, J=6.8Hz), 7.07 (2H, t, J=8.6Hz), 7.17 (1H, s), 7.50 (2H, br d), 7.67 (1H, s), 7.97 (1H, s); MS (ES⁺) m/z 628 (M+1, 100%).
EXAMPLE 85

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2-(5-((S)-(+)2-methoxymethylpyrrolidinomethyl)-1,2,3-triazol-4-yl)ethyl)morpholine

Step A 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(but-3-ynyl)-3-(S)-(4-fluorophenyl)morpholine

[0187] A solution of Description 5 (1.24g; 1eq), 3-butyn-1-ol-tosylate (1.43g; 2.5 eq), K₂CO₃ (1.32g; 3.7 eq) and Nal (cat) in dry DMF (7ml) was heated at 100°C for 12h. After cooling to room temperature the reaction mixture was partitioned between H₂O and EtOAc. The layers were separated and the aqueous phase extracted with EtOAc (2x). The combined organic phases were dried (MgSO₄) and concentrated and the residue purified by chromatography (hexanes/EtOAc 9:1→4:1) to provide the title compound as a clear colourless oil. MS m/z 490 (MH⁺).

Step B 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(4-hydroxybut-3-ynyl)morpholine

[0188] The acetylene of Step A (1.2g; 1.0eq) was dissolved in dry THF (5ml) then cooled to -78°C and n-BuLi (2.5M in hexane; 1ml; 1.05eq) was added. The reaction mixture was stirred at -78°C for 1h, then HCHO gas was bubbled through the solution until it was saturated. The reaction mixture was warmed to room temperature and stirred for 1 h. Work-up (NH₄Cl/EtOAc) followed by purification on silica gel (hexanes/EtOAc 9:1→4:1) provided the title compound as a clear, viscous oil. MS m/z 520 (MH⁺).

Step C 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(4-chlorobut-3-ynyl)-3-(S)-(4-fluorophenyl)morpholine

[0189] The alcohol of Step B (0.42g; 1eq) was dissolved in dry THF (5ml) under N₂ and triphosgene (84mg; 0.35 eq) was added followed by pyridine (128μl; 2.0 eq). The reaction mixture was stirred at room temperature for 1h, then diluted with EtOAc and washed with H₂O and brine, dried (MgSO₄) and concentrated to leave a yellow oil. This was purified by chromatography (hexanes/EtOAc 9:1→4:1) to provide the title compound as a clear, viscous oil. MS m/z 538, 540 (MH⁺).

Step D N-(4-Azidobut-3-ynyl)-2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine

[0190] The chloride of Step C (0.23g; 1eq) and NaN₃ (31 mg; 1eq) in DMSO (0.8ml) was stirred at room temperature for 14h. Work-up (NH₄Cl/EtOAc) provided the title compound as an oil, which was used without further purification.

Step E 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2-(5-((S)-(+)2-methoxymethylpyrrolidinomethyl)-1,2,3-triazol-4-yl)ethyl)morpholine

[0191] A solution of the azide of Step D (0.205g; 1 eq) and (S)-(+)2-methoxymethylpyrrolidine (114μl; 3 eq) was heated at 80°C under N₂ the solvent was removed in vacuo and the residue purified by chromatography using CH₂Cl₂/MeOH/NH₃ (98:2.0.1 then 97:3.0.1) as eluant to provide the title compound as a white foam. ¹H NMR (250MHz, CDCl₃) δ 7.62 (1H, s), 7.24 (2H, m), 7.14 (2H, s), 6.95 (2H, t, J=8.7Hz), 4.87 (1H, q, J=6.5Hz), 4.30 (2H, m), 3.95 (1H, d, J=14Hz), 3.70 (1H, dd, J=2, 11.3Hz), 3.53-3.34 (7H, m), 3.19 (1H, d, J=11.6Hz), 2.86-2.56 (6H, m), 2.29 (1H, m), 2.09 (1H, m), 1.88 (1H, m), 1.70 (3H, m), 1.45 (3H, d, J=6.5Hz). MS m/z=660.

[0192] Examples 101 and 102 in Table 2 were prepared in a similar manner to that described in Example 12, Method B, via the appropriate N-(4-azidobut-2-ynyl)morpholine and the appropriate amine.
<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>R¹</th>
<th>R²</th>
<th>-NR²R⁸</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>F</td>
<td>F</td>
<td></td>
<td>¹H NMR (250MHz, CDCl₃) δ 8.31 (1H, br s), 8.17 (1H, br s), 7.37 (2H, br m), 7.04-7.11 (3H, m), 6.77 (1H, s), 6.33 (1H, d, J=9.0Hz), 4.75 (1H, m), 4.17-4.30 (2H, m), 3.58-3.69 (5H, m), 3.44 (1H, d, J=14.0Hz), 3.38 (1H, d, J=3.0Hz), 3.13 (2H, dd, J=19.91, 14.0Hz), 2.91 (1H, d, J=11.5Hz), 2.75 (1H, d, J=14.01Hz), 2.34 (5H, m), 1.41 (3H, d, J=6.5Hz). MS (Cl⁺) m/z 583.</td>
</tr>
<tr>
<td>7</td>
<td>CF₃</td>
<td>F</td>
<td></td>
<td>¹H NMR (360MHz, DMSO) δ 9.71 (1H, s), 9.65 (1H, s), 7.85 (1H, s), 7.55 (2H, br s), 7.37 (2H, s), 7.07 (2H, t, J=8.85Hz), 4.91 (1H, m), 4.31 (1H, d, J=2.83Hz), 4.07 (1H, m), 3.61 (1H, br d, J=10.76Hz), 3.51 (4H, m), 3.36 (1H, d, J=2.70Hz), 3.27 (1H, d, J=10.34Hz), 3.08 (1H, d, J=13.6Hz), 2.93 (1H, d, J=13.6Hz), 2.86 (1H, d, J=11.51Hz), 2.61 (1H, d, J=13.6Hz), 2.27 (5H, m), 1.35 (3H, d, J=6.55Hz). MS (Cl⁺) m/z = 633.</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R¹</td>
<td>R⁴</td>
<td>-NR²R⁸</td>
<td>Data</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>8</td>
<td>CF₃</td>
<td>F</td>
<td>![N]</td>
<td>¹H NMR (250MHz, CDCl₃) δ 9.16 (1H, br s), 8.14 (1H, br s), 7.64 (1H, s), 7.38 (2H, br s), 7.09 (4H, m), 4.86 (1H, m), 4.22 (2H, m), 3.64 (1H, d, J=9.3Hz), 3.38 (2H, m), 3.16 (6H, m), 2.93 (1H, d, J=11.2Hz), 2.75 (1H, d, J=11.3Hz), 2.36 (1H, m), 2.05 (2H, m), 1.45 (3H, d, J=6.6Hz). MS (Cl⁺) m/z 603.</td>
</tr>
<tr>
<td>9</td>
<td>CF₃</td>
<td>F</td>
<td>![N-CH₃]</td>
<td>¹H NMR (250MHz, CDCl₃) δ 8.03 (1H, s), 8.00 (1H, s), 7.63 (1H, s), 7.38 (2H, m), 7.06 (4H, m), 4.86 (1H, m), 4.28 (1H, d, J=2.8Hz), 4.19 (1H, d, J=11.4Hz), 3.64 (1H, d, J=9.4Hz), 3.38 (2H, m), 3.13 (2H, dd, J=13.6, 17.2Hz), 2.92 (1H, d, J=11.5Hz), 2.73 (1H, d, J=11.5Hz), 2.28-2.40 (12H, m), 1.45 (3H, d, J=6.6Hz). MS (Cl⁺) m/z 646</td>
</tr>
<tr>
<td>39</td>
<td>F</td>
<td>F</td>
<td>![N]</td>
<td>¹H NMR (250MHz, CDCl₃) δ 10.06 (1H, s), 8.85 (1H, s), 7.40 (2H, br s), 7.08 (3H, t, J=8.7Hz), 6.77 (1H, s), 6.33 (1H, d, J=8.7Hz), 4.75 (1H, q, J=6.4Hz), 4.29 (1H, d, J=2.8Hz), 4.22 (1H, m), 3.62 (1H, d, J=9.8Hz), 3.49 (1H, d, J=14Hz), 3.38 (1H, d, J=2.8Hz), 3.16 (5H, m), 2.96 (1H, d, J=11.4Hz), 2.81 (1H, d, J=14Hz), 2.40 (1H, m), 2.05 (2H, m), 1.40 (3H, d, J=6.4Hz). MS m/z 553 (MH⁺).</td>
</tr>
<tr>
<td>40</td>
<td>F</td>
<td>F</td>
<td>-N(CH₃)₂</td>
<td>¹H NMR (250MHz, CDCl₃) δ 1.41 (3H, d, J=6.6Hz), 2.20 (6H, s), 2.34 (1H, m), 2.75 (1H, d, J=14.1Hz), 2.92 (1H, d, J=11.4Hz), 3.09 (2H, m), 3.37 (1H, d, J=2.8Hz), 3.44 (1H, d, J=14.1Hz), 3.62 (1H, m), 4.22-4.29 (2H, m), 4.75 (1H, m), 6.33 (1H, d, J=9.0Hz), 6.77 (1H, s), 7.08 (3H, m), 7.37 (2H, br s), 8.18 (1H, s), 8.92 (1H, s). MS (ES⁺) m/z 540.</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R¹</td>
<td>R²</td>
<td>-NR²R⁸</td>
<td>Data</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>F</td>
<td></td>
<td>(^1H) NMR (360MHz, CDCl₃) (\delta) 7.36 (2H, br s), 7.07 (3H, t, (J=8.5)Hz), 6.77 (1H, s), 6.33 (1H, d, (J=8.5)Hz), 4.76 (1H, q, (J=6.4)Hz), 4.28 (1H, d, (J=2.7)Hz), 4.22 (1H, m), 3.62 (1H, d, (J=9.8)Hz), 3.49 (1H, d, (J=14)Hz), 3.37 (1H, d, (J=2.8)Hz), 3.28 (2H, s), 2.91 (1H, d, (J=7.9)Hz), 2.75 (1H, d, (J=9.7)Hz), 2.45 (4H, m), 2.33 (1H, m), 1.74 (4H, m), 1.41 (3H, d, (J=6.4)Hz).</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R¹</td>
<td>R⁴</td>
<td>-NR²R³</td>
<td>Data</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>14</td>
<td>CF₃</td>
<td>F</td>
<td>-NHCH₃</td>
<td>HRMS (El⁺) (found M⁺, 561.1975. C₂₅H₂₆F₇N₅O₂ requires M⁺, 561.1975). Analysis Calcd. for C₂₅H₂₆F₇N₅O₂·0.5H₂O: C, 52.54; H, 4.94; N, 12.25; Found: C, 52.87; H, 4.84; N, 12.08%.</td>
</tr>
<tr>
<td>15</td>
<td>CF₃</td>
<td>F</td>
<td>-NH₂</td>
<td>MS m/z (Cl⁻) 548 (M+H). Analysis Calcd. for C₂₅H₂₆F₇N₅O₂: C, 55.90; H, 5.03; N, 11.64; Found: C, 55.71; H, 4.86; N, 11.53%. MS m/z (Cl⁻) 602 (M+H).</td>
</tr>
<tr>
<td>16</td>
<td>CF₃</td>
<td>F</td>
<td>-</td>
<td>Analysis Calcd. for C₂₅H₂₆F₇N₅O₂: C, 55.90; H, 5.03; N, 11.64; Found: C, 55.71; H, 4.86; N, 11.53%. MS m/z (Cl⁻) 602 (M+H).</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>F</td>
<td>-</td>
<td>¹H NMR (360MHz, CDCl₃) δ 1.40 (3H, d, J=6.6), 2.13 (2H, q, J=7.1), 2.55 (2H, d, J=12.0, 3.4), 2.88 (1H, d, J=11.7), 3.22-3.45 (5H, m), 3.57-3.66 (4H, m), 3.80 (1H, d, J=14.0), 4.20 (1H, dt, J=11.6, 2.1), 4.32 (1H, d, J=2.9), 4.76 (1H, q, 6.5), 6.39 (1H, d, J=8.9), 6.80 (1H, s), 7.05-7.12 (3H, m), 7.48 (2H, br s). MS (Cl⁻) m/z 538 (M+1, 100%).</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R¹</td>
<td>R²</td>
<td>-NR¹R²</td>
<td>Data</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>¹H NMR (360MHz, CDCl₃) δ 1.40 (3H, d, J=6.6), 1.81 (4H, br s), 2.53-2.61 (5H, m), 2.89 (1H, d, J=11.7), 3.27 (1H, d, J=14.0), 3.45 (1H, d, J=2.8), 2.59-3.63 (1H, m), 3.63 (1H, d, J=13.7), 3.73 (1H, d, J=13.7), 3.83 (1H, d, J=14.0), 4.21 (1H, dt, J=11.6, 2.1), 4.32 (1H, d, J=2.8), 4.76 (1H, q, J=6.5), 6.37 (1H, d, J=9.1), 6.80 (1H, s), 7.05-7.10 (3H, m), 7.46 (2H, br s). MS (Cl⁺) 552 (M⁺+1, 100%).</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>¹H NMR (360MHz, CDCl₃) δ 1.40 (3H, d, J=6.6), 2.4-2.5 (4H, m), 2.56 (1H, dt, J=11.9, 3.4), 2.90 (1H, d, J=11.6), 3.30 (1H, d, J=14.1), 3.48-3.52 (2H, m), 3.58-3.71 (6H, m), 3.85 (1H, d, J=14.2), 4.23 (1H, dt, J=11.6, 2.3), 4.33 (1H, d, J=2.8), 4.77 (1H, q, J=6.5), 6.37 (1H, d, J=8.8), 6.80 (1H, s), 7.05-7.10 (3H, m), 7.46 (2H, br s). MS (Cl⁺) m/z 568 (M⁺+1, 100%).</td>
</tr>
<tr>
<td>20</td>
<td>H</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>¹H NMR (250MHz, CDCl₃) δ 1.40 (3H, d, J=6.5), 2.25 (6H, s), 2.55 (1H, dt, J=11.8, 3.4), 2.91 (1H, d, J=11.6), 3.23 (1H, d, J=13.9), 3.41-3.64 (4H, m), 3.80 (1H, d, J=13.9), 4.24 (1H, t, J=11.5), 4.33 (1H, d, J=2.7), 4.77 (1H, q, J=6.5), 6.80 (1H, d, J=7.7), 6.95 (1H, s), 7.05 (2H, t, J=8.7), 7.16 (1H, t, J=7.7), 7.35 (1H, d, J=7.8), 7.48 (2H, br s), 9.3-9.9 (1H, br s). MS (Cl⁺) 508 (M⁺+1, 100%).</td>
</tr>
<tr>
<td>21</td>
<td>CF₃</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>¹H NMR (250MHz, CDCl₃) δ 7.63 (1H, s), 7.48 (2H, br s), 7.15 (2H, s), 7.05 (2H, t, J=8.7Hz), 4.86 (1H, q, J=6.6Hz), 4.30 (1H, d, J=2.7Hz), 4.21 (1H, br t, J=11.4Hz), 3.77 (1H, d, J=13.9Hz), 3.67 (1H, d, J=14.0Hz), 3.65 (1H, m), 3.56 (1H, d, J=14.0Hz), 3.43 (1H, d, J=2.7Hz), 3.20 (1H, d, J=13.9Hz), 2.85 (1H, d, J=11.5Hz), 2.56-2.48 (9H, m), 2.31 (3H, s), 1.42 (3H, d, J=6.6Hz).</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R<sup>1</sup></td>
<td>R<sup>4</sup></td>
<td>-NR<sup>2</sup>R<sup>3</sup></td>
<td>Data</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>25</td>
<td>CF<sub>3</sub></td>
<td>F</td>
<td>![Chemical Structure]</td>
<td>1H NMR (360MHz, CDCl<sub>3</sub>) δ 1.44 (3H, d, J=6.6Hz), 2.14 (2H, m), 2.55 (1H, dd, J=3.4, 11.9Hz), 2.87 (1H, d, J=11.9Hz), 3.21-3.44 (6H, m), 3.58-3.67 (3H, m), 3.75 (1H, d, J=14.0Hz), 4.2 (1H, t, J=9.3Hz), 4.31 (1H, d, J=2.8Hz), 4.85 (1H, m), .06 (2H, t, J=8.7Hz), 7.16 (1H, s), 7.47 (2H, br s), 7.63 (1H, s).</td>
</tr>
<tr>
<td>27</td>
<td>CF<sub>3</sub></td>
<td>F</td>
<td>$-\text{N(C}_2\text{H}_5\text{OCH}_3\text{)}_2$</td>
<td>1H NMR (250MHz, CDCl<sub>3</sub>) δ 1.44 (3H, d, J=6.58Hz), 2.73 (5H, m), 2.95 (1H, d, J=11.8Hz), 3.23 (1H, d, J=13.9Hz), 3.37 (6H, s), 3.41-3.49 (5H, m), 3.63-3.86 (4H, m), 4.18 (1H, t, J=11.5Hz), 4.30 (1H, d, J=2.8Hz), 4.84 (1H, m), 7.06 (2H, t, J=8.7Hz), 7.14 (2H, s), 7.45 (2H, br t), 7.63 (1H, s). MS (ES<sup>+</sup>) m/z 664 (MH<sup>+</sup>, 100%).</td>
</tr>
<tr>
<td>31</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>$-\text{N(C}_3\text{H}_5\text{CH}_2\text{OCH}_3\text{)}_2$</td>
<td>1H NMR (250MHz, CDCl<sub>3</sub>) δ 1.43 (3H, d, J=6.5Hz), 2.17 (3H, s), 2.53 (2H, d, J=5.0Hz), 2.60-2.73 (1H, br dt), 2.95 (1H, br d), 3.30 (3H, s), 3.32 (3H, s), 3.31 (1H, d, J=14.0Hz), 3.44 (1H, d, J=2.7Hz), 3.56 (1H, d, J=2.0Hz), 3.64 (1H, br d), 3.82 (1H, d, J=14.0Hz), 4.20-4.29 (1H, br t), 4.36 (1H, d, J=2.7Hz), 4.47 (1H, t, J=5.0Hz), 4.85 (1H, q, J=6.5Hz), 7.14 (2H, s), 7.27-7.38 (3H,m), 7.45 (2H, br s), 7.61 (1H, s). MS (ES) m/z 632 (M+2H, 100%).</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R<sup>1</sup></td>
<td>R<sup>4</sup></td>
<td>-NR<sup>2</sup>R<sup>3</sup></td>
<td>Data</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>32</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>NH(CH<sub>2</sub>)<sub>2</sub>OCH<sub>3</sub></td>
<td><sup><i>H</i></sup> NMR (250MHz, CDCl<sub>3</sub>) δ 1.45 (3H, d, J=6.5Hz), 2.50 (1H, dt, J=3.4, 12.0Hz), 2.79-2.87 (3H, m), 3.16 (1H, d, J=14.0Hz), 3.35 (3H, s), 3.41 (1H, d, J=2.7Hz), 3.51-3.67 (3H, m), 3.75-3.87 (3H, m), 4.24 (1H, br t), 4.36 (1H, d, J=2.7Hz), 4.87 (1H, q, J=6.5Hz), 7.16 (2H, s), 7.33-7.39 (3H, m), 7.46 (2H, m), 7.61 (1H, s). MS (ES) m/z 588 (M<sup>+</sup>+1, 100%).</td>
</tr>
<tr>
<td>33</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>N(CH<sub>3</sub>)<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub></td>
<td><sup><i>H</i></sup> NMR (250MHz, CDCl<sub>3</sub>) δ 1.43 (3H, d, J=6.5Hz), 2.24 (3H, s), 2.58 (2H, t, J=3.5Hz), 2.65 (1H, br t), 2.94 (1H, br d), 3.29 (1H, d, J=9.5Hz), 3.36 (3H, s), 3.43 (1H, d, J=2.0Hz), 3.49 (2H, t, J=3.5Hz), 3.56 (2H, s), 3.63 (1H, dd, J=1.3, 7.75Hz), 3.80 (1H, d, J=9.5Hz), 4.23 (1H, dt, J=1.5, 8.0Hz), 4.36 (1H, d, J=2.0Hz), 4.84 (1H, q, J=6.5Hz), 7.15 (2H, s), 7.32-7.36 (3H, m), 7.45 (2H, m), 7.61 (1H, s). MS (ES) m/z 602 (M<sup>+</sup>+1, 100%).</td>
</tr>
<tr>
<td>34</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>N(CH(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub>OCH<sub>3</sub></td>
<td><sup><i>H</i></sup> NMR (250MHz, CDCl<sub>3</sub>) δ 0.99 (3H, d, J=6.5Hz), 1.02 (3H, d, J=6.5Hz), 1.43 (3H, d, J=6.5Hz), 2.64-2.71 (3H, m), 2.91-2.98 (2H, m), 3.26 (1H, d, J=14.0Hz), 3.39 (6H, s), 3.43 (1H, d, J=2.6Hz), 3.49-3.81 (3H, m), 4.22 (1H, dt, J=2.0, 11.5Hz), 4.35 (1H, d, J=2.6Hz), 4.88 (1H, q, J=6.5Hz), 7.14 (2H, s), 7.31-7.35 (3H, m), 7.45 (2H, m), 7.61 (1H, s). MS (ES) m/z 630 (M<sup>+</sup>+1, 100%).</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
<td>-NR<sup>2</sup>R<sup>3</sup></td>
<td>Data</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>36</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>-N(CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz, CDCl<sub>3</sub>) δ 0.85 (6H, t, J=7.25Hz), 1.14-1.38 (9H, m), 1.44 (3H, d, J=6.5Hz), 2.34 (4H, br t), 2.63-2.73 (2H, m), 2.97 (1H, m), 3.34 (1H, d, J=14.0Hz), 3.41-3.47 (3H, m), 3.64 (1H, dd, J=2.0, 11.0Hz), 3.79 (1H, d, J=14.0Hz), 4.26 (1H, br t), 4.35 (1H, d, J=2.8Hz), 4.84 (1H, q, J=6.5Hz), 7.14 (2H, s), 7.32-7.35 (3H, m), 7.43 (2H, m), 7.61 (1H, s).</td>
</tr>
<tr>
<td>37</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>-N(CH(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz, CDCl<sub>3</sub>) δ 1.01 (12H, d, J=7.25Hz), 1.43 (3H, d, J=6.5Hz), 2.68 (1H, dt, J=3.5, 12.5Hz), 2.92-3.02 (3H, m), 3.32 (1H, d, J=14.0Hz), 3.44 (1H, d, J=2.8Hz), 3.48 (1H, br d), 3.52-3.72 (2H, m), 3.77 (1H, d, J=14.0Hz), 4.24 (1H, br t), 4.36 (1H, d, J=2.8Hz), 4.85 (1H, q, J=6.5Hz), 7.14 (2H, s), 7.32-7.35 (3H, m), 7.45 (2H, m), 7.61 (1H, s).</td>
</tr>
<tr>
<td>44</td>
<td>CF<sub>3</sub></td>
<td>F</td>
<td>-N(CH(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz, CDCl<sub>3</sub>) δ 1.30 (6H, d, J=6.5Hz), 1.31 (6H, d, J=6.5Hz), 1.75 (3H, d, J=6.6Hz), 2.95 (1H, m), 3.20-3.31 (3H, m), 3.57 (1H, d, J=14.1Hz), 3.78 (2H, m), 3.92-4.05 (3H, m), 4.53 (1H, m), 4.62 (1H, d, J=2.80Hz), 5.17 (1H, m), 7.35 (2H, t, J=8.7Hz), 7.46 (2H, s), 7.76 (2H, m), 7.94 (1H, s). MS (ES<sup>+</sup>) m/z 631.</td>
</tr>
<tr>
<td>45</td>
<td>CF<sub>3</sub></td>
<td>F</td>
<td>-N(CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>OH</td>
<td><sup>1</sup>H NMR (250MHz, CDCl<sub>3</sub>) δ 7.64 (1H, s), 7.49 (2H, br s), 7.17 (2H, s), 7.06 (2H, t, J=8.7Hz), 4.86 (1H, q, J=6.5Hz), 4.31 (1H, d, J=2.7Hz), 4.26 (1H, t, J=9.6Hz), 3.74 (1H, d, J=13.7Hz), 3.60 (5H, m), 3.44 (1H, d, J=2.7Hz), 3.15 (1H, d, J=13.7Hz), 2.96 (1H, d, J=11.7Hz), 2.68-2.49 (5H, m), 1.56-1.42 (5H, m), 0.87 (3H, t, J=7.3Hz). MS m/z 634 (MH<sup>+</sup>).</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R¹</td>
<td>R⁴</td>
<td>-NR²R³</td>
<td>Data</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>48</td>
<td>CF₃</td>
<td>F</td>
<td>-N[CH(CH₃)₂]CH₂CH₂OH</td>
<td>¹H NMR (250MHz, CDCl₃) δ 7.64 (1H, s), 7.49 (2H, br s), 7.27 (2H, s), 7.06 (2H, t, J=8.7Hz), 4.86 (1H, q, J=6.5Hz), 4.31 (1H, d, J=2.7Hz), 4.14 (1H, m), 3.76-3.43 (7H, m), 3.17 (1H, d, J=13.8Hz), 3.04-2.89 (2H, m), 2.75-2.53 (3H, m), 1.43 (3H, d, J=6.5Hz), 1.5 (6H, d, J=6.6Hz). M/S m/z 634 (MH⁺).</td>
</tr>
<tr>
<td>49</td>
<td>CF₃</td>
<td>F</td>
<td>-N(CH₃)C(CH₃)₃</td>
<td>¹H NMR (250MHz, CDCl₃) δ 7.63 (1H, s), 7.45 (2H, br s), 7.15 (2H, s), 7.05 (2H, t, J=8.74Hz), 4.87 (1H, q, J=6.58Hz), 4.31 (1H, d, J=2.79Hz), 4.23 (1H, m), 3.75 (1H, d, J=14.16Hz), 3.64 (1H, m), 3.54 (1H, d, J=14.40Hz), 3.48 (1H, d, J=14.40Hz), 3.46 (1H, d, J=2.79Hz), 3.32 (1H, d, J=14.16Hz), 2.94 (1H, d, J=11.73Hz), 2.65 (1H, td, J=10.33, 3.51Hz), 2.09 (3H, s), 1.45 (3H, d, J=6.58Hz), 1.15 (9H, s). M/S (ES⁺) 618.</td>
</tr>
<tr>
<td>51</td>
<td>CF₃</td>
<td>F</td>
<td>-N(CH₂CH₃)₂</td>
<td>¹H NMR (250MHz, CDCl₃) δ 1.00 (6H, t, J=7.2Hz), 1.44 (3H, d, J=6.6Hz), 2.46-2.55 (4H, m), 2.62 (1H, m), 2.91 (1H, d, J=11.7Hz), 3.27 (1H, d, J=14.0Hz), 3.46 (1H, d, J=2.7Hz), 3.56 (2H, s), 3.62 (1H, m), 3.77 (1H, d, J=14.1Hz), 4.24 (1H, m), 4.31 (1H, d, J=2.8Hz), 4.86 (1H, m), 7.05 (2H, t, J=8.7Hz), 7.15 (2H, s), 7.47 (2H, br s), 7.64 (1H, s). MS (ES⁺) m/z 603</td>
</tr>
<tr>
<td>52</td>
<td>CF₃</td>
<td>H</td>
<td>-N(CH₃)₂</td>
<td>Analysis Calcd. for C₉H₁₅N₂O₆F₆·HCl·H₂O: C, 51.03; H, 5.27; N, 11.44. Found C, 51.21; H, 5.24; N, 11.10%. M.pt. 127-129°C.</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R<sup>1</sup></td>
<td>R<sup>4</sup></td>
<td>-NR<sup>2</sup>R<sup>4</sup></td>
<td>Data</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>53</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>-N(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz, CDCl<sub>3</sub>) δ 1.03 (6H, t, J=7.1Hz), 1.44 (3H, d, J=6.6Hz), 2.51-2.70 (5H, m), 2.93 (1H, d, J=11.6Hz), 3.32 (1H, d, J=14.1Hz), 3.44 (1H, d, J=2.7Hz), 3.57-3.66 (3H, m), 3.80 (1H, d, J=14.1Hz), 4.24 (1H, m), 4.35 (1H, d, J=2.7Hz), 4.85 (1H, m), 7.14 (2H, s), 7.27 (1H, s), 7.34 (3H, m), 7.45 (2H, br s), 7.56 (1H, s). MS (ES<sup>+</sup>) m/z 585.</td>
</tr>
<tr>
<td>54</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>-N(CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz, CDCl<sub>3</sub>) δ 0.82 (6H, t, J=7.4Hz), 1.35-1.46 (7H, m), 2.36 (4H, m), 2.66 (1H, m), 2.95 (1H, d, J=11.6Hz), 3.35 (1H, d, J=14.2Hz), 3.44 (1H, d, J=2.78Hz), 3.53 (2H, s), 3.64 (1H, m), 3.78 (1H, d, J=14.3Hz), 4.26 (1H, m), 4.35 (1H, d, J=2.8Hz), 4.85 (1H, m), 7.14 (2H, s), 7.33 (3H, m), 7.43 (2H, br s), 7.67 (1H, s). MS (ES<sup>+</sup>) m/z 613.</td>
</tr>
<tr>
<td>55</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>-N(N<sub>2</sub>)</td>
<td><sup>1</sup>H NMR (250MHz, CDCl<sub>3</sub>) δ 1.44-1.56 (9H, m), 2.35 (4H, m), 2.61 (1H, m), 2.92 (1H, d, J=11.7Hz), 3.29 (1H, d, J=14.0Hz), 3.40-3.56 (3H, m), 3.83 (1H, d, J=14.0Hz), 4.24 (1H, m), 4.36 (1H, d, J=2.8Hz), 4.86 (1H, m), 7.15 (2H, s), 7.34 (3H, m), 7.47 (2H, br s), 7.61 (1H, s). MS (ES<sup>+</sup>) m/z 597.</td>
</tr>
<tr>
<td>57</td>
<td>F</td>
<td>F</td>
<td>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (360MHz, CDCl<sub>3</sub>) δ 1.40 (3H, d, J=6.5Hz), 2.24 (6H, s), 2.57 (1H, m), 2.89 (1H, d, J=11.8Hz), 3.27 (1H, d, J=14.0Hz), 3.46 (2H, s), 3.52-3.63 (2H, m), 3.82 (1H, d, J=14.1), 4.22 (1H, t, J=10.4Hz), 4.76 (1H, m), 6.37 (1H, d, J=8.9Hz), 6.80 (1H, s), 7.05-7.10 (3H, m), 7.46 (2H, br s).</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R<sup>1</sup></td>
<td>R<sup>4</sup></td>
<td>-NR<sup>2</sup>R<sup>8</sup></td>
<td>Data</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>58</td>
<td>F</td>
<td>F</td>
<td>(-N(CH_2CH_3)_2)</td>
<td>1H NMR (360MHz, CDCl<sub>3</sub>) δ 1.01 (6H, t, J=7.1Hz), 1.39 (3H, d, J=6.6Hz), 2.48-2.63 (5H, m), 2.91 (1H, d, J=11.8Hz), 3.30 (1H, d, J=14.1Hz), 3.46 (1H, d, J=2.8Hz), 3.57 (2H, s), 3.60-3.63 (1H, m), 3.81 (1H, d, J=14.1Hz), 4.20-4.26 (1H, m), 4.32 (1H, d, J=2.8Hz), 4.76 (1H, m), 6.36 (1H, d, J=6.9Hz), 6.80 (1H, s), 7.04-7.09 (3H, m), 7.46 (2H, br s).</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>-N(CH(CH_3)_2)_2</td>
<td>1H NMR (250MHz, CDCl<sub>3</sub>) δ 7.45 (2H, br s), 7.37 (3H, t, J=2.99Hz), 7.03 (1H, d, J=8.29Hz), 6.82 (1H, s), 6.23 (1H, d, J=9.08Hz), 4.76 (1H, q, J=6.55Hz), 4.35 (1H, d, J=2.63Hz), 4.24 (1H, td, J=1.60Hz, 2.31Hz), 3.82 (1H, d, J=14.20Hz), 3.68 (1H, d, J=13.92Hz), 3.63 (1H, m), 3.50 (1H, d, J=13.92Hz), 3.46 (1H, m), 3.36 (1H, d, J=14.20Hz), 2.97 (3H, m), 2.68 (1H, td, J=12.01Hz, 3.47Hz), 1.39 (3H, d, J=6.55Hz). MS m/z (ES<sup>+</sup>) 564.</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>CF<sub>3</sub></td>
<td>F</td>
<td>(-N(CH(CH_3)_2)_2)CH<sub>2</sub>CH<sub>3</sub></td>
<td>1H NMR (250MHz, CDCl<sub>3</sub>) δ 0.87-0.95 (9H, m), 1.36 (3H, d, J=6.6Hz), 2.36-2.44 (2H, m), 2.61 (1H, dt, J=12.0Hz, 3.5Hz), 2.83-2.91 (2H, m), 3.28 (1H, d, J=14.1Hz), 3.37-3.45 (3H, m), 3.57 (1H, m), 3.72 (1H, d, J=14.1Hz), 4.17 (1H, dt, J=11.7Hz, 2.4Hz), 4.29 (1H, d, J=2.8Hz), 4.78 (1H, q, J=6.6Hz), 7.07 (2H, s), 7.24-7.29 (3H, m), 7.37 (2H, vbr s), 7.54 (1H, s). MS (ES<sup>+</sup>) m/z 599 (MH<sup>+</sup>, 100%).</td>
</tr>
</tbody>
</table>
TABLE 2 (continued)

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>R<sup>1</sup></th>
<th>R<sup>4</sup></th>
<th>-NR<sup>2</sup>R<sup>3</sup></th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>F</td>
<td>H</td>
<td>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td>1<sup>H</sup> NMR (360MHz, CDCl<sub>3</sub>) δ 1.39 (3H, d, J=6.6Hz), 2.25 (6H, s), 2.60 (1H, dt, J=11.9, 3.5Hz), 2.91 (1H, d, J=11.5Hz), 3.31 (1H, d, J=14.0Hz), 3.41-3.63 (4H, m), 3.87 (1H, d, J=14.0Hz), 4.23 (1H, br t, J=11.6Hz), 4.35 (1H, d, J=2.8Hz), 4.76 (1H, q, J=6.5Hz), 6.27 (1H, d, J=9.2Hz), 6.83 (1H, s), 7.03 (1H, d, J=8.3Hz), 7.34-7.40 (4H, m), 7.47 (2H, br s), MS (ES<sup>+</sup>) m/z 508 (M+1, 100%).</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R<sup>1</sup></td>
<td>-ZNR<sup>2</sup>R<sup>8</sup></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>H</td>
<td></td>
<td>H NMR (360MHz, d<sub>6</sub>-DMSO) δ 7.80 (2H, s), 7.54-7.48 (2H, m), 7.42 (2H, s), 7.36-7.28 (3H, m), 4.92-4.98 (1H, q, J=6.5Hz), 4.38 (1H, d, J=2.7Hz), 4.18-4.00 (3H, m), 3.70 (1H, d, J=14.0), 3.61 (1H, d, J=9.9Hz), 3.54 (1H, d, J=2.7Hz), 3.17 (1H, d, J=14.0Hz), 3.80-3.70 (1H, m), 2.58-2.50 (2H, m), 2.20-2.16 (4H, m), 1.37 (3H, d, J=6.5Hz), 1.32-1.28 (6H, m). M/S* 612.</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>H</td>
<td></td>
<td>H NMR (360MHz, DMSO) δ 8.35 (1H, s), 7.82 (1H, s), 7.46-7.40 (2H, m), 7.36 (2H, s), 7.32-7.22 (3H, m), 4.89-4.93 (1H, (1H, q, J=6.5)), 4.34 (1H, d, J=2.8), 4.19 (2H, t, J=6.2), 4.09 (1H, t, J=11.2), 3.60-3.52 (3H, m), 3.09 (1H, d, J=13.6), 2.93 (1H, d, J=11.7), 2.61 (2H, t, J=6.4), 2.50-2.38 (1H, m), 2.36-2.32 (4H, m), 1.44-1.40 (6H, m), 1.34 (3H, d, J=6.5). M/S+1 612.</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>H</td>
<td></td>
<td>H NMR (360MHz, d<sub>6</sub>-DMSO) δ 7.84 (1H, s), 7.83 (1H, s), 7.45-7.49 (2H, m), 7.42 (2H, s), 7.32-7.31 (3H, m), 4.92-4.98 (1H, q, J=6.5Hz), 4.38 (1H, d, J=2.7Hz), 4.07-4.11 (1H, m), 3.88-3.95 (2H, m), 3.68 (1H, d, J=14.2Hz), 3.61 (1H, d, J=11.4Hz), 3.53 (1H, d, J=2.7Hz), 3.20 (1H, d, J=14.2Hz), 2.80 (1H, d, J=11.4Hz), 2.65-2.49 (3H, s), 2.17 (4H, t, J=7.1Hz), 1.37 (3H, d,</td>
<td></td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R<sup>4</sup></td>
<td>-ZNR<sup>5</sup>R<sup>8</sup></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>H</td>
<td>5 - CH<sub>2</sub>-N(CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz,CDCl<sub>3</sub>) δ 7.61 (1H, s), 7.48-7.40 (2H, m), 7.38-7.30 (3H, m), 7.13 (2H, s), 4.68-4.83 (1H, q, J=6.5Hz), 4.36 (1H, d, J=2.8Hz), 4.30 (1H, t, J=11.5Hz), 3.83 (1H, d, J=14.5Hz), 3.65-3.62 (1H, d, J=11.2Hz), 3.55 (1H, d, J=2.7Hz), 3.53 (1H, d, J=14.4Hz), 3.00 (1H, d, J=11.6Hz), 2.66-2.57 (1H, dxt, J=3.5 and 11.9Hz), 2.43 (4H, t, J=7.42Hz), 1.54-1.40 (9H, m), 0.87 (6H, t, J=7.3Hz). M/S ES<sup>+</sup> 614.</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>H</td>
<td>1 - CH<sub>2</sub>CH<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz,CDCl<sub>3</sub>) δ 8.01 (1H, s), 7.53 (1H, s), 7.41-7.35 (2H, m), 7.29-7.19 (3H, m), 7.06 (2H, s), 4.79-4.75 (1H, q, J=6.5Hz), 4.29 (1H, d, J=2.80Hz), 4.29-4.19 (1H, m), 4.10 (2H, t, J=6.4Hz), 3.76 (1H, d, J=14.1Hz), 3.57-3.52 (2H, m), 3.26 (1H, d, J=14.1Hz), 2.92 (1H, d, J=11.8Hz), 2.63 (2H, t, J=6.3Hz), 2.52 (1H, dt, J=3.5 and 11.9Hz), 2.18 (6H, s), 1.36 (3H, d, J=6.6Hz). M/S ES<sup>+</sup> 572.</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>F</td>
<td>2 - CH<sub>2</sub>CH<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz,CDCl<sub>3</sub>) δ 7.80 (1H, s), 7.63 (1H, s), 7.52-7.42 (2H, m), 7.18 (2H, s), 7.07 (2H, t, J=8.7Hz), 4.91-4.86 (1H, q), 4.32 (1H, d, J=2.8Hz), 4.24-4.06 (3H, m), 3.76 (1H, d, J=14.0Hz), 3.64-3.60 (1H, m), 3.44 (1H, d, J=2.8Hz), 3.24 (1H, d, J=13.9Hz), 2.82-2.60 (4H, m), 2.25 (6H, s), 1.62-1.56 (6H, m), 1.46 (3H, d, J=6.6Hz). M/S ES<sup>+</sup> 660.</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>F</td>
<td>1 - CH<sub>2</sub>CH<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td><sup>1</sup>H NMR (250MHz,CDCl<sub>3</sub>) δ 8.07 (1H, s), 7.62 (1H, s), 7.50-7.40 (2H, m), 7.15 (2H, s), 7.03 (2H, t, J=8.8Hz), 4.87-4.83 (1H, q, J=6.6Hz), 4.35-4.25 (2H, m), 4.17 (2H, t, J=6.4Hz), 3.77 (1H, d, J=14.1Hz), 3.62-3.58 (2H, m), 3.34 (1H, d, J=14.1Hz), 3.00 (1H, d, J=11.6Hz), 2.70 (2H, t, J=6.4Hz), 2.66-2.52 (2H, m), 2.25 (6H, s), 1.43 (3H, d, J=6.6Hz). M/S ES<sup>+</sup> 590.</td>
<td></td>
</tr>
</tbody>
</table>
The following examples illustrate pharmaceutical compositions according to the invention.

EXAMPLE 103A Tablets containing 1-25mg of compound

<table>
<thead>
<tr>
<th>Compound of formula (I)</th>
<th>Amount mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Lactose</td>
<td>58.5</td>
</tr>
<tr>
<td>57.5</td>
<td>34.5</td>
</tr>
<tr>
<td>Magnesium Stearate</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

EXAMPLE 103B Tablets containing 26-100mg of compound

<table>
<thead>
<tr>
<th>Compound of formula (I)</th>
<th>Amount mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.0</td>
<td>50.0</td>
</tr>
<tr>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td>Lactose</td>
<td>213.5</td>
</tr>
<tr>
<td>189.5</td>
<td>139.5</td>
</tr>
<tr>
<td>Magnesium Stearate</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The compound of formula (I), cellulose, lactose and a portion of the corn starch are mixed and granulated with 10% corn starch paste. The resulting granulation is sieved, dried and blended with the remainder of the corn starch and the magnesium stearate. The resulting granulation is then compressed into tablets containing 1.0mg, 2.0mg, 25.0mg, 26.0mg, 50.0mg and 100mg of the active compound per tablet.

EXAMPLE 104 Parenteral injection

<table>
<thead>
<tr>
<th>Compound of formula (I)</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 100mg</td>
<td></td>
</tr>
<tr>
<td>Citric Acid Monohydrate</td>
<td>0.75mg</td>
</tr>
<tr>
<td>Sodium Phosphate</td>
<td>4.5mg</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>9mg</td>
</tr>
<tr>
<td>Water for injection</td>
<td>to 10ml</td>
</tr>
</tbody>
</table>

The sodium phosphate, citric acid monohydrate and sodium chloride are dissolved in a portion of the water. The compound of formula (I) is dissolved or suspended in the solution and made up to volume.

EXAMPLE 105 Topical formulation

<table>
<thead>
<tr>
<th>Compound of formula (I)</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10g</td>
<td></td>
</tr>
<tr>
<td>Emulsifying Wax</td>
<td>30g</td>
</tr>
<tr>
<td>Liquid paraffin</td>
<td>20g</td>
</tr>
<tr>
<td>White Soft Paraffin</td>
<td>to 100g</td>
</tr>
</tbody>
</table>
The white soft paraffin is heated until molten. The liquid paraffin and emulsifying wax are incorporated and stirred until dissolved. The compound of formula (I) is added and stirring continued until dispersed. The mixture is then cooled until solid.

Example 106A - (Surface-Active Agent) Injection Formulation

[0201] The compound of formula (I) is dissolved directly in a solution of the commercially available Tween 80™ (polyoxyethylenesorbitan monooleate) and 5% aqueous mannitol (isotonic).

Example 106B - (Emulsion) Injection Formulation

[0203] The compound of formula (I) is dissolved directly in the commercially available Intralipid™ (10 or 20%) to form an emulsion.

Example 106C - Alternative (Emulsion) Injectable Formulation

[0205] All materials are sterilized and pyrogen free. The compound of formula (I) is dissolved in soybean oil. An emulsion is then formed by mixing this solution with the egg phospholipid, glycerol and water. The emulsion is then sealed in sterile vials.

Claims

1. A compound of the formula (I):
wherein

\[R^1 \] is hydrogen, halogen, C\textsubscript{1-6}alkyl, C\textsubscript{1-6}alkoxy, CF\textsubscript{3}, NO\textsubscript{2}, CN, SR\textsubscript{a}, SOR\textsubscript{a}, SO\textsubscript{2}R\textsubscript{a}, CO\textsubscript{2}R\textsubscript{a}, CONR\textsubscript{a}R\textsubscript{b}, C\textsubscript{2-6}alkenyl, C\textsubscript{2-6}alkynyl or C\textsubscript{1-4}alkyl substituted by C\textsubscript{1-4}alkoxy, where \(R^a \) and \(R^b \) each independently represent hydrogen or C\textsubscript{1-4}alkyl;

\[R^2 \] is hydrogen, halogen, C\textsubscript{1-6}alkyl, C\textsubscript{1-6}alkoxy substituted by C\textsubscript{1-4}alkoxy or CF\textsubscript{3};

\[R^3 \] is hydrogen, halogen or CF\textsubscript{3};

\[R^4 \] is hydrogen, halogen, C\textsubscript{1-6}alkyl, C\textsubscript{1-6}alkoxy, CF\textsubscript{3}, NO\textsubscript{2}, CN, SR\textsubscript{a}, SOR\textsubscript{a}, SO\textsubscript{2}R\textsubscript{a}, CO\textsubscript{2}R\textsubscript{a}, CONR\textsubscript{a}R\textsubscript{b}, C\textsubscript{2-6}alkenyl, C\textsubscript{2-6}alkynyl or C\textsubscript{1-4}alkyl substituted by C\textsubscript{1-4}alkoxy, where \(R^a \) and \(R^b \) each independently represent hydrogen or C\textsubscript{1-4}alkyl;

\[R^5 \] is hydrogen, halogen, C\textsubscript{1-6}alkyl, C\textsubscript{1-6}alkoxy substituted by C\textsubscript{1-4}alkoxy or CF\textsubscript{3};

\[R^6 \] is a 5-membered or 6-membered heterocyclic ring containing 2 or 3 nitrogen atoms optionally substituted by =O, =S, and substituted by a group of the formula \(ZNR^7R^8 \) where

\(Z \) is C\textsubscript{1-2}alkylene;

\[R^7 \] is hydrogen or C\textsubscript{1-4}alkyl, or C\textsubscript{2-4}alkyl substituted by C\textsubscript{1-4}alkoxy or hydroxyl;

\[R^8 \] is hydrogen or C\textsubscript{1-4}alkyl, or C\textsubscript{2-4}alkyl substituted by C\textsubscript{1-4}alkoxy or hydroxyl;

or \(R^7, R^8 \) and the nitrogen atom to which they are attached form a hetereoaliphatic ring of 4 to 7 ring atoms which may optionally contain an oxygen ring atom or a second nitrogen atom which will be part of a NH or NRe moiety where \(R^e \) is C\textsubscript{1-4}alkyl optionally substituted by hydroxy or C\textsubscript{1-4}alkoxy;

or \(Z, R^7 \) and the nitrogen atom to which they are attached form a hetereoaliphatic ring of 4 to 7 ring atoms which may optionally contain an oxygen ring atom;

\[R^9a \] and \(R^9b \) are each independently hydrogen or C\textsubscript{1-4}alkyl, or \(R^9a \) and \(R^9b \) are joined so, together with the carbon atoms to which they are attached, there is formed a C\textsubscript{5-7} ring;

\(X \) is an alkylene chain of 1 to 4 carbon atoms optionally substituted by oxo; and

\(Y \) is a C\textsubscript{1-4}alkyl group;

or a pharmaceutically acceptable salt thereof.

2. A compound as claimed in claim 1 of formula (la):
wherein

A₁ is fluorine or CF₃;
A₂ is fluorine or CF₃;
A₃ is fluorine or hydrogen;

and X, Y and R⁶ are as defined in claim 1;
or a pharmaceutically acceptable salt thereof.

3. A compound as claimed in claim 1 or claim 2 wherein Y represents a methyl group.

4. A compound as claimed in any one of claims 1 to 3 wherein X represents a -CH₂- group.

5. A compound as claimed in any one of claims 1 to 4 wherein R⁶ represents a heterocyclic ring selected from:

or a pharmaceutically acceptable salt thereof.

6. A compound as claimed in claim 1 or claim 2 of formula (Ib):
wherein A₁, A² and A³ are defined in claim 2 and wherein Z, R⁷ and R⁸ are as defined in claim 1; or a pharmaceutically acceptable salt thereof.

7. A compound as claimed in claim 1 or claim 2 of formula (Ia):

wherein A₁, A² and A³ are defined in claim 2, Q² is CH or N and Z, R⁷ and R⁸ are as defined in claim 1; or a pharmaceutically acceptable salt thereof.

8. A compound as claimed in claim 1 selected from:

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(2,3-dihydro-5-(N,N-dimethylamino)methyl-2-oxo-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine;
4-(2,3-dihydro-5-(N,N-dimethylamino)methyl-2-oxo-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl)ethoxy)morpholine;
3-(S)-(4-fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl)ethoxy)-4-(2,3-dihydro-2-oxo-5-pyrolidinomethyl-1,3-imidazol-4-yl)methylmorpholine;
2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-2-oxo-5-pyrolidinomethyl-1,3-imidazol-4-yl)methylmorpholine;
2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-2-oxo-5-pyrrolidinomethyl-1,3-imidazol-4-yl)methylmorpholine;
2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-2-oxo-5-pyrrolidinomethyl-1,3-imidazol-4-yl)methylmorpholine;
3-(S)-(4-fluorophenyl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluoromethyl)phenyl)ethoxy)-4-(2,3-dihydro-2-oxo-5-morpholinomethyl-1,3-imidazol-4-yl)methylmorpholine;
2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(2,3-dihydro-5-morpholinomethyl-2-oxo-1,3-imidazol-4-yl)methylmorpholine;
4-(5-azetidinylmethyl-2,3-dihydro-2-oxo-1,3-imidazol-4-yl)methyl-2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(4-fluorophenyl)morpholine;
or a pharmaceutically acceptable salt thereof.

9. A compound as claimed in claim 1 of formula (ii):
wherein R₁, R₂, R₃, R₄, R₅, R₆, R₉a, R₉b, X and Y are as defined in claim 1; or a pharmaceutically acceptable salt thereof.

10. The compound as claimed in claim 1 selected from:
 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-N,N-dimethylaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorophenyl)morpholine; or a pharmaceutically acceptable salt thereof.

11. A compound as claimed in any preceding claim for use in therapy.

12. A pharmaceutical composition comprising a compound as claimed in any one of Claims 1 to 10 in association with a pharmaceutically acceptable carrier or excipient.

13. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the treatment or prevention of a physiological disorder associated with an excess of tachykinins.

14. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the treatment or prevention of pain or inflammation.

15. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the treatment or prevention of migraine.

16. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the treatment or prevention of emesis.

17. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the treatment or prevention of depression.

18. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the treatment or prevention of anxiety.

19. A process for the preparation of a compound of formula (I) as claimed in claim 1, which comprises:
 (A) reacting a compound of formula (II):

 (I)
wherein R₁, R₂, R₃, R₄, R₅ and Y are as defined in relation to formula (I) by reaction with a compound of formula (III):

\[X^1 \cdot X \cdot R^{6\text{a}} \]

where X is as defined in claim 1, R₆ᵃ is a group of the formula R₆ as defined in claim 1 or a precursor thereof and X¹ is a leaving group; and, if R₆ᵃ is a precursor group, converting it to a group R₆; or

(B) wherein R₆ represents 1,2,3-triazol-4-yl substituted by CH₂NR₇R₈ and X is -CH₂-, by reaction of a compound of formula (IV):

with an azide, followed by reduction of the carbonyl group adjacent to -NR₇R₈; or

(C) wherein R₆ represents 1,2,3-triazol-4-yl substituted by CH₂NR₇R₈ and X is -CH₂-, by reaction of a compound of formula (V)
with an amine of formula \(\text{NHR}^7\text{R}^8 \); or
(D) by reaction of a compound of formula (II) with one of the compounds of formula (XII):

wherein each LG, which may be the same or different, is a leaving group, and X and Z are as defined in claim 1, followed by reaction of the resultant compound with an amine \(\text{NHR}^7\text{R}^8 \) to complete the \(\text{ZN}^7\text{R}^8 \) moiety; or
(E) by interconversion of a compound of formula (I) into another compound of formula (I);

each process being followed, where necessary, by the removal of any protecting group where present;
and when the compound of formula (I) is obtained as a mixture of enantiomers or diastereoisomers, optionally resolving the mixture to obtain the desired enantiomer;
and/or, if desired, converting the resulting compound of formula (I) or a salt thereof, into a pharmaceutically acceptable salt thereof.

Patentansprüche

1. Eine Verbindung der Formel (I):
R₁ Wasserstoff, Halogen, C₁-₆-Alkyl, C₁-₆-Alkoxy, CF₃, NO₂, CN, SRₐ, SORₐ, SO₂Rₐ, CO₂Rₐ, CONRₐRₐ, C₂-₆-Alkenyl, C₂-₆-Alkynyl oder durch C₁-₄-Alkoxy substituiertes C₁-₄-Alkyl ist, wobei Rₐ und Rₐ' jeweils unabhängig Wasserstoff oder C₁-₄-Alkyl bedeuten,

R² Wasserstoff, Halogen, C₁-₆-Alkyl, durch C₁-₄-Alkoxy substituiertes C₁-₆-Alkoxy oder CF₃ ist,

R³ Wasserstoff, Halogen oder CF₃ ist,

R⁴ Wasserstoff, Halogen, C₁-₆-Alkyl, C₁-₆-Alkoxy, CF₃, NO₂, CN, SRₐ, SORₐ, SO₂Rₐ, CO₂Rₐ, CONRₐRₐ, C₂-₆-Alkenyl, C₂-₆-Alkynyl oder durch C₁-₄-Alkoxy substituiertes C₁-₄-Alkyl ist, wobei Rₐ und Rₐ' jeweils unabhängig Wasserstoff oder C₁-₄-Alkyl bedeuten,

R⁵ Wasserstoff, Halogen, C₁-₆-Alkyl, durch C₁-₄-Alkoxy substituiertes C₁-₆-Alkoxy oder CF₃ ist,

R⁶ ein 5gliedriger oder 6gliedriger heterocyclischer Ring ist, der 2 oder 3 Stickstoffatome enthält, gegebenenfalls substituiert ist durch =O, =S und substituiert ist durch eine Gruppe der Formel ZNR₇R₈, wobei Z C₁-₂-Alkylen ist,

R⁷ Wasserstoff oder C₁-₄-Alkyl oder durch C₁-₄-Alkoxy oder Hydroxyl substituiertes C₂-₄-Alkyl ist,

R₈ Wasserstoff oder C₁-₄-Alkyl oder durch C₁-₄-Alkoxy oder Hydroxyl substituiertes C₂-₄-Alkyl ist, oder R₅, R₆ und das Stickstoffatom, an das sie gebunden sind, einen heteroaliphatischen Ring mit 4 bis 7 Ringatomen bilden, der gegebenenfalls ein Sauerstoffringatom oder ein zweites Stickstoffatom, das Teil eines NH- oder NR₉-Restes sein wird, wobei R₉ gegebenenfalls durch Hydroxy oder C₁-₄-Alkoxy substituiertes C₁-₄-Alkyl ist, enthalten kann, oder Z, R₇ und das Stickstoffatom, an das sie gebunden sind, einen heteroaliphatischen Ring mit 4 bis 7 Ringatomen bilden, der gegebenenfalls ein Sauerstoffringatom enthalten kann, R₉ und R₉' jeweils unabhängig Wasserstoff oder C₁-₄-Alkyl sind oder R₉ und R₉' so verbunden sind, daβ, zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, ein C₅-₇-Ring gebildet wird,

X eine Alkenenkette mit 1 bis 4 Kohlenstoffatomen ist, die gegebenenfalls durch Oxo substituiert ist, und Y eine C₁-₄-Alkylgruppe ist,

oder ein pharmazeutisch annehmbares Salz davon.

2. Eine wie in Anspruch 1 beanspruchte Verbindung der Formel (Ia):
worin

A¹ Fluor oder CF₃ ist,
A² Fluor oder CF₃ ist,
A³ Fluor oder Wasserstoff ist

und X, Y und R⁶ wie in Anspruch 1 definiert sind,
oder ein pharmazeutisch annehmbares Salz davon.

3. Eine wie in Anspruch 1 oder Anspruch 2 beanspruchte Verbindung, worin Y eine Methylgruppe bedeutet.

4. Eine wie in irgendeinem der Ansprüche 1 bis 3 beanspruchte. Verbindung, worin X eine -CH₂-Gruppe bedeutet.

5. Eine wie in irgendeinem der Ansprüche 1 bis 4 beanspruchte Verbindung, worin R⁶ einen heterocyclischen Ring bedeutet, ausgewählt aus:

oder ein pharmazeutisch annehmbares Salz davon.

6. Eine wie in Anspruch 1 oder Anspruch 2 beanspruchte Verbindung der Formel (Ib):
worin A^1, A^2 und A^3 wie in Anspruch 2 definiert sind und worin Z, R^7 und R^8 wie in Anspruch 1 definiert sind, oder ein pharmazeutisch annehmbares Salz davon.

7. Eine wie in Anspruch 1 oder Anspruch 2 beanspruchte Verbindung der Formel (Id):

worin A^1, A^2 und A^3 wie in Anspruch 2 definiert sind, Q^2 CH oder N ist und Z, R^7 und R^8 wie in Anspruch 1 definiert sind, oder ein pharmazeutisch annehmbares Salz davon.

8. Eine wie in Anspruch 1 beanspruchte Verbindung, ausgewählt aus:

2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-4-(2,3-dihydro-5-(N,N-dimethylamino)methyl-2-oxo-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorphenyl)morpholin,

4-(2,3-Dihydro-5-(N,N-dimethylamino)methyl-2-oxo-1,3-imidazol-4-yl)methyl-3-(S)-(4-fluorphenyl)-2-(R)-(1-(R)-(3-fluor-5-(trifluormethyl)phenyl)-ethoxy)morpholin,

3(S)-(4-Fluorphenyl)-2-(R)-(1-(R)-(3-fluor-5-(trifluormethyl)phenyl)-ethoxy)-4-(2,3-dihydro-2-oxo-5-pyrrolidinomethyl-1,3-imidazol-4-yl)methylmorpholin,

2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)-4-(2,3-dihydro-5-morpholinomethyl-1,3-imidazol-4-yl)methylmorpholin,
2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)-4-(2,3-dihydro-5-morpholinomethyl-2-oxo-1,3-imidazol-4-yl)methylmorpholin, 4-(5-Azetidinylmethyl-2,3-dihydro-2-oxo-1,3-imidazol-4-yl)methylmorpholin,
2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)-4-(2,3-dihydro-5-(N-methylpiperazineyl)methyl-2-oxo-1,3-imidazol-4-yl)methylmorpholin,
2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-4-(5-(dimethylamino)-methyl-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorphenyl)morpholin,
2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)-4-(N-(N'-methylaminoethyl)-1,2,3-triazol-4-yl)methylmorpholin,
4-(5-Aminomethyl)-1,2,3-triazol-4-yl)methyl-2-(R)-(1-(R)-(3,5-bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)morpholin,
4-(5-Azetidinylmethyl)-1,2,3-triazol-4-yl)methyl-2-(R)-(1-(R)-(3,5-bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)morpholin,
2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)-4-(5-pyrrolinomethyl)-1,2,3-triazol-4-yl)methylmorpholin,
4-(5-(Azetidinylmethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorphenyl)-2-(R)-(1-(R)-(3-fluor-5-(trifluormethyl)phenyl)ethoxy)morpholin,
3-(S)-(4-Fluorphenyl)-2-(R)-(1-(R)-(3-fluor-5-(trifluormethyl)phenyl)ethoxy)-4-(5-(pyrrolinomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorphenyl)morpholin,
2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)-4-(5-(N,N-dimethylaminomethyl)-1,2,3-triazol-4-yl)methylmorpholin,
2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)-4-(5-(N,N-dimethylaminomethyl)-1,2,3-triazol-4-yl)methylmorpholin,
2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-3-(S)-(4-fluorphenyl)-4-(5-(N,N-dimethylaminomethyl)-1,2,3-triazol-4-yl)methylmorpholin,
9. Eine wie in Anspruch 1 beanspruchte Verbindung der Formel (I) :

\[
\text{(II) ,}
\]

worin \(R^1, R^2, R^3, R^4, R^5, R^{9a}, R^{9b}, X \) und \(Y \) wie in Anspruch 1 definiert sind, oder ein pharmazeutisch annehmbares Salz davon.

10. Die wie in Anspruch 1 beanspruchte Verbindung, ausgewählt aus: 2-(R)-(1-(R)-(3,5-Bis(trifluormethyl)phenyl)ethoxy)-4-(5-N,N-dimethyaminomethyl)-1,2,3-triazol-4-yl)methyl-3-(S)-(4-fluorphenyl)morpholin, oder ein pharmazeutisch annehmbares Salz davon.

11. Eine wie in irgendeinem vorhergehenden Anspruch beanspruchte Verbindung zur Verwendung in der Therapie.

12. Eine pharmazeutische Zusammensetzung, die eine wie in irgendeinem der Ansprüche 1 bis 10 beanspruchte Verbindung in Verbindung mit einem pharmazeutisch annehmbaren Träger oder Hilfsstoff enthält.

15. Die Verwendung einer wie in irgendeinem der Ansprüche 1 bis 10 beanspruchten Verbindung zur Herstellung eines Medikaments zur Behandlung oder Prävention von Migräne.

17. Die Verwendung einer wie in irgendeinem der Ansprüche 1 bis 10 beanspruchten Verbindung zur Herstellung eines Medikaments zur Behandlung oder Prävention von Depression.

18. Die Verwendung einer wie in irgendeinem der Ansprüche 1 bis 10 beanspruchten Verbindung zur Herstellung eines Medikaments zur Behandlung oder Prävention von Angst.

19. Ein Verfahren zur Herstellung einer wie in Anspruch 1 beanspruchten Verbindung der Formel (I), das umfaßt:

(A) die Umsetzung einer Verbindung der Formel (II):
worin \(R_1, R_2, R_3, R_4, R_5 \) und \(Y \) wie in bezug auf Formel (I) definiert sind, durch Reaktion mit einer Verbindung der Formel (III):

\[
X^1 \cdot X \cdot R_{6a}^{6a}
\]

wobei \(X \) wie in Anspruch 1 definiert ist, \(R_{6a}^{6a} \) eine Gruppe der Formel \(R_6 \), wie sie in Anspruch 1 definiert ist, oder ein Vorläufer dafür ist und \(X^1 \) eine Abgangsgruppe ist, und, wenn \(R_{6a}^{6a} \) eine Vorläufergruppe ist, deren Umwandlung in eine Gruppe \(R_6 \), oder

(B), wenn \(R_6 \) durch \(\text{CH}_2 \text{NR}_7 \text{R}_8 \) substituiertes 1,2,3-Triazol-4-yl bedeutet und \(X \cdot \text{CH}_2 \cdot \) ist, die Reaktion einer Verbindung der Formel (IV)

mit einem Azid, gefolgt von der Reduktion der an \(-\text{NR}_7 \text{R}_8\) angrenzenden Carbonylgruppe, oder

(C), wenn \(R_6 \) durch \(\text{CH}_2 \text{NR}_7 \text{R}_8 \) substituiertes 1,2,3-Triazol-4-yl bedeutet und \(X \cdot \text{CH}_2 \cdot \) ist, die Reaktion einer Verbindung der Formel (V)
mit einem Amin der Formel NHR₇R₈, oder
(D) die Reaktion einer Verbindung der Formel (II) mit einer der Verbindungen der Formel (XII):

wobei jeder Rest LG, der gleich oder verschieden sein kann, eine Abgangsgruppe ist und X und Z wie in Anspruch 1 definiert sind, gefolgt von der Reaktion der resultierenden Verbindung mit einem Amin NHR₇R₈, um den ZNR₇R₈-Rest zu vervollständigen, oder
(E) die Umwandlung einer Verbindung der Formel (I) in eine andere Verbindung der Formel (I),

wobei sich, wo erforderlich, an jedes Verfahren die Entfernung einer etwaigen Schutzgruppe, wo sie vorhanden ist, und, wenn die Verbindung der Formel (I) als eine Mischung aus Enantiomeren oder Diastereoisomeren erhalten wird, gegebenenfalls die Auftrennung der Mischung, um das erwünschte Enantiomer zu erhalten, und/oder, falls erwünscht, die Umwandlung der resultierenden Verbindung der Formel (I) oder eines Salzes davon in ein pharmazeutisch annehmbares Salz davon anschließt.

Revendications

1. Composé de formule (I):
dans laquelle

\[R^1 \text{ est un atome d'hydrogène ou d'halogène ou un groupe alkyle en } C_{1-6}, \text{ alcoxy en } C_{1-6}, CF_3, \text{ NO}_2, \text{ CN, SR}^a, \text{ SOR}^a, \text{ SO}_2R^a, \text{ CONR}^aR^b, \text{ alcényle en } C_{2-6}, \text{ alcyndyle en } C_{2-6} \text{ ou alkyle en } C_{1-4} \text{ substitué par un groupe alcoxy en } C_{1-4}, \text{ où } R^a \text{ et } R^b \text{ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en } C_{1-4}; \]

\[R^2 \text{ est un atome d'hydrogène ou d'halogène ou un groupe alkyle en } C_{1-6}, \text{ alcoxy en } C_{1-6}, CF_3, \text{ NO}_2, \text{ CN, SR}^a, \text{ SOR}^a, \text{ SO}_2R^a, \text{ CONR}^aR^b, \text{ alcényle en } C_{2-6}, \text{ alcyndyle en } C_{2-6} \text{ ou alkyle en } C_{1-4} \text{ substitué par un groupe alcoxy en } C_{1-4}, \text{ où } R^a \text{ et } R^b \text{ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en } C_{1-4}; \]

\[R^3 \text{ est un atome d'hydrogène ou d'halogène ou un groupe CF}_3; \]

\[R^4 \text{ est un atome d'hydrogène ou d'halogène ou un groupe alkyle en } C_{1-6}, \text{ alcoxy en } C_{1-6}, CF_3, \text{ NO}_2, \text{ CN, SR}^a, \text{ SOR}^a, \text{ SO}_2R^a, \text{ CONR}^aR^b, \text{ alcényle en } C_{2-6}, \text{ alcyndyle en } C_{2-6} \text{ ou alkyle en } C_{1-4} \text{ substitué par un groupe alcoxy en } C_{1-4}, \text{ où } R^a \text{ et } R^b \text{ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en } C_{1-4}; \]

\[R^5 \text{ est un atome d'hydrogène ou d'halogène ou un groupe alkyle en } C_{1-6}, \text{ alcoxy en } C_{1-6} \text{ substitué par un groupe alcoxy en } C_{1-4} \text{ ou CF}_3; \]

\[R^6 \text{ est un noyau hétérocyclique à 5 chaînons ou à 6 chaînons contenant 2 ou 3 atomes d'azote éventuellement substitué par } =O, =S, \text{ et substitué par un groupe de formule ZNR}^7R^8 \text{ où } Z \text{ est un alkyène en } C_{1-2}; \]

\[R^7 \text{ est un atome d'hydrogène ou un groupe alkyle en } C_{1-4}, \text{ ou alkyloxy en } C_{2-4} \text{ substitué par un groupe alcoxy en } C_{1-4} \text{ ou hydroxyloxy}; \]

\[R^8 \text{ est un atome d'hydrogène ou un groupe alkyle en } C_{1-4}, \text{ ou alkyloxy en } C_{2-4} \text{ substitué par un groupe alcoxy en } C_{1-4} \text{ ou hydroxyloxy}; \]

ou bien \(R^7, R^8, \) et l'atome d'azote auquel ils sont fixés, forment un noyau hétéroaliphatique de 4 à 7 atomes dans le noyau, qui peut contenir éventuellement un atome d'oxygène dans le noyau ou un second atome d'azote qui fera partie d'un groupement NH ou NR où \(R^8 \) est un atome de carbone en \(C_{1-4} \) éventuellement substitué par un groupe hydroxy ou alcoxy en \(C_{1-4}; \)

ou bien Z, \(R^7, \) et l'atome d'azote auquel ils sont fixés, forment un noyau hétéroaliphatique de 4 à 7 atomes dans le noyau, qui peut contenir éventuellement un atome d'oxygène dans le noyau; \(R^8a \) et \(R^8b \) sont chacun indépendamment des atomes d'hydrogène ou des groupes alkyle en \(C_{1-4}, \) ou bien \(R^8a \) et \(R^8b \) sont reliés de manière à former, avec les atomes de carbone auxquels ils sont fixés, un noyau en \(C_{2-2}, \)

\[X \text{ est une chaîne alkyloxy de 1 à 4 atomes de carbone éventuellement substituée par un groupe o xo;} \text{ et } \]

\[Y \text{ est un groupe alkyle en } C_{1-4}; \]

ou un de ses sels pharmaceutiquement acceptables.

2. Composé selon la revendication 1 de formule (Ia):
3. Composé selon la revendication 1 ou la revendication 2 dans lequel Y représente un groupe méthyle.

4. Composé selon l'une quelconque des revendications 1 à 3 dans lequel X représente un groupe -CH₂-.

5. Composé selon l'une quelconque des revendications 1 à 4 dans lequel R₆ représente un noyau hétérocyclique choisi parmi:

- N₅N₅
- O

ou un de ses sels pharmaceutiquement acceptables.

6. Composé selon la revendication 1 ou revendication 2 de formule
dans laquelle A^1, A^2 et A^3 sont tels que définis dans la revendication 2 et dans laquelle Z, R^7 et R^8 sont tels que définis dans la revendication 1; ou un de ses sels pharmaceutiquement acceptables.

7. Composé selon la revendication 1 ou revendication 2 de formule

8. Composé selon la revendication 1 choisi parmi:

- la 2-((R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-4-(2,3-dihydro-5-(N,N-diméthy lamino)méthyl-2-oxo-1,3-imidazol-4-yl)méthyl-3-(S)-(4-fluorophényl)morpholine;
- la 4-(2,3-dihydro-5-(N,N-diméthy lamino)méthyl-2-oxo-1,3-imidazol-4-yl)-méthyl-3-(S)-(4-fluorophényl)-2-((R)-\(1-(R)-3-fluoro-5-(trifluorométhyl)-phényl)éthoxy)morpholine;
- la 3-(S)-(4-fluorophényl)-2-((R)-(1-(R)-3-fluoro-5-(trifluorométhyl)-phényl)éthoxy)-4-(2,3-dihydro-2-oxo-5-pyrroli dinométhyl-1,3-imidazol-4-yl)méthylmorpholine;
- la 2-((R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(S)-(4-fluorophényl)-4-(2,3-dihydro-5-(4-hydroxy périndo)méthyl)-2-oxo-1,3-imidazol-4-yl)méthylmorpholine;
- la 3-(S)-(4-fluorophényl)-2-((R)-(1-(R)-3-fluoro-5-(trifluorométhyl)phényl)éthoxy)-4-(2,3-dihydro-5-morpholo nométhyl-2-oxo-1,3-imidazol-4-yl)méthylmorpholine;
- la 2-((R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(S)-(4-fluorophényl)-4-(2,3-dihydro-5-morpholino méthyl-2-oxo-1,3-imidazol-4-yl)méthylmorpholine;
- la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(S)-(4-fluorophényl)-4-(2,3-dihydro-5-morpholino méthyl-2-oxo-1,3-imidazol-4-yl)-méthylmorpholine;
la 4-(5-azétidinylméthyl-2,3-dihydro-2-oxo-1,3-imidazol-4-yl)méthyl-2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(4-fluorophényl)-morpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(S)-(4-fluorophényl)-4-(2,3-dihydro-5-(N-méthylpipérazinyln)méthyl-2-oxo-1,3-imidazol-4-yl)méthylmorpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-4-(5-(diméthylamino)méthyl-1,2,3-triazol-4-yl)méthylmorpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(S)-(4-fluorophényl)-4-(5-(N-méthylaminométhyl)-1,2,3-triazol-4-yl)méthylmorpholine;
la 4-(5-aminométhyl)-1,2,3-triazol-4-yl)méthyl-2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(S)-(4-fluorophényl)morpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(S)-(4-fluorophényl)-4-(5-pyrrolidinométhyl)-1,2,3-triazol-4-yl)méthylmorpholine;
la 4-(5-(azétidinylméthyl)-1,2,3-triazol-4-yl)méthyl-3-(S)-(4-fluorophényl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluorométhyl)phényl)éthoxy)morpholine;
la 3-(S)-(4-fluorophényl)-2-(R)-(1-(R)-(3-fluoro-5-(trifluorométhyl)phényl)éthoxy)-4-(5-(pyrrolidinométhyl)-1,2,3-triazol-4-yl)méthylmorpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-3-(S)-phényl-4-(2-(2-pyrrolidinoéthyl)-1,2,3-triazol-4-yl)méthylmorpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-4-(5-(bis(méthoxyéthyl)aminométhyl)-1,2,3-triazol-4-yl)méthylmorpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-4-(2-chloro-5-morpholinométhyl-1,3-imidazol-4-yl)méthyl-3-(S)-(4-fluorophényl)morpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-4-(5-(N,N-diméthylaminométhyl)-1,2,3-triazol-4-yl)méthylmorpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-4-(5-(N,N-diméthylaminométhyl)-1,2,4-triazol-3-yl)méthylmorpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-4-(5-(N,N-diméthylaminométhyl)-1,2,3-triazol-4-yl)méthylmorpholine;
la 2-(R)-(1-(R)-(3,5-bis(trifluorométhyl)phényl)éthoxy)-4-(5-(N,N-diiso-propylaminométhyl)-1,2,3-triazol-4-yl)méthylmorpholine;
dans laquelle R_1, R_2, R_3, R_4, R_5, R_6, R_9a, R_9b, X and Y sont tels que définis dans la revendication 1; ou un de ses sels pharmaceutiquement acceptables.

10. Composé selon la revendication 1, choisi parmi:
la 2-[(R)-(1-[(R)-(3,5-bis(trifluorométhyl)phényl]éthoxy)-4-(5-N,N-diméthylaminométhyl)-1,2,3-triazol-4-y]méthyl-3-[(S)-(4-fluorophényl)morpholine; ou un de ses sels pharmaceutiquement acceptables.

11. Composé selon l'une quelconque des revendications précédentes à utiliser en thérapeutique.

12. Composition pharmaceutique comprenant un composé selon l'une quelconque des revendications 1 à 10 en association avec un véhicule ou un excipient pharmaceutiquement acceptable.

13. Utilisation d'un composé selon l'une quelconque des revendications 1 à 10 pour la fabrication d'un médicament destiné au traitement ou à la prévention d'une affection physiologique associée à un excès de tachykinines.

14. Utilisation d'un composé selon l'une quelconque des revendications 1 à 10 pour la fabrication d'un médicament destiné au traitement ou à la prévention de la douleur ou de l'inflammation.

15. Utilisation d'un composé selon l'une quelconque des revendications 1 à 10 pour la fabrication d'un médicament destiné au traitement ou à la prévention de la migraine.

16. Utilisation d'un composé selon l'une quelconque des revendications 1 à 10 pour la fabrication d'un médicament destiné au traitement ou à la prévention des vomissements.

17. Utilisation d'un composé selon l'une quelconque des revendications 1 à 10 pour la fabrication d'un médicament destiné au traitement ou à la prévention de la dépression.

18. Utilisation d'un composé selon l'une quelconque des revendications 1 à 10 pour la fabrication d'un médicament destiné au traitement ou à la prévention de l'anxiété.

19. Procédé de préparation d'un composé de formule (I) selon la revendication 1, qui comprend les étapes consistant à:

(A) faire réagir un composé de formule (II)
dans laquelle R₃, R₄, R₅ et Y sont tels que définis pour la formule (I) par réaction avec un composé de formule (III):

\[X^1 \cdot X \cdot R^{6a} \]

(III)

dans laquelle X est tel que défini dans la revendication 1, R₆a est un groupe de formule R₆ telle que définie dans la revendication 1 ou un de ses précurseurs et X¹ est un groupe partant; et, si R₆a est un groupe précurseur, convertir ce groupe en R₆; ou
(B) lorsque R₆ représente un groupe 1,2,3-triazol-4-yile substitué par CH₂NR₇R₈ et que X est -CH₂-, par réaction d'un composé de formule (IV)

avec un azoture, puis par réduction du groupe carbonyle adjacent à -NR₇R₈; ou
(C) lorsque R₆ représente un groupe 1,2,3-triazol-4-yile substitué par CH₂NR₇R₈ et que X est -CH₂-, par réaction d'un composé de formule (V)
avec une amine de formule \(\text{NHR}^7 \text{R}^8 \); ou

(D) par réaction d'un composé de formule (II) avec un des composés de formule (XII):

dans laquelle chaque radical \(\text{LG} \), qui peut être identique ou différent à chaque fois, est un groupe partant, et \(X \) et \(Z \) sont tels que définis dans la revendication 1, suivie de la réaction du composé ainsi obtenu avec une amine \(\text{NHR}^7 \text{R}^8 \) pour compléter le groupement \(\text{ZNHR}^7 \text{R}^8 \); ou

(E) par interconversion d'un composé de formule (I) en un autre composé de formule (I);

each procedure being followed, if necessary, by elimination of any potentially present protective groups;

and, when the compound of formula (I) is obtained as a mixture of enantiomers or diastereoisomers, the eventual resolution of the mixture to obtain the enantiomer sought;

and/or, when necessary, the conversion of the compound of formula (I) obtained, or one of its salts, into a pharmaceutically acceptable salt.