EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 24.11.1999 Bulletin 1999/47

Application number: 95927894.6

Date of filing: 15.08.1995

Int Cl. #: D03D 41/00

International application number: PCT/GB95/01921

International publication number: WO 96/06213 (29.02.1996 Gazette 1996/10)

A BIAS YARN ASSEMBLY FORMING DEVICE

VORRICHTUNG ZUM HERSTELLEN EINER STRUKTUR MIT SCHRÄGFÄDEN

DISPOSITIF PERMETTANT DE CONSTITUER UN ASSEMBLAGE DE FILS BIAIS

Designated Contracting States: DE ES FR GB IT

Priority: 18.08.1994 GB 9416721

Date of publication of application: 04.09.1996 Bulletin 1996/36

Proprietor: SHORT BROTHERS PLC
Belfast BT3 9DZ, Northern Ireland (GB)

Inventor: ADDIS, Stephen Robert
Crumlin, County Antrim BT29 4RJ, N.I. (GB)

Representative: Moon, Donald Keith et al
BREWER & SON
Quality House
Quality Court
Chancery Lane
London WC2A 1HT (GB)

References cited:
EP-A- 0 263 392
WO-A-92/14876
WO-A-94/16131
DE-A- 2 319 822
FR-A- 2 479 859
FR-A- 2 681 553

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a bias yarn assembly forming device for forming in a succession of bias yarn forming steps in which warp yarns of a warp sheet are displaced in opposite weft directions a bias yarn assembly comprising two superposed bias yarn sub-assemblies in which the bias yarns of one sub-assembly are inclined to the bias yarns of the other sub-assembly and in both of which the bias yarns are inclined to the warp feed direction.

[0002] By yarn is meant a continuous monofilament, an assembly of continuous filaments in the form of a tow or twisted together or a yarn spun from short fibres.

[0003] By warp feed direction is meant the direction in which warp yarns are fed and which is orthogonal to weft yarns in the structure being formed.

[0004] In US6137058 there is disclosed a machine for forming a three dimensional fabric embodying warp yarns, weft yarns, and non-woven bias yarns which are held together by binding warp yarns which pass through the yarn structure between adjacent warp yarns and which are held captive at the outer faces of the structure by weft yarns inserted at each face. The machine includes a bias yarn traversing device for progressively traversing yarns fed to it to provide sub-assembly of oppositely inclined bias yarns which are fed into the weaving zone where they are held in place with the warp and weft yarns by the binding warp yarns.

[0005] In one form of bias yarn traversing device disclosed in US6137058, the warp yarns supplied to the device are passed through holes in an arrangement of guide blocks with one block for each yarn and the blocks are caused to move continuously first along an upper horizontal run in which each block follows the one preceding it and each block on arrival at the end of the run is transferred to a lower horizontal run where it is progressively displaced in the opposite direction along the lower run until it reaches the end of the lower run where it is then moved back into the upper run. The traversing device in this form requires the use of a rotating yarn supply creel which takes the form of an endless belt or chain which supports the bias yarn supply packages and causes them to follow the movement of the bias yarns in the bias yarn traversing device. The traversing device, however, suffers the disadvantage that it requires a cumbersome endless belt creel for supporting the large plurality of supply packages.

[0006] In WO publication WO92/14876 a method of forming a three-dimensional woven fabric is disclosed in which use is made of a yarn transfer device for transferring yarns in the weft direction to provide bias yarn arrays in which the yarns are inclined to the warp feed direction and in which the arrays of inclined bias yarns are woven into other arrays of yarns by selective shedding of the yarns and insertion of weft yarns to produce the three-dimensional fabric. In this method, each yarn which is to form a bias yarn needs to be detachably engaged by a yarn engaging head for selectively raising and lowering the yarn during the weaving process.

[0007] International patent application No. PCT/GB94/00028 (publication No. WO94/16131) discloses a machine for producing a multi-axial yarn structure which utilises a yarn transfer device for forming a non-woven bias yarn assembly of two superposed non-woven bias yarn sub-assemblies, but which does not require the use of a rotary creel or its equivalent for the supply of bias yarns and in which repeated engagement and disengagement of yarns from healds in the weaving process disclosed in WO92/14876 can be avoided.

[0008] The machine disclosed in PCT/GB94/00028 for forming the multi-axial yarn structure comprises supply means for supplying in a warp feed direction warp yarns in the form of a warp sheet, and bias yarn forming means for forming the non-woven bias yarn assembly of two superposed non-woven bias yarn sub-assemblies.

[0009] A simple form of three-dimension yarn structure which can be produced on the yarn structure forming machine disclosed in PCT/GB94/00028 is schematically illustrated in Fig 1 of the accompanying drawings and comprises a non-woven warp yarn assembly composed of two superposed non-woven diagonal sub-assemblies of warp yarns 11 and 12 arranged at angles of ±45° to the reference warp direction R, a binding warp yarn assembly comprising binding warp yarns 13 extending in the warp feed direction and passing through the non-woven diagonal warp yarn sub-assemblies 11 and 12, an upper weft yarn assembly comprising weft yarns 14 and a lower weft yarn assembly comprising weft yarns 15.

[0010] One form of yarn structure forming machine disclosed in PCT/GB94/00028 for forming the yarn structure of Fig 1 is shown in Fig 2 of the accompanying drawings and comprises a creel 16 which supplies warp yarns in a warp sheet 17 in a warp feed direction F to a yarn transfer mechanism 18 following passage through yarn support elements 19 of a jacquard mechanism 20. Each warp yarn of the warp sheet 17 is supported by its own yarn support element 19 which can be raised and lowered under the control of the mechanism 20 to form sheds in which warp yarns of the warp sheet 17 are raised. Such mechanisms are well known in the art and although they can be used for making complex selections for the shedding of the warp sheet in the formation of fabrics of intricate pattern the mechanism provided in the machine illustrated in Fig 2 is also employed for raising and lowering warp yarns of the warp sheet 17 during yarn transfer carried out by a yarn transfer mechanism 18 to form the bias yarns and to shed the bias yarns thus formed.

[0011] The yarn transfer mechanism 18 comprises a lower yarn guide member 21 which extends in the weft direction throughout the width of the warp sheet 17 and includes upstanding yarn guide elements which extend through the thickness of the warp sheet 17 and define...
warp yarn guide openings through which the warp yarns of the warp sheet 17 pass and which hold the warp yarns in predetermined positions spaced apart in the weft direction and a warp yarn transfer member 22 which also extends in the weft direction and which includes yarn guide elements defining transfer openings for the reception of yarns of the warp sheet 17 for transfer in producing the bias yarns 11 and 12 which are to form part of the yarn structure produced on the machine.

[0012] The machine shown in Fig 2 also includes a weft insertion station 23 for inserting the weft yarns 14 of the structure shown in Fig 1 and a binding warp yarn insertion mechanism 25 which includes an insertion needle 26 which provides for the insertion of the warp yarns 13 of the structure shown in Fig 1. It also includes a beater 30.

[0013] The yarn transfer mechanism 18 in the machine illustrated in Fig 2 under the control of drive mechanism 181 serves progressively to move the warp yarns of the warp sheet 17 into diagonal ±45° non-woven warp yarn sub-assemblies as represented by the warp yarns 11 and 12 of the structure shown in Fig 1. A description of the manner of operation of the mechanism 18 disclosed in PCT/GB94/0028 will now be described with reference to Figs 3A(i) to Fig 3H(viii).

[0014] The yarn guide member 21 is schematically illustrated in Figure 3A(i) and includes a large plurality of upstanding yarn guide elements 26 which extend upwardly from a support portion 211 and which provide yarn guide openings 27 through which warp yarns of the warp sheet 17 pass, with the yarn guide elements 26 serving to hold warp yarns in predetermined positions spaced apart in the weft direction for subsequent insertion of the binding warp yarns and the insertion of weft yarns. The yarn transfer member 22 takes the same form as the yarn guide member 21 and is provided with a like plurality of yarn guide elements 28 which extend downwardly from a support portion 221 and which define transfer openings 29 to which warp yarns from the guide member 21 can be transferred for their transfer to another yarn guide opening 27 in the yarn guide member 21.

[0015] The yarn guide member 21 in Fig 3A(i) is shown for illustrative purposes with six yarn guide openings and the yarn transfer member 22 is likewise provided with an equal number of yarn transfer openings 29. In the disposition shown in Fig 3A(i) the yarn transfer member 22 appears in an initial receiving position with the six openings 29 directly opposed to the six openings 27 in the guide member 21. For illustrative purposes, eight yarns only of the yarns required to produce the bias yarn sub-assemblies of the yarn structure to be formed are represented by numerals 1 to 8.

[0016] The yarns 1 to 8 will initially have occupied openings in the yarn guide member 21 and in a first forward yarn transfer step to be carried out all the yarns 1 to 8 are transferred to corresponding transfer openings 29 as shown in Fig 3A(i) during an initial first movement in the first forward yarn transfer step. Accordingly, the first yarn 1 will have occupied before transfer a first end opening in the yarn guide member 21, the last yarn 8 will have occupied an opposite end opening and each of the pair of yarns 2, 5; 3, 6, and 4, 7 will have occupied intermediate openings.

[0017] With the yarns located in the yarn transfer member 22 as illustrated in Fig 3A(i) the yarn transfer member 22 is moved under the control of the drive mechanism 181 illustrated in Fig. 2 one opening in a first weft direction (to the right in the drawing) as illustrated in Fig 3A(ii). One yarn from each of the intermediate openings which is required to be moved to the right in the figure is then returned to openings in the yarn guide member 21 as illustrated in Fig 3A(iii) which shows the return of yarns 5, 6 and 7. The yarn transfer member 22 is then moved two openings in an opposite second weft direction (to the left in the figure and as illustrated in Fig 3A(iv) following which the remaining yarns 2, 3 and 4 from the intermediate openings and the last yarn 8 are returned to openings in the yarn guide member 21 as illustrated in Fig 3A(v). As will be seen, the first yarn 1 remains in the yarn transfer member 22. The yarn transfer member 22 is then moved two openings in the first weft direction (to the right in the drawing) to the position illustrated in Fig 3A(vi) following which the first yarn 1 is lowered into the yarn guide member 21 as illustrated in Fig 3A(vii).

The yarn transfer member 22 is then moved one opening in the second weft direction to bring it back to its initial receiving position as illustrated in Fig 3A(viii).

[0018] The movement of yarns carried out in a first forward transfer step described with reference to Fig 3A(i) to 3A(viii) is then repeated in a second forward transfer step on the yarn configuration appearing in Fig 3A(viii), that is to say, on a first yarn 2, three intermediate pairs of yarns 1, 3; 4, 5; and 6, 8 and a last yarn 7, as illustrated in Fig 3B(i) to 3B(viii), except insofar that there is included with the transfer of the first yarn 1 the yarn 2 which has arrived at the first opening in the yarn guide member 21.

[0019] Movement of yarns in the second forward transfer step is illustrated in Fig 3B(i) to 3B(viii). A third forward transfer step is carried out as illustrated in Fig 3C(i) to 3C(viii). A fourth forward transfer step is then carried out as illustrated in Figs 3D(i) to Fig 3D(viii), which then brings the yarns as shown in Fig. 3D(viii) into an opposite order in the openings in the yarn guide member 21 with the yarn 1 occupying the last end opening and the yarn 8 in the first end opening.

[0020] Figs. 3D(i) to 3D(viii) show displacements of the yarn transfer member 22 which are consistent with those shown in Figs. 3A(i) to 3A(viii), Figs. 3B(i) to 3B(viii) and Figs. 3C(i) to 3C(viii). It will however be seen that displacements of the yarn transfer member 22 embraced by Figs. 3D(ii) to 3D(v) can be replaced by a single displacement of the transfer member 22 one opening to the left in the drawing.
[0021] The succession of forward transfer steps as described with reference to Fig 3A(i) to Fig 3D(viii) is then followed by a succession of return transfer steps as illustrated in Fig 3E(i) to Fig 3H(viii) in each of which movement of the yarn transfer member 22 is reversed and the yarns transferred in opposite directions to bring them back into the openings which they occupied at the commencement of the first forward transfer step.

The succession of forward transfer steps followed by the succession of return transfer steps is then repeated.

[0022] Figs 3H(i) to 3H(viii) also show displacements of the yarn transfer member 22 which are consistent with those shown in Figs 3E(i) to 3E(viii), Figs 3F(i) to 3F(viii) and Figs. 3G(i) to 3G(viii). It will however be seen that displacements of the yarn transfer member 22 embraced by Figs. 3H(ii) and 3H(iii) can be replaced by a single displacement of the transfer member 22 one opening to the right in the drawing.

[0023] It will be apparent that the transfer of warp yarns carried out as described with reference to Figure 3A(i) to Figure 3H(viii) results in the formation of a bias yarn assembly comprising two yarn sub-assemblies inclined to each other and to the warp feed direction without the need for providing a warp yarn supply in the form of a rotary creel. The yarns undergoing transfer in the forward and return transfer steps are however required to move between the openings in the yarn guide member and the yarn transfer member many times in order to complete the succession of forward transfer steps followed by the succession of return transfer steps. In particular, in the first forward transfer step illustrated in Figs 3A(i) and 3A(viii) eight yarns are first raised to move them from the yarn guide member 21 to the yarn transfer member 22. Three yarns are then lowered as illustrated in Fig 3A(vii) to transfer them from the transfer member 22 to the guide member 21 followed by the lowering of four further yarns to transfer them from the yarn guide member to the yarn transfer member as illustrated in Fig 3A(vi).

[0024] As will be apparent, the yarn movements as described in fact amount to the raising of all eight yarns from the yarn guide member 21 to the yarn transfer member 22 and then the lowering of them from the transfer member to the yarn guide member, making a total of 16 yarn excursions in the first forward transfer step. Each of the subsequent forward transfer steps and each of the return transfer steps as illustrated in Figs 3B(i) to 3H(viii) require the same number of yarn transfer movements.

[0025] While the bias yarn traversing device disclosed in US 5137058 makes use of guide blocks through which warp yarns are passed, their purpose is simply to move the yarns continuously first along an upper horizontal run in which each block follows the one preceding it and at the end of which it is transferred to the lower horizontal run where it is progressively displaced in the opposite direction until it reaches the end of the lower run where it is then moved back into the upper run. The traversing device as disclosed however requires the use of a rotating creel which causes the yarn supply packages to follow the movement of the bias yarns in the bias yarn traversing device.

[0026] In the yarn transfer mechanism disclosed in PCT/GB94/00028 as described with reference to Figs 3A(i) to 3H(viii) while the need for a rotating supply creel is obviated there is a need to make a number of transfer movements of yarn between the yarn guide member 21 and the yarn transfer member 22. As a consequence, it has been found that despite efforts to bring the gaps between opposing guide elements 26 and 28 to minimum tolerances, the warp yarns suffer abrasion when transferred from one member to the other and in some instances snag causing end breaks requiring shutdown of the machine of which the transfer mechanism forms part.

[0027] FR-A-2479859 puts forward a proposal which has as its object to overcome the disadvantages of a classic loom and to this end provides for warp yarns to pass through slidable mounted rings in a vertical frame with the vertical disposition of the rings in the frame being controlled by wires or threads hung from loops carried on horizontal vertically displaceable bars which are raised or lowered using any form of lifting system such as pedals, push rods and pulleys. Once the warp threads have been put in place in the rings within the frame, the selection of warp yarns for shedding is made by appropriate threading of nominated attachment loops onto selected ones of the vertically displaceable bars.

[0028] Prior specification FR-A-2479859 is however concerned solely with the shedding of warp yarns in a classic loom by vertical displacement of the yarns to form a shed.

[0029] It is an object of the present invention to provide a bias yarn assembly forming device as disclosed in PCT/GB94/00028, but which does not require contact of the yarns with the guide elements in their transfer between the yarn guide member and the yarn transfer member.

[0030] According to the present invention, there is provided a bias yarn assembly forming device for forming in a succession of bias yarn forming steps in which warp yarns of a warp sheet are displaced in opposite well directions a bias yarn assembly comprising two superposed bias yarn sub-assemblies in which the bias yarns of one sub-assembly are inclined to the bias yarns of the other sub-assembly and in both of which the bias yarns are inclined to the warp feed direction, the device including (i) a yarn transfer mechanism comprising a yarn guide member having a support portion extending in the well direction and a plurality of guide elements which extend laterally from the support portion to form a row of equi-spaced elements which terminate in ends lying on a line extending in the well direction and which define between pairs of adjacent guide elements warp
yarn guide openings through which warp yarns of the warp sheet are caused to pass and by which the warp yarns are confined to predetermined relative positions therein along the width direction and a yarn transfer member having a support portion extending in the width direction and a plurality of guide elements which extend laterally from the support portion to form a row of equispaced elements which terminate in ends lying on a line extending in the width direction and which define between pairs of adjacent guide elements yarn transfer openings to which warp yarns of the warp sheet are transferred and by which the warp yarns are confined to predetermined relative positions therein along the width direction. (ii) yarn transfer drive means to cause predetermined relative displacements of the yarn transfer member and the yarn guide member in the width direction to bring the yarn transfer member to any one of a plurality of transfer positions in which ends of the guide elements of the yarn transfer member oppose and register with ends of the guide elements of the yarn guide member and in which transfer openings of yarn transfer member register with yarn guide openings in the yarn guide member and (iii) shedding means on the supply side of the transfer mechanism for shedding selected warp yarns to cause the selected yarns to move from predetermined first yarn guide openings in the yarn guide member to registering yarn transfer openings in the yarn transfer member and following displacement of the yarn transfer member to another of the plurality of the transfer positions to return the selected warp yarns to the warp sheet and into predetermined second yarn guide openings in the yarn guide member offset from the predetermined first yarn guide openings characterised in that the transfer mechanism includes a plurality of eyelet elements through which the warp yarns of the warp sheet pass from a supply side of the device to an opposite delivery side of the device and which are supported by the guide elements for sliding movement along the elements into and out of the yarn guide and yarn transfer openings and with the yarn transfer member in any one of the registering positions for sliding movements from one opening in one member into a registering opening in the other member.

[0031] In a preferred embodiment of the invention hereinafter to be described the guide elements of the yarn guide member lie in a first surface, the guide elements of the yarn transfer member lie in a second surface and the yarn transfer member and yarn guide member are so disposed at each of the transfer positions that the first and second surfaces form a continuous surface. Preferably, the guide elements of the yarn transfer member and yarn guide member lie in first and second surfaces which are planar and the yarn transfer and yarn guide members are so disposed that the first and second planar surfaces are co-planar at each transfer position.

[0032] In the embodiment of the invention hereinafter to be described the yarn transfer member and the yarn guide member are so mounted and movable that the first and second planar surfaces in which the guide elements of the two members lie are co-planar throughout relative displacement of the two members.

[0033] In the embodiment of the invention hereinafter to be described each eyelet element includes a body portion having a bore which extends therethrough and through which one or more warp yarns pass and restraining means restraining the eyelet element to sliding movement on the guide elements in the opening within which the eyelet element is located.

[0034] In the embodiment of the invention hereinafter to be described, the restraining means comprises a front end flange provided on the supply side of the device and having a first guide element engaging portion which extends laterally from the body portion in a first direction to overlap and bear against a front face of one of the adjacent guide elements which define the opening in which the eyelet element is located and a second guide element engaging portion which extends laterally from the body portion in an opposite direction to overlap and bear against the front face of the other of the two adjacent guide elements defining the opening. The restraining means then further comprises a rear end flange provided on the delivery side of the device and having a first guide element engaging portion which extends laterally from the body portion in a first direction to overlap and bear against a rear face of one of the adjacent guide elements which define the opening in which the eyelet element is located and a second guide element engaging portion which extends laterally from the body portion in an opposite direction to overlap and bear against the other of the adjacent guide elements defining the opening. The body portion of the eyelet element preferably so extends laterally within the opening in which the eyelet element is located as to prevent any wellbeing or any substantial wellbeing movement of the eyelet element within the opening.

[0035] In the embodiment of the invention hereinafter to be described the guide element engaging portions of each end flange of each eyelet element, which overlap and bear against the front and rear faces of adjacent guide elements, have guide element engaging surfaces of convex form to facilitate movement of the eyelet element into and out of the openings between adjacent guide elements during transfer of the eyelet element from an opening in one member to an opening in the other member.

[0036] In the embodiment of the invention hereinafter to be described the cross-section of the bore within the body portion of each eyelet element is so enlarged in the region of each end of the bore as to reduce the frictional force applied by the walls of the bore to the warp yarns passing through the bore.

[0037] In the embodiment of the invention hereinafter to be described, each of the guide elements of the yarn transfer member and the yarn guide member are of square or rectangular cross-section, wherein the body
portion of each eyelet element is of rectangular or square section and wherein the width of the body portion of each of the eyelet elements is such as to produce a sliding fit between opposing side faces of adjacent guide elements which define the opening in which the eyelet element lies.

[0038] In the embodiment of the invention hereinafter to be described, the bias yarn assembly forming device includes an eyelet element detection device responsive to a retention of an eyelet element at a junction between any one of the yarn guide openings and a transfer opening in registration therewith to prevent a subsequent relative displacement of the yarn transfer and yarn guide members until the eyelet element has been cleared from the junction. The detection device advantageously comprises a beam generator and a beam responsive device so disposed that the beam generator transmits a beam to the beam responsive device along a pathway in which the beam is interrupted by the presence of an eyelet element at any of the junctions.

[0039] The guide elements of the yarn transfer and yarn guide members may be cut away or apertured to provide the pathway for the beam and in the embodiment of the invention hereinafter to be described, the end faces of the guide elements of the yarn guide member and the end faces of the guide elements of the yarn transfer member are formed with registering complementary open channels which together provide the pathway therethrough.

[0040] In the embodiment of the invention hereinafter to be described, the yarn or yarns fed to each eyelet element are protected in the region of the eyelet element on the supply side of the device by a protective sheath and the protective sheath is in the form of a tubular sleeve through which the yarn or yarns supplied to the eyelet element pass and which in operation of the device abuts at one end against the eyelet element. Separator arms are employed with the device on the supply side thereof to ensure proper formation of a shed being formed and wherein the protective sleeve is so dimensioned as to protect yarns from frictional forces imposed by the arms.

[0041] In the embodiment of the invention hereinafter to be described, each of the guide elements of each of the yarn transfer and yarn guide members is in the form of a guide pin the end of which terminates in an inclined end face which in each of the transfer positions opposes a complementary inclined end face on a registering guide pin on the other member.

[0042] Embodiments of the invention will now be described by way of example with reference to the accompanying drawings in which:-

Fig 1 (hereinbefore referred to) is a schematic perspective view of a three-dimensional yarn structure produced by a yarn structure forming device disclosed in PCT/GB94/00028.

Fig 2 (hereinbefore referred to) is a block schematic diagram of the yarn structure forming machine disclosed in PCT/GB94/00028 for forming the yarn structure illustrated in Fig 1.

Figs 3A(i) to 3H(viii) (hereinbefore referred to) are schematic diagrams of a yarn transfer mechanism of the machine shown in Fig 2, illustrating successive yarn transfer steps in the transfer of yarns in the production of two superposed non-woven bias yarn sub-assemblies of the yarn structure shown in Fig 1.

Fig 4 is a schematic isometric view of a part of a yarn forming device according to the invention, illustrating a default disposition for the device in which yarn guide elements of the yarn transfer and yarn guide members are in registration and in which eyelet elements carrying the warp yarns are located in the openings in the yarn guide member.

Fig 5 is a schematic isometric view of one of the eyelet elements illustrated in Fig 4 with parts of the guide elements broken away to reveal the structure of the eyelet element, and

Figs 6A(i) to 6A(viii) are schematic isometric views of the device as illustrated in Figs 4 and 5 illustrating the transfer of the eyelet elements and the warp yarns carried by them during the first forward transfer step described with reference to and as illustrated in Figs 3A(i) to 3A(viii).

Fig. 7 is a schematic isometric view of part of a bias yarn forming device according to the invention, which includes an eyelet detection device detecting any faulted retention of an eyelet element at the junction between the aligned ends of the yarn guide elements of the yarn transfer and yarn guide members.

Fig. 8 is a schematic isometric view showing in detail the form of the end of each yarn guide element of the yarn guide member device shown in Fig. 7 and an eyelet element located in the region of the end.

Fig. 9 is a schematic isometric view of the part of the bias yarn forming device illustrated in Fig. 4, showing the use of a protective sheath for protecting yarn at the yarn supply side of the device.

Fig. 10 is a schematic isometric view of one of the eyelet elements as illustrated in Fig. 9 showing to an enlarged scale the disposition of the protective sheath in relation to the yarn entry zone to the eyelet element.
[0043] Referring now to Fig 4, it will be seen that the guide elements 28 of the yarn guide member 21 as disclosed in PCT/GB94/00028 and as illustrated in Fig 3A (i) are in the form of guide pins 261 which are of rectangular cross-section and which form a row of equi-spaced pins lying in a vertical plane extending in the weft direction and extending upwardly from a support portion 211. While only six of the guide pins 261 are shown in Fig 4, it will be appreciated that for most purposes a large plurality of such pins would be required in the production of a bias yarn assembly of practical use, for example, in the formation of a reinforcing fabric for an aircraft composite structural element.

[0044] It will furthermore be seen that the guide elements 28 of the yarn transfer member 22 as disclosed in PCT/GB94/00028 are in the form of pins 261 which are of rectangular cross-section and which have the same dimensions and dispositions as the guide elements 261 of the yarn guide member 21. As illustrated, they extend downwardly from a support portion 221 and form a row of guide elements which lie in a vertical plane which extends in the weft direction and which is co-planar with the vertical plane of the guide elements 261.

[0045] The yarn guide member 21 in the embodiment illustrated in Fig 4 is a fixed member and a yarn transfer drive mechanism 181 is provided for the displacement of the yarn transfer member 22 in the weft direction X to bring the pins of the transfer member 22 to any one of a plurality of transfer positions, for example as illustrated in Figs 6A(ii), 6A(iv) and 6A(vi) as hereinafter to be described.

[0046] In addition, it will be seen from Fig 4 that the end of each guide pin 261 terminates in an inclined end face 262 which in the position shown in Fig 4 opposes a complementary inclined end face 282 on the end of a registering guide pin 261 of the yarn transfer member 22.

[0047] The device as illustrated in Fig 4 and in accordance with the invention furthermore includes a plurality of eyelet elements 32 each of which carries one of eight warp yarns 1 to 8 supplied as a warp sheet 17 and delivered in the warp feed direction indicated by the arrow Y in Fig 4 by the supply creel 16 described with reference to Fig 2.

[0048] As can be seen from Fig 5, each eyelet element 32 comprises a body portion 321 having a bore 322 which extends therethrough and through which one of the warp yarns 1 to 8 passes in the warp feed direction indicated by the arrow Y shown in Fig 5. The body portion 321 is of rectangular section and is of such a width as to produce a sliding fit between the opposing side faces 263 of the guide pins 261.

[0049] The body portion 321 of the eyelet element 32 is provided at its front face with a front end flange 323 and at its rear face with a rear end flange 324. The front end flange 323 has a first pin engaging portion 325 which extends laterally from the body portion to overlap and bear against a front face 264 of one of the pins 261 and a second pin engaging portion 326 which extends laterally from the body portion 321 in an opposite direction to overlap and bear against the front face 265 of the other guide pin 261. The pin engaging portions 325 and 326 of the front end flange 323 have, as shown, pin contacting surfaces of convex form to facilitate movement of the eyelet element 32 into and out of the openings between adjacent guide pins and during transfer of the eyelet element from an opening in one of the members 21 and 22 to an opening in the other member. The rear end flange 324 of the eyelet element 32 is formed in the same manner as the front end flange 323 to provide pin engaging portions 327 and 328 which overlap and bear against the rear faces of the guide pins 261. The pin engaging portions 327 and 328 have pin contacting surfaces of convex form to facilitate movement of the eyelet element 32.

[0050] As will be seen from Fig 5, the bore 322 through which a warp yarn passes enlarges continuously in the region of the front of the bore so as to reduce the frictional force applied by the walls of the bore to the yarn 33 passing through the bore. The rear end of the bore may also be continuously enlarged.

[0051] Referring now to Fig 6A(i), it will be seen that the disposition of the yarn transfer member 22 and the yarn guide member 21 are as illustrated in Fig 4. The warp yarns 1 to 8 together with the eyelet elements 32 through which they pass have however been moved to occupy openings in the yarn transfer member 22. This movement is achieved by raising all the yarns 1 to 8 simultaneously in a shedding operation, during which the yarns cause the eyelet elements 32 to slide along the pins 261, across the gap between the ends of the pins 261 and the ends of the pins 261 and into the openings between the pins 261. During this movement, the yarns 33 are protected by the eyelet elements 32 and abrasion of them during this movement, particularly during the transfer across the ends of the pins 261 and 261 is markedly reduced.

[0052] The yarn transfer member 22 is then moved as illustrated in Fig 6A(ii) in the weft direction one opening to the right, following which yarns 5, 6 and 7 are lowered as illustrated in Fig 6A(iii), causing the eyelet elements 32 through which they pass to slide downwardly within their openings and take up positions in openings in the yarn guide member 21. The yarn transfer member 22 is then moved two openings to the left to take up the position illustrated in Fig 6A(iv), following which the yarns 2, 3, 4 and 8 are lowered to bring the eyelet elements 32 through which they pass from the openings in the yarn transfer member 22 to registering openings in the yarn guide member 21 as illustrated in Fig 6A(v). At this point the first yarn 1 remains in the yarn transfer member 22, which is then moved in the weft direction two openings to the right as illustrated in Fig 6A(vi) following which yarn 1 is lowered into the yarn guide member 21 as illustrated in Fig 6A(vii), bringing with it the eyelet element 32 through which it passes. The yarn transfer
member 22 is then moved in the weft direction one opening to the left as illustrated in Fig 6A (viii).

[0053] It will be appreciated that although each of the yarns 1 to 8 are required to be moved from openings in the yarn guide member 21 into openings in the yarn transfer member 22 and then back to openings in the yarn guide member 21, the yarns are protected by the eyelet elements 32 through which they pass.

[0054] It is to be noted that the movements of the yarns and their eyelet elements as described with reference to Fig 6A(i) to Fig 6A(viii) constitute only the first of four forward transfer steps which are followed by four return transfer steps. Furthermore, although movements of eight yarns 1 to 8 have been described, in a practical application each of the forward and return transfer steps would be carried out on a large plurality of warp yarns.

[0055] It will furthermore be appreciated that by arranging for the bores 322 of the eyelet elements 32 to be flared out at each end, the angular deflections in vertical and horizontal planes of the yarns at the inlets to the bore 322 produced by shedding of the yarns and inclining of the bias yarns in the warp sheet in a vertical plane at the exits to the bores 322 resulting from the shedding of the bias yarns can be well accommodated and abrasion of the yarns in their passage through the device substantially reduced.

[0056] While in the description of Figs 6A(i) to Fig 6A (viii) the yarns 1 to 8 have been taken to be single warp yarns of the warp sheet with one eyelet element for each yarn, it will be apparent that for some applications of the device each or one or more of the eyelet elements may be traversed by two or more yarns.

[0057] It will be appreciated that although the guiding surfaces of the eyelet elements 32 are so shaped as to reduce to a minimum frictional forces occurring during their sliding movements along the pins 261 and 261 of the yarn guide and transfer members 21 and 22 as well as to provide for their riding easily across the junctions between the ends of the pins on the member 21 and the ends of the pins on the member 22, there is always a remote possibility of one of the eyelets 32 being caught up and held at one of the junctions, which if undetected would prevent displacement of the yarn transfer member 22 in the weft direction in carrying out the next yarn transfer step and give rise to malfunction of the machine and possible damage to the pins.

[0058] An eyelet detector mechanism for detecting the presence of an eyelet element at the junction between the ends of the pins 261 and 261 is shown in Figs. 7 and 8. As will be seen, the inclined end faces 262 and 262 of each of the pins 261 and 261 are formed with semi-cylindrical channels 263 and 263 as best seen in Fig. 8 which provide a pathway for an optical beam 34. The beam 34 is generated by a beam generator 35 located at one end of the transfer mechanism 18 and is arranged to be received by a beam responsive device 36 located at the other end of the mechanism 18.

[0059] Transmission of the beam 34 is maintained during the operation of the machine shown in Fig. 2. with the beam responsive device 36 generating stop motion signals in response to and for the duration of an interruption of the beam arising from the presence of an eyelet element 32 at a junction between the ends of the pins 261 and 261. Stop motion signals will thus be generated during each movement of an eyelet element 32 through a junction during a transfer of the eyelet element from one of the members 21 and 22 to the other, but will discontinue in normal operation of the machine when the eyelet elements have been properly transferred from one member to the other prior to displacement of the member 22. When however an eyelet element 32 is caught at the junction between the ends of the aligned pins 261 and 261 the interruption in the beam transmission produces a continuing stop signal indicating a requirement to prevent the next movement of the yarn transfer member 22. The stop signal thus maintained is applied to control logic which then prevents energisation of the drive mechanism 161 and stops the machine described with reference to Fig. 2. The control arrangements are made such that restarting of the machine and the drive mechanism 161 takes place only upon removal of the obstructing eyelet element 32 and the activation of a restart control.

[0060] In the eyelet detector mechanism illustrated in Figs. 7 and 8 a single beam is transmitted for detecting the presence of an eyelet element at the junction between the ends of the pins 261 and 261. It may however be advantageous to provide for the transmission and reception of an additional beam extending along the supply side and/or an additional beam extending along the delivery side of the pins 261 and 261 to detect the presence of an eyelet element 32 in the vicinity of a junction between the ends of the pins 261 and 261 where the eyelet element is arrested in a position which does not give rise to an interruption of the main beam 34.

[0061] It will be apparent that the yarns are adequately protected by the eyelet elements 32 against excessive frictional forces in their passage along the pins 261 and 261 and against snagging during passage across the junctions between the aligned ends of the pins 261 and 261. Where circumstances require that separator arms are provided at the supply side of the transfer mechanism 18 which pass through a shed being formed to ensure that all the yarns are properly shed, it has been found advantageous to provide additional protection for the yarns. One form of protection will now be described with reference to Figs. 9 and 10.

[0062] It will be seen from Figs. 9 and 10 that the transfer mechanism 18 and the eyelet elements 32 take the same form as those illustrated in and described with reference to Figs. 4 and 5. Except insofar that further protection for the yarns supplied to each eyelet element 32 is provided by a protective sheath, one of which is illustrated in Figs. 9 and 10 as sheath 37 which protects the yarn or yarns 1, the yarns at the other eyelet
elements being protected in the same manner by identical sheaths (not shown). As will be seen from Fig. 10 the sheath 37 encompasses the yarn or yarns 1 and during advancement of the yarn through the eyelet element 32 abuts at its front end against the face of the flange 323 of the eyelet element 32. The protective sheaths 37 are arranged to be of such a length as to protect the yarns from the separator arms when these are advanced vee-wise to ensure proper formation of the shed being formed.

[0063] In the embodiment of the invention hereinbefore described with reference to Figs. 4 to 10 of the drawings, it will be seen that the pins 261 and 261 are of rectangular cross-section. It will however be appreciated that cross-sections other than rectangular may alternatively be employed provided that they hold the eyelet elements 32 captive for sliding movement along the pins in the spaces between adjacent pins.

Claims

1. A bias yarn assembly forming device for forming in a succession of bias yarn forming steps in which warp yarns of a warp sheet (17) are displaced in opposite weft directions a bias yarn assembly comprising two superposed bias yarn sub-assemblies in which the bias yarns of one sub-assembly are inclined to the bias yarns of the other sub-assembly and in both of which the bias yarns are inclined to the warp feed direction, the device including (i) a yarn transfer mechanism (18) comprising a yarn guide member (21) having a support portion (211) extending in the weft direction and a plurality of guide elements (261) which extend laterally from the support portion (211) to form a row of equi-spaced elements which terminate in ends lying on a line extending in the weft direction and which define between pairs of adjacent guide elements (261) warp yarn guide openings (27) through which warp yarns of the warp sheet (17) are caused to pass and by which the warp yarns are confined to predetermined relative positions therein along the weft direction and a yarn transfer member (22) having a support portion (221) extending in the weft direction and a plurality of guide elements (281) which extend laterally from the support portion (221) to form a row of equi-spaced elements which terminate in ends lying on a line extending in the weft direction and which define between pairs of adjacent guide elements (281) yarn transfer openings (29) to which warp yarns of the warp sheet (17) are transferred and by which the warp yarns are confined to predetermined relative positions therein along the weft direction, (ii) yarn transfer drive means (181) to cause predetermined relative displacements of the yarn transfer member (22) and the yarn guide member (21) in the weft direction to bring the yarn transfer member (22) to any one of a plurality of transfer positions in which ends of the guide elements (261) of the yarn transfer member (22) oppose and register with ends of the guide elements (261) of the yarn guide member (21) and in which transfer openings (29) of yarn transfer member (22) register with yarn guide openings (27) in the yarn guide member (21) and (iii) shedding means (20) on the supply side of the transfer mechanism (18) for shedding selected warp yarns to cause the selected yarns to move from predetermined first yarn guide openings (27) in the yarn guide member (21) to registering yarn transfer openings (29) in the yarn transfer member (22) and following displacement of the yarn transfer member (22) to another of the plurality of the transfer positions to return the selected warp yarns to the warp sheet (17) and into predetermined second yarn guide openings (27) in the yarn guide member (21) offset from the predetermined first yarn guide openings (27) characterised in that the transfer mechanism (18) includes a plurality of eyelet elements (32) through which the warp yarns of the warp sheet (17) pass from a supply side of the device to an opposite delivery side of the device and which are supported by the guide elements (261, 281) for sliding movement along the elements (261, 281) into and out of the yarn guide and yarn transfer openings (27, 29) and with the yarn transfer member (22) in any one of the registering positions for sliding movements from one opening in one member (21, 22) into a registering opening in the other member (21, 22).

2. A device according to claim 1 wherein the guide elements (261) of the yarn guide member (21) lie in a first surface, wherein the guide elements (261) of the yarn transfer member (22) lie in a second surface and wherein the yarn transfer member (22) and yarn guide member (21) are so disposed at each of the transfer positions that the first and second surfaces form a continuous surface.

3. A device according to claim 2 wherein the first and second surfaces in which the guide elements (281, 261) of the yarn transfer member (22) and yarn guide member (21) lie are planar and wherein the yarn transfer and yarn guide members (22, 21) are so disposed that the first and second planar surfaces are co-planar at each transfer position.

4. A device according to claim 3 wherein the yarn transfer and yarn guide members (22, 21) are so mounted and movable that the first and second planar surfaces in which the guide elements (281, 261) of the two members (22, 21) lie are co-planar throughout the predetermined relative displacement of the two members (22, 21).
5. A device according to claim 4 wherein each eyelet element (32) includes a body portion (321) having a bore (322) which extends therethrough and through which one or more warp yarns pass and restraining means (323, 324) restraining the eyelet element (32) to sliding movement on the guide elements (261, 281) in the opening within which eyelet element (32) is located.

6. A device according to claim 5 wherein the restraining means (323, 324) comprises a front end flange (323) provided on the supply side of the device and having a first guide element engaging portion (325) which extends laterally from the body portion (321) in a first direction to overlap and bear against a front face (264) of one of the two adjacent guide elements (261) which define the opening in which the eyelet element (32) is located and a second guide element engaging portion (326) which extends laterally from the body portion (321) in an opposite direction to overlap and bear against the front face (265) of the other of the two adjacent guide elements (261) defining the opening.

7. A device according to claim 6 wherein the restraining means (323, 324) further comprises a rear end flange (324) provided on the delivery side of the device and having a first guide element engaging portion (327) which extends laterally from the body portion (321) in a first direction to overlap and bear against a rear face of one of the adjacent guide elements (261) which define the opening in which the eyelet element (32) is located and a second guide element engaging portion (328) which extends laterally from the body portion (321) in an opposite direction to overlap and bear against the other of the adjacent guide elements (261) defining the opening.

8. A device according to claim 7 wherein the body portion (321) of the eyelet element (32) so extends laterally within the opening in which the eyelet element (32) is located as to prevent any wettwise or any substantial wettwise movement of the eyelet element (32) within the opening.

9. A device according to any of claims 6 to 8 wherein the guide element engaging portions (325, 326, 327, 328) of each end flange (323, 324) of each eyelet element (32), which overlap and bear against the front and rear faces of adjacent guide elements (261), have guide element engaging surfaces of convex form to facilitate movement of the eyelet element (32) into and out of the openings between adjacent guide elements (261, 281) during transfer of the eyelet element (32) from an opening in one member (21, 22) to an opening in the other member (21, 22).

10. A device according to any of claims 6 to 9 wherein the cross-section of the bore (322) within the body portion (321) of each eyelet element (32) is so enlarged continuously in the region of each end of the bore as to reduce the frictional force applied by the walls of the bore to the warp yarns passing through the bore.

11. A device according to any of claims 6 to 10 wherein each of the guide elements (281, 261) of the yarn transfer member (22) and the yarn guide member (21) are of square or rectangular cross-section, wherein the body portion (321) of each eyelet element (32) is of rectangular or square section and wherein the width of the body portion (321) of each of the eyelet elements (32) is such as to produce a sliding fit between opposing side faces of adjacent guide elements (261, 281) which define the opening in which the eyelet element (32) lies.

12. A device according to any of claims 1 to 11 comprising an eyelet element detection device (35, 36) responsive to a retention of an eyelet element (32) at a junction between any one of the yarn guide openings and a transfer opening in registration therewith to prevent a subsequent relative displacement of the yarn transfer and yarn guide members (21, 22) until the eyelet element (32) has been cleared from the junction.

13. A device according to claim 12 wherein the detection device (35, 36) comprises a beam generator (35) and a beam responsive device (36) so disposed that the beam generator (35) transmits a beam (34) to the beam responsive device (36) along a pathway in which the beam (34) is interrupted by the presence of an eyelet element (32) at any of the junctions.

14. A device according to claim 13 wherein the guide elements (281, 261) of the yarn transfer and yarn guide members (22, 21) are cut away or apertured to provide the pathway for the beam.

15. A device according to claim 14 wherein the end faces of the guide elements (261) of the yarn guide member (21) and the end faces of the guide elements (281) of the yarn transfer member (22) are formed with registering complementary open channels (263, 283) which together provide the pathway therethrough.

16. A device according to any of claims 1 to 15 wherein the yarn or yarns fed to each eyelet element (32) are protected in the region of the eyelet element (32) on the supply side of the device by a protective sheath (37).
17. A device according to claim 16 wherein the protective sheath (37) is in the form of a tubular sleeve through which the yarn or yarns supplied to the eyelet element (32) pass and which in operation of the device abuts at one end against the eyelet element (32).

18. A device according to claim 17 wherein separator arms are employed with the device on the supply side thereof to ensure proper formation of a shed being formed and wherein the protective sleeve (37) is so dimensioned as to protect yarns from frictional forces imposed by the arms.

19. A device according to any of claims 1 to 18 wherein each of the guide elements (281, 261) of each of the yarn transfer and yarn guide members (22, 21) is in the form of a guide pin the end of which terminates in an inclined end face (282, 262) which in each of the transfer positions opposes a complementary inclined end face on a registering guide pin on the other member.

Patentansprüche

mit (i) einer Fadenversetzseinrichtung (18), zu der ein Fadenführungsglied (21) mit einem Trägerabschnitt (221), der sich in Schußrichtung erstreckt und eine Vielzahl von Führungselementen (261) aufweist, die sich in seitlicher Richtung bezogen auf das Trägerelement (221) erstrecken und eine Reihe von gleichbeastneteten Elementen bilden, die jeweils an Enden aufhören, die auf einer Linie liegen, die sich in Schußrichtung erstreckt, wobei jeweils zwei einander benachbarten Führungselemente (261) zwischen sich Kettenführungsoffnungen (27) begrenzen, durch die die Kettenfäden der Kette (17) veranlasst werden, hindurchzulaufen, und durch die die Kettenfäden auf vorbestimmte relative Lagen bezogen auf die Schußrichtung festgelegt sind, und zu der ein Fadenversetzglied (22) mit einem Trägerabschnitt (221) gehören, der sich in Schußrichtung erstreckt und eine Vielzahl von Führungs-
2. Vorrichtung nach Anspruch 1, bei der die Führungselemente (261) des Garnführungsglieds (21) in einer ersten Ebene liegen, bei der die Führungselemente (261) des Fadenversetzglied (22) in einer zweiten Ebene liegen und bei der das Fadenver- setzglied (22) und das Fadenführungs- glied (21) in jeder der Versatzstellungen so zu einander angeordnet sind, dass die erste und die zweite Ebene eine durchgehende Ebene bieten.

3. Vorrichtung nach Anspruch 2, bei der die erste und die zweite Ebene, in der die Führungselemente (261, 261) des Fadenversetzglied (22) und des Fadenführungsgliedes (21) liegen, eben sind, und bei der das Fadenver- setzglied und das Fadenfüh- rungs- glied (22, 21) so angeordnet sind, dass die er- ste und die zweite Ebene in jeder Versatz- stellung zu einander co-planar sind.

4. Vorrichtung nach Anspruch 3, bei der das Faden- versetzglied und das Fadenführungsglied (22, 21) so gelagert und bewegbar sind, dass die erste und die zweite Ebene, in der die Führungsele- mente (261, 261) der beiden Glieder (22, 21) liegen, über den gesamten Bewegungsbereich der beiden Glieder (21, 22) zu einander co-planar sind.

5. Vorrichtung nach Anspruch 4, bei der zu jedem Osenelement (32) ein Grundkörper (321) mit einer Bohrung (322), die durch den Grundkörper (321) verläuft und durch die ein oder mehrere Kettenfäden hindurchlaufen, und Sicherungsmittel (323, 324) gehören, die das Osenelement (32) in der Öffnung, in der das jeweilige Osenelement (32) angeordnet ist, an den Führungselementen (261, 261) ver- schieblich sichern.

6. Vorrichtung nach Anspruch 5, bei der die Sicherungs- mittel (323, 324) einen vorderen Stirnflansch (323) aufweisen, der auf der Zuführseite der Vorrichtung angeordnet ist, und zu dem ein erster Anlagebereich (325), der seitlich von dem Grundkor- per (321) in einer ersten Richtung aus- kragt, um die Vorderseite (264) des einen der beiden Führungselemente, die die Öffnung begrenzen, in der das Osenelement (32) angeordnet ist, zu überdecken, und gegen Vorderseite von diesem Führungsele- ment (261) anzuliegen, und ein zweiter Anlagebe- reich (326) gehört, der seitlich von dem Grundkor- per (321) in der entgegengesetzten Richtung aus- kragt, um die Vorderseite (265) des anderen der beiden benachbarten Führungselemente (261) an die- sem anzuliegen.

7. Vorrichtung nach Anspruch 6, bei der die Sicherungsmittel (323, 324) einen rückwärtigen Stirnflansch (324) aufweisen, der an der Ablaufseite der Vorrichtung angeordnet ist, und zu dem ein erster Anlagebereich (327), der seitlich von dem Grundkörper (321) in einer ersten Richtung aus- kragt, um eine Rückseite des einen der beiden füh- rungselemente, die die Öffnung begrenzen, in der das Osenelement (32) angeordnet ist, zu überdecken, und gegen die Rückseite von diesem Füh- rungselement (261) anzuliegen, und ein zweiter An- lagebereich (326) gehören, der seitlich von dem Grundkörper (321) in der entgegengesetzten Rich- tung auskragt, um das andere der beiden benach- barten Führungselemente (261), die die Öffnung begrenzen, zu überdecken und an diesem anzulie- gen.

9. Vorrichtung nach einem der Ansprüche 6 bis 8, bei der die Anlagebereiche (325, 326, 327, 328) für das Führungselement bei jedem der Stirnflansche (323, 324) jedes Osenelementes (32), die die Vorder- und die Rücksseite benachbarter Führungsele- ments (261) überdecken und an diesen anliegen, eine konvexe Form aufweisen, um die Bewegung des Osenelementes (32) in den Öffnungen zwischen benachbarten Führungselementen (261, 281) während der Überführung von verschiedenen Gliedern (21, 22) hinein bzw. aus diesem heraus zu erleichtern.

10. Vorrichtung nach einem der Ansprüche 6 bis 9, bei dem sich der Querschnitt der Bohrung (322) in dem Grundkörper (321) jedes Osenelementes (32) in dem Bereich jedes Endes der Bohrung, kontinuier- lich so erweitert, dass die Reibkräfte vermindert wer- den, die von den Wänden der Bohrung auf die Ketten- fäden ausgeübt werden, die durch die Bohrung hint- durch verlaufen.

11. Vorrichtung nach einem der Ansprüche 6 bis 10, bei der jedes der Führungselemente (261, 261) des Garnversetzglied (22) und des Garnführungs- gliedes (21) einen quadratischen oder recht- eckigen Querschnitt aufweist, bei der der Grundkörper (321) jedes Osenelementes (32) einen rechteckigen oder quadratischen Querschnitt aufweist und bei der die
Weite des Grundkörpers (321) jedes Ösenelementes (32) derart bemessen ist, dass eine Schieberpassung zwischen den einander gegenüberliegenden Seitenflächen benscharter Führungselemente (261, 261) entsteht, die die Öffnung begrenzen, in der sich das Ösenelement (32) befindet.

Vorrang nach einem oder mehreren Ansprüchen 1 bis 11, mit einer Öselement-Erkennungseinrichtung (35, 36), die in Abhängigkeit von dem Verweilen eines Ösenelementes (32) an einem Übergang zwischen beliebigen Garnführungsöffnungen und damit ausgerichteten Garnfrequenzöffnungen arbeiten, um eine nachfolgende relative Verschiebung des Garnversetzglieds gegenüber dem Garnführungsglied (21, 22) zu verhindern, bis das Ösenelement (32) den Übergang freigegeben hat.

Vorrang nach Anspruch 12, bei der die Erkennungsvorrichtung (35, 36) einen Strahlerzeuger (35) und einen Strahlmpfläger (36) aufweist, der so angeordnet ist, dass der Strahlgenerator (35) einen Strahl (34) zu dem Strahlpfläger (36) längs eines solchen Weges ausendet, auf dem der Strahl (34) unterbrochen wird, wenn sich ein Öselement (32) in einer beliebigen Übergangsstelle befindet.

Vorrang nach Anspruch 13, bei der die Führungselemente (261, 261) des Garnversetzglieds und des Garnführungsglieds (22, 21) ausgeschnitten oder mit einer Öffnung versehen sind, um den Strahllaufweg zu schaffen.

Vorrang nach Anspruch 14, bei der die Stirnflächen der Führungselemente (261) des Garnführungsglieds (21) und die Stirnfläche der Führungselemente (261) des Garnversetzglieds (22) mit einander fluchternd ausrichtbar sind und zu einander komplementären Kanälen (263, 263) versehen sind, die gemeinsam den Lauflaufweg schaffen.

Vorrang nach einem der Ansprüche 1 bis 15, bei der die Fäden, die durch jedes Öseelement (32) hindurchlaufen im Bereich des Ösenelementes (32) auf der Zufahrtsseite der Vorrichtung durch eine Schutzscheide (37) geschützt sind.

Vorrang nach Anspruch 16, bei der die Schutzscheide (37) die Gestalt einer rohrförmigen Hülse aufweist, durch die der Faden oder die Fäden, die dem Öselement (32) zugeführt werden, hindurch laufen und die beim Betrieb der Vorrichtung mit einem Ende gegen das Ösenlement (32) anstößt.

Vorrang nach Anspruch 17, bei der die Trennarme auf der Zufahrtsseite verwendet werden, um eine ordnungsgemäße Bildung eines zu öffnenden Faches sicherzustellen, und bei der die Schutzhülse (37) so dimensioniert ist, dass sie die Fäden gegen Reibkräfte schützt, die von den Armen herrühren.

19. Vorrang nach einem der Ansprüche 1 bis 18, bei der jedes der Führungselemente (261, 261) sowohl des Garnversetzglieds als auch des Garnführungsglieds (22, 21) die Gestalt eines Führungszinkens hat, der in einer geneigten Stirnfläche (262, 262) endet, die in jeder Versatzstellung einer komplementären Stirnfläche eines jeweils fluch tendenden Führungszinkens des anderen Glieds gegenüber steht.

Revalidations

1. Dispositif de formation d'un assemblage de fil biais pour former dans une succession d'étapes de formation de fils biais dans laquelle des fils de chaîne d'une nappe de chaîne (17) sont déplacés dans des directions de trame opposées, un assemblage de fils biais comportant deux sous-ensembles de fils biais supposé dans lesquels les fils biais d'un premier sous-ensemble sont inclinés par rapport aux fils biais de l'autre sous-ensemble et dont les fils biais des deux ensembles sont inclinés par rapport à la direction d'acheminement de chaîne, le dispositif comportant (i) un mécanisme de transfert de fil (18) comportant un élément de guidage de fil (21) ayant une partie de support (211) s'étendant dans la direction de chaîne et une pluralité d'éléments de guidage (261) qui s'étendent latéralement à partir de la partie de support (211) pour former une rangée d'équipements espacés de manière égale qui se terminent par des extrémités situées sur une ligne s'étendant dans la direction de trame et qui définissent entre deux éléments de guidage adjacents (261) des ouvertures de guidage de fil de chaîne (27) à travers lesquelles des fils de chaîne de la nappe de chaîne (17) sont amenés à passer et par lesquelles les fils de chaîne sont confinés dans des positions relatives prédéterminées le long de la direction de trame et un élément de transfert de fil (22) ayant une partie de support (221) s'étendant dans la direction de trame et une pluralité d'éléments de guidage (281) qui s'étendent latéralement à partir de la partie de support (221) pour former une rangée d'éléments régulièrement espacés qui se terminent par des extrémités situées sur une ligne s'étendant dans la direction de trame et qui définissent entre des paires d'éléments de guidage adjacents (281) des ouvertures de transfert de fil (229) vers lesquelles des fils de chaîne de la nappe de chaîne (17) sont transférés et par lesquelles les fils de chaîne sont confinés dans des positions relatives prédéterminées dans la direction de trame, (ii) des moyens d'entraînement de transfert de fil
(151) pour provoquer des déplacements relatifs prédéterminés de l'élément de transfert de fil (22) et de l'élément de guidage de fil (21) dans la direction de trame pour amener l'élément de transfert de fil (22) vers l'une quelconque parmi plusieurs positions de transfert dans lesquelles les extrémités des éléments de guidage (281) de l'élément de transfert de fil (22) sont opposées et en vis-à-vis des extrémités des éléments de guidage (261) de l'élément de guidage (21) et dans lesquelles les ouvertures de transfert (29) de l'élément de transfert de fil (22) sont en vis-à-vis des ouvertures de guidage de fil (27) de l'élément de guidage de fil (21) et (ii) des moyens de foulonnage (20) situés sur la totalité du déplacement relatif prédéterminé des deux éléments (22, 21).

4. Dispositif selon la revendication 3, dans lequel l'élément de transfert de fil et l'élément de guidage de fil (22, 21) sont montés et mobiles de sorte que la première et seconde surfaces planes sont copianaires à chaque position de transfert.

5. Dispositif selon la revendication 4, dans lequel chaque élément formant œillet (32) comporte une partie de corps (321) ayant un alésage (322) traversant, à travers lequel passent ou plusieurs fils de chaîne, et des moyens de retenue (323, 324) retenant l'élément formant œillet (32) pour qu'il ait un mouvement coulissant sur les éléments de guidage (281, 261) dans l'ouverture dans laquelle l'élément formant œillet (32) est positionné.

6. Dispositif selon la revendication 5, dans lequel les moyens de retenue (323, 324) comportent un rebord d'extrémité avant (323) agencé sur le côté alimentation du dispositif et ayant une première partie de contact avec un élément de guidage (325) qui s'étend latéralement à partir de la première de corps (321) dans une première direction pour chevaucher et appuyer contre une face avant (264) d'un premier de deux éléments de guidage adjacents (261) qui définissent l'ouverture dans laquelle est positionné l'élément formant œillet (32) et une seconde partie de contact avec un élément de guidage (326) qui s'étend latéralement à partir de la partie de corps (321) dans une direction opposée pour chevaucher et appuyer contre la face avant (265) de l'autre de deux éléments de guidage adjacents (261) définissant l'ouverture.

7. Dispositif selon la revendication 6, dans lequel les moyens de retenue (323, 324) comportent de plus un rebord d'extrémité arrière (324) agencé sur le côté évacuation du dispositif et ayant une deuxième partie de contact avec un élément de guidage (327) qui s'étend latéralement à partir de la deuxième de corps (321) dans une première direction pour chevaucher et appuyer contre une surface arrière d'un premier des éléments de guidage adjacents (261) qui définissent l'ouverture dans laquelle est positionnée l'élément formant œillet (32) et une seconde partie de contact avec un élément de guidage (328) qui s'étend latéralement à partir de la deuxième de corps (321) dans une direction opposée pour che-
vaucher et appuyer contre l'autre des éléments de guidage adjacents (261) définissant l'ouverture.

8. Dispositif selon la revendication 7, dans lequel la partie de corps (321) de l'élément formant oeillet (32) s'étend latéralement dans l'ouverture dans laquelle l'élément formant oeillet (32) est positionné de manière à empêcher tout déplacement dans la direction de trame ou tout déplacement important dans la direction de trame de l'élément formant oeillet (32), dans l'ouverture.

9. Dispositif selon l'une quelconque des revendications 6 à 8, dans lequel les parties de contact avec un élément de guidage (325, 326, 327, 328) de chaque rebord d'extrémité (323, 324) de chaque élément formant oeillet (32), qui chevauche et appuie contre les faces avant et arrière d'éléments de guidage adjacents (261), ont des surfaces de contact avec un élément de guidage ayant une forme convexe pour faciliter le déplacement de l'élément formant oeillet (32) vers l'intérieur et vers l'extérieur des ouvertures existant entre les éléments de guidage adjacents (261, 261) pendant le transfert de l'élément formant oeillet (32) depuis une ouverture située dans un premier élément (21, 22) vers une ouverture située dans l'autre élément (21, 22).

10. Dispositif selon l'une quelconque des revendications 6 à 9, dans lequel la section transversale de l'alésage (322) situé dans la partie de corps (321) de chaque élément formant oeillet (32) est agrandie de manière continue dans la zone de chaque extrémité de l'alésage de manière à réduire la force de frottement appliquée par les parois de l'alésage sur les fils de chaîne passant à travers l'alésage.

11. Dispositif selon l'une quelconque des revendications 6 à 10, dans lequel chacun des éléments de guidage (281, 281) de l'élément de transfert de fil (22) et de l'élément de guidage de fil (21) a une section transversale carrée ou rectangulaire, la partie de corps (321) de chaque élément formant oeillet (32) ayant une section rectangulaire ou carrée et la largeur de la partie de corps (321) de chacun des éléments formant oeillet (32) étant telle qu'elle produit un agencement coulissant entre des faces latérales opposées d'éléments de guidage adjacents (261, 281) qui définissent l'ouverture dans laquelle se trouve l'élément formant oeillet (32).

12. Dispositif selon l'une quelconque des revendications 1 à 11, comportant un dispositif de détection d'élément formant oeillet (35, 36) en réponse à une retenue d'un élément formant oeillet (32) au niveau d'une jonction entre l'une quelconque des ouvertures de guidage de fil et une ouverture de transfert située en vis-à-vis de celle-ci pour empêcher un déplacement relatif ultérieur de l'élément de transfert de fil et de l'élément de guidage de fil (21, 22) jusqu'à ce que l'élément formant oeillet (32) ait été dégagé de la jonction.

13. Dispositif selon la revendication 12, dans lequel le dispositif de détection (35, 36) comporte un générateur de faisceau (35) et un dispositif sensible à un faisceau (36) disposés de sorte que le générateur de faisceau (35) transmet un faisceau (34) vers le dispositif sensible à un faisceau (36) le long d'un trajet dans lequel le faisceau (34) est interrompu par la présence d'un élément formant oeillet (32) à l'une quelconque des jonctions.

14. Dispositif selon la revendication 13, dans lequel les éléments de guidage (281, 281) de l'élément de transfert de fil et de l'élément de guidage de fil (22, 21) sont découplés ou munis d'une ouverture pour fournir le passage pour le faisceau.

15. Dispositif selon la revendication 14, dans lequel les faces d'extrémité des éléments de guidage (281) de l'élément de guidage de fil (21) et les faces d'extrémité des éléments de guidage (281) de l'élément de transfert de fil (22) sont formées avec des canaux ouverts complémentaires en vis-à-vis (263, 283) qui, réunis, fournissent le trajet à travers ceux-ci.

16. Dispositif selon l'une quelconque des revendications 1 à 15, dans lequel le fil ou les fils amenés à chaque élément formant oeillet (32) sont protégés dans la zone de l'élément formant oeillet (32) située du côté alimentation du dispositif par une gaine de protection (37).

17. Dispositif selon la revendication 16, dans lequel la gaine de protection (37) a la forme d'un manchon tubulaire à travers lequel passent le fil ou les fils alimentés vers l'élément formant oeillet (32) et qui lors du fonctionnement du dispositif viennent en butée au niveau d'une première extrémité contre l'élément formant oeillet (32).

18. Dispositif selon la revendication 17, dans lequel des bras séparateurs sont utilisés avec le dispositif sur le côté alimentation de celui-ci pour assurer la formation correcte d'un fourreau qui est formé et dans lequel le manchon de protection (37) est dimensionné de manière à protéger les fils vis-à-vis des forces de frottement imposées par les bras.

19. Dispositif selon l'une quelconque des revendications 1 à 18, dans lequel chacun des éléments de guidage (281, 281) de chacun des éléments de transfert de fil et de guidage de fil (22, 21) a la forme d'un axe de guidage dont l'extrémité se termine par
une face d'extrémité inclinée (282, 262) qui dans chacune des positions de transfert est opposée à une face d'extrémité inclinée complémentaire d'un axe de guidage situé en vis-à-vis de l'autre élément.
Fig. 3D(vii)
Fig. 3D(viii)
Fig. 3E(i)
Fig. 3E(ii)
Fig. 3E(iii)
Fig. 3E(iv)
Fig. 3G(i)

Fig. 3G(ii)

Fig. 3G(iii)

Fig. 3G(iv)

Fig. 3G(v)