EUROPEAN PATENT SPECIFICATION

(11) EP 0 728 983 B1
(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(45) Date of publication and mention of the grant of the patent:
04.08.1999 Bulletin 1999/31

(21) Application number: 96301178.8
(22) Date of filing: 22.02.1996

(54) Method and apparatus for installing pipes

Verfahren und Vorrichtung zum Verlegen von Rohrleitungen

Procédé et dispositif pour l'installation de conduites

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB IT LI NL SE

(30) Priority:
23.02.1995 GB 9503678
12.06.1995 GB 9511910

(43) Date of publication of application:
28.08.1996 Bulletin 1996/35

(73) Proprietor:
BG plc
Reading, Berkshire RG6 1PT (GB)

(72) Inventors:
- Aziz, Mohammed Yunis
 Gosforth, Newcastle upon Tyne, NE3 5BR (GB)
- Dickson, Dudley Trevor
 Seaton Delaval, Whitely Bay, NE25 0JS (GB)

(56) References cited:
GB-A-2 102 565
GB-A-2 275 981

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to an apparatus and method for use in installing pipes typically within existing pipes.

[0002] The invention is applicable, for example, to the installation of gas feeder pipes, in particular to the installation of a plastic service pipe within an existing steel service pipe. The steel pipe is connected to a buried main at one end and is connected to a gas meter within a dwelling at the other end. In order to install the plastic service pipe, the meter is removed so that one end of the steel pipe is accessible within the dwelling. Then the plastic pipe is fed through the steel pipe (through the accessible end) towards the main. Once the plastic pipe has been inserted a fluid sealant may be injected into the space between the steel pipe and the plastic pipe.

[0003] In the prior art arrangement disclosed in patent application GB-A-2275981, a tubular liner pipe is attached to a nose cone which is inserted through the pipe to be lined. The nose cone has vanes to form a seal against the existing pipe during insertion. A smaller diameter hose within the liner is used to inject sealant when the nose cone has reached an appropriate point in the pipe to provide a permanent seal between the liner and the inner wall of the existing pipe. In practice it can be difficult to determine exactly when the liner is in the correct position using such an arrangement.

[0004] GB-A-2102565 uses a motor driven wheeled inspection vehicle with infra red scanners to determine the internal condition of an existing pipeline wall.

[0005] US-A-4,722,001 is also directed to a motor driven wheeled vehicle for pipeline inspection with a camera arrangement. Neither of the latter two disclosures is concerned with a pipe relining arrangement.

[0006] The present invention is concerned with an apparatus and method which provides an automatic mechanism for accurately defining when such an inserted pipe is located in the correct position and/or receipt of the fluid sealant.

[0007] According to the invention there is provided a method for use in installing a plastic pipe in an existing steel pipe connected to a main, the method characterised by comprising inserting an elongate flexible probe arrangement (15) including elongate flexible guidance means (42) through an open end of the steel pipe remote from the main, said arrangement incorporating a housing which carries at least one electric source of light (80, 154) and at least one electric means (82, 156) sensitive to light, said probe guidance means including a portion extending beyond the light sensitive electric means, said at least one source and said at least one means being connected to an electric circuit (86), including a supply of energy for said sources, which circuit includes a warning device (202) and which circuit automatically energises said warning device when the intensity of light reaching said means is reduced due to entry to the main and/or receipt of sealant in that region.

[0008] Further according to the invention there is provided a flexible elongate detector probe for insertion in a pipe characterised by comprising flexible guidance means (50, 70, 74) for guiding the probe through at least one light emitting device (60, 154) for providing a light source radiating externally of the probe and at least one light detector means (62, 156) to detect reflected light from the pipe wall, in use, to determine the relative position of the probe within the pipe and/or to determine the presence of sealant in the vicinity of the light detector means, said probe guidance means including a portion extending beyond the detector means, and warning means for automatically providing an indication of when the end of the pipe is reached and/or when the sealant is present.

[0009] Thus, for example, if the sensor apparatus is fed into a steel pipe it will give an indication when the sensor reaches the main. If the sensor apparatus is fed into the steel pipe along with a plastic pipe, the sensor protruding from the remote end of the plastic pipe, the indication will also indicate that the remote end of the plastic pipe is correctly positioned adjacent to the main.

[0010] The sensor apparatus can also give an indication when the fluid sealant has filled the space between the steel pipe and the plastic pipe.

[0011] Embodiments of methods for use in installing pipes and of apparatus for use in carrying out such methods will now be described by way of example with reference to the accompanying drawings, in which:-

Figure 1 is a vertical section through part of a steel service pipe and a buried main showing a plastic service pipe inserted through the steel service pipe and showing a first embodiment of sensor apparatus;

Figure 2 is a vertical section through part of the plastic service pipe and apparatus shown in Figure 1;

Figure 3 is a circuit diagram of part of the apparatus shown in Figures 1 and 2;

Figure 4 is a vertical section corresponding to Figure 1 but showing a second form of sensor apparatus;

Figure 5 is a circuit diagram of part of the apparatus shown in Figure 4.

[0012] Figure 1 shows a steel service pipe 10 which has an accessible upper end 12 and a lower end connected to a buried gas main 14. The lower end would, in most cases, be connected to a service tee (not shown) which in turn is connected to the main 14. The accessible end 12 is normally connected to a gas meter (not shown) which has been removed. It will be appreciated that the accessible end 12 has apparatus (not shown)
connected to it which enables the insertion of a plastic service pipe 16 and a sensor assembly 18 without loss of gas (the main 14 is a live main and is full of gas at the pressure used by the distribution system, e.g. 75 millibars).

[0013] As shown, the plastic (e.g. polyethylene) service pipe 16 has been inserted through the accessible end 12 and fed through the steel service pipe 10. The sharp bends presented by the elbow 20 and the portion 22 have been successfully negotiated by the plastic service pipe 16 which has an internal liner 24 (see Figure 2) also made of polyethylene.

[0014] Only portions of the service pipe 16 are shown in Figure 1 for the sake of clarity but of course this is a continuous pipe.

[0015] The plastic service pipe 16 having been inserted in the steel service pipe 10 far enough, the space between the steel pipe 10 and the plastic pipe 16 is filled with a fluid sealant 30, which is injected through the apparatus (not shown) and effectively through the accessible end 12.

[0016] When the fluid sealant 30 has been injected, the sensor assembly 18 is withdrawn through the nose-piece 32. The nose-piece 32 comprises an outer annular part 34 and an inner part 36 (see Figure 2). The inner part 36 is a temporary part of the nose-piece 32 and is secured to the flexible guide element 42 (described below) forming part of the sensor probe. The nose-piece carries an outer, annular seal 38 which engages the inner wall of the steel service pipe 10.

[0017] The nose-piece 32 prevents the sealant 30 from passing into the main 14 beyond the remote end of the plastic pipe 16.

[0018] The flexible guide and sensor assembly extend through the accessible end 12 of the steel service pipe 10, through the plastic pipe 16 and through the nose-piece 32. The plastic pipe 16 and the guide assembly are fed through the steel pipe 10 together. The flexible guide assembly assists in achieving negotiation of the sharp bends at 20 and 22 in the steel pipe 10. The protruding end portion of the flexible guide assembly, beyond the nose-piece 32, also acts to guide the plastic pipe 16 during its advance through the steel pipe 10. The flexible assembly includes a housing 50 and a sensor housing 52.

[0019] After the sealant 30 has been injected, the flexible guide assembly 18 is withdrawn, together with the inner part 36 which is secured to the assembly 18. The housing 52 passes through the outer annular part 34 which is left behind in the steel pipe 10. Also, the plastic pipe 16 is now connected to the main 14 through the outer annular part 34.

[0020] The preferred form of construction, however, is shown in Figure 2. Here, the flexible assembly is connected to the inner part 36. The upper part 60 is connected to a first plug part (not shown) and the lower part 62 (the part protruding beyond the nose-piece 32) is connected to a second plug part (not shown). The plug parts are removedly engaged and both are incorporated within the inner part 36 of the nose-piece 32. When it is desired to replace the part 62 the two plug parts are readily disconnected and a new part 62 is connected in place of the first. This is done, of course, while the flexible assembly is separated from the plastic pipe 16 and from the nose-piece 32. The plug parts are connected to electrical leads 84 (described below) which are shown for simplicity as being continuous within the inner part 36. In fact, the plug parts include male and female connectors to which the leads 84 are connected.

[0021] With this preferred form of construction (Figure 2) withdrawal of the flexible guide assembly immediately displaces the inner part 36 from the outer annular part 34 of the nose-piece 32 and allows the housing 52 to pass upwardly through the outer part 34. Again, the plastic pipe 16 is connected to the main 14 through the outer annular part 34.

[0022] Below the housing 52, the flexible guide assembly includes a coiled wire spring 70 lying partly within the turns of the flexible guide element 42. The element 42 terminates in a frusto-conical ferrule. The assembly also includes a length of rubber 74 lying within the spring 70. The whole of the assembly between the bead 50 and the housing 52 is encased on a braided plastic sheath 76.

[0023] The sensor 18 (Figure 2) comprises the flexible guide element 42; two sources of light, e.g. light-emitting diodes (LEDs) 80 located in the housing 52; two means sensitive to light, e.g. photoconductive cells 82; only one of which is shown in Figure 2 located in the housing 52; electrical leads 84 connecting the LEDs 80 and the cells 82 (located at or adjacent the lower end of the flexible guide element 42) to a combined power supply and signal processor 86 (Figure 1) located at or adjacent the other, upper end of the flexible guide element 42. The processor 86 includes an electric circuit (Figure 3 which includes a supply of electrical energy for the LEDs 80 and which responds to a change in intensity of light reaching the cells 82.

[0024] The sensor 18, while the LEDs 80 and the cells 82 are inside the steel pipe 10, does not give any alarm indication. That is because the intensity of light reflected from the inner wall of the steel pipe 10 and sensed by the cells 82 is sufficient to keep the associated circuit in the non-alarm state. When the LEDs 80 and the cells 82 enter the main the intensity of the reflected light sensed by the cells 82 falls to a very low value. The change is detected by the circuit shown in Figure 3 and an alarm or other indication is given.

[0025] The LEDs 80 and the cells 82 are positioned in a common plane extending transversely of the length of the elongate guide element 42. The LEDs 80 are spaced apart 180° as are the cells 82, but are spaced 90° from each adjacent cell 82.

[0026] The circuit shown in Figure 3 consists of three main stages, they are the sensor stage 90, the signal generator stage 92, and the audio power amplifier stage.
94. The circuit includes two batteries (not shown) as a power source.

[0027] In the first stage 90 the voltage at the inverting input of the op-amp 96 is fixed by the potential divider formed by resistors R1 and R2 selected to make sure that a sufficient voltage drop is maintained at the inverting input of the op-amp 96 while the non-inverting input is connected to the junction of the photoconductive cells 82 (connected in parallel) and a potentiometer R3.

[0028] The potentiometer R3 is used to set the threshold for the cells 82 and to trigger the circuit at the desired level of light intensity. The op-amp 96 is operating as a simple comparator to drive the transistor T1 ON or OFF depending on the light intensity picked by the cells 82. Resistor R4 is used to limit the current supplied to the base of the transistor T1.

[0029] Next is the signal generator stage 92 where the components resistors R5, R6 and capacitors C1 and C2 are used to determine the frequency of the audio signal, as follows:

\[f = \frac{1}{2\pi} \sqrt{\frac{C_1 C_2 C_5 C_6}{R}} \]

which reduces to:

\[f = \frac{1}{2\pi R C} \]

when \(R = R5 = R6 \) and \(C = C1 = C2 \).

[0030] The resistors R7 and R8 are used to set the gain for the circuit of the op-amp 98 which is:

\[Av = \frac{(R8 + R7)}{R7} \]

[0031] The gain (Av) must be at least a ratio of 3 in order to maintain the required audio signal.

[0032] In the audio amplifier stage 94 (e.g. LM386N) is a low voltage power amplifier, C4 is a bypass capacitor, and the combination of resistor R9 and capacitor C3 between pins 1 and 8 is chosen to adjust the gain of the amplifier 100 between 20 to 200. The components C5, C6 and R10 at the output of the amplifier 100 are used to provide the fixed voltage required to the loudspeaker 102.

[0033] The LEDs 80 are connected in parallel to a driving circuit (not shown) by the leads 110, 112.

[0034] A bulb B1 is connected in series with the collector of the transistor T1. The bulb B1 is illuminated when the transistor conducts.

[0035] A second embodiment of a method for use in installing a plastic pipe, and of apparatus for performing it, is shown in Figures 4 & 5.

[0036] In this embodiment there are two sensor housings corresponding to the housing 52 used in the embodiment described with reference to Figures 1 to 3. The first housing 150 has the same function as the housing 52 described with reference to Figures 1 to 3 although in this embodiment the LED and photosensor of each pair are in a common plane. The remainder of the sensor is constructed as before with the exception of the second housing 152. The same reference numerals are used in Figure 4 for the same features as described with reference to Figure 2.

[0037] The housing 152 carries two light-emitting diodes (LEDs) 154 and two photoconductive cells 156. An LED and a cell are arranged in a common plane on one side of the housing 152. The other LED and the other cell are arranged in the same plane on the other side of the housing 152. Light emitted from the LEDs 154 is reflected from the inner surface of the plastic pipe 16 and also from the inner surface of the steel pipe 10. The intensity of the reflected light is sufficient to keep the loudspeaker in the un-energised condition. However, as explained below, when fluid sealant is injected into the space 155 and fully occupies the annular space around the housing 152 no light is reflected from the inner surface of the steel pipe 10.

[0038] The circuit (described with reference to Figure 5) is tuned so that it responds to the reduced light intensity reaching the cells 156. As a result a loudspeaker (corresponding to the loudspeaker 102) is energised.

[0039] Leads (not shown in Figure 4) corresponding to the leads 84 described with reference to Figures 1 to 3 connected the LEDs 154 and the cells 156 to the electric circuit to be described below.

[0040] In both the embodiment shown in Figure 2 and the embodiment shown in Figure 4, the guide assembly 18 is in two parts which are joined end to end by two connectors (not shown) together making up the part 36. Once the two parts have been connected the part 36 behaves exactly as a unitary number during the installation of the plastic pipe 16 inside the steel pipe 10. However, should it become necessary to replace the leading end of the assembly 18 the two connectors can be readily disconnected, the leading end replaced and the connectors reconnected.

[0041] The part 36 is, in effect, secured to the flexible guide element 42. The part 36, as shown in Figures 1, 2 and 4, engages a step 162 formed in the bore of the nose-piece 32.

[0042] Thus, there are mutually engaging stop means on the part 36 and on the flexible guide element 42 which ensure that as the guide element 42 is advanced through the steel pipe 10, the plastic pipe 16 (which is secured to the nose-piece 32) is also advanced.

[0043] When the sealant 30 has been injected, the stop means described above are free to disengage to allow the flexible element 42 and the part 36 to be withdrawn through the nose-piece 32, leaving the latter behind in the steel pipe 10.

[0044] Figure 5 shows the electric circuit which is used in the sensor apparatus shown in Figure 4.

[0045] The circuit shown in Figure 5 is very similar to that shown in Figure 3 and consists of the same stages,
a sensor stage 210, a signal generator 212 and an audio power amplifier stage 214.

However, the sensor stage 210 differs in having two ganged switches 216, 218. In the first position of the switches 216, 218 the circuit is conditioned to respond to the light intensity falling on the cells 82. In the second position, the circuit is conditioned to respond to the light intensity falling on the cells 156. Thus, the switches 216, 218 are moved to the first position when it is desired to know when the housing 150 has emerged into the main 14. The switches 216, 218 are moved to the second position when it is desired to know when fluid sealant in the space between the steel pipe 10 and the plastic pipe 16 has reached the annular space surrounding the housing 152.

The LEDs 80 and the cells 82 and the LEDs 154 and the cells 156 are connected via resistors 219, 221 to driver circuits (not shown) and the values of the resistors 219, 221 depend on the driver circuit chosen.

The sensor apparatus is tuned regarding its operation for each housing 150. 152 each time the sensor apparatus is used for the installation of a plastic pipe.

The sequence used is as follows:

1. The electronics are switched on and a battery and
 alarm signal check is performed by pressing the button (not shown) on the box containing the electronics. This energises the horn 200 providing the battery is delivering its potential difference;

2. A check is performed on both sets of LEDs by
 switching the switches 216, 218 between the first
 and second positions;

3. The flexible guide element 42 and the nose-piece
 32 with the plastic pipe 16 are inserted in the open
 end of the steel pipe 10 via the service head adapter
 (not shown);

4. The switches 216, 218 are moved to the first position (with the switch 216 in its uppermost position as seen in Figure 5);

5. The tuner potentiometer P1 is adjusted until the
 alarm is not audible and the bulb B10 is not
 illuminated. The potentiometer P1 is then adjusted
 further by turning the potentiometer knob to decrease
 its resistance a further full turn to keep the horn
 silent. The circuit is now adjusted so that the audible
 indication is just imminent;

6. The flexible guide element 42 and the plastic pipe
 16 are now inserted further into the steel pipe 10 until
 the audible indication is activated. This indicates
 that the bead 150 has entered the main 14.

7. The electronics are now switched off and the
 switches 216, 218 are moved to their second position;

8. The electronics are now switched on again and the
 potentiometer P1 is again tuned until the light
 from bulb B10 is just extinguished and the horn 200
 is silent.

9. Fluid sealant is now injected into the space 158
 between the steel pipe 10 and the plastic pipe 16
 between the apparatus (not shown) at the open end
 of the pipe 10 and the nose-piece 32 using a feeder
 pump (not shown) until the audible indication is given
 by the horn 200 and the light is emitted by the
 bulb B10. The electronics are then switched off and
 the feeder pump is stopped and the sealant pressure
 is released. Sealant has now reached the annular
 space surrounding the housing 152;

10. A short period is allowed for the sealant to gel
 say, two minutes for example. Then the flexible
 element is retracted and the meter re-assembled on
 the steel pipe 10.

[0050] In a modification (not shown) instead of using
the form of pipe 16 referred to above, another form of
pipe may be used; for example, a corrugated pipe with- out the lining 24 or a plain, cylindrical pipe.

[0051] The method according to the invention has been
been described above for determining when a plastic
pipe has been inserted through an existing service pipe
or alternatively for determining when a plastic pipe has
been inserted through an existing steel service pipe and
determining when sealant has been injected. The
method has other applications. For example, it can be used
to obtain a measure of the length (up to a main) of an
existing service pipe. In that case, only the flexible ele-
ment would be used (i.e. no plastic pipe would be present) and an indication would be given when the flex-
ible element had been inserted through the existing pipe
and the housing 52 had entered the main.

[0052] The method can also be used, for example, to
obtain an indication of when sealant has been injected
around an inserted plastic pipe without the need to obt-
tain any indication of whether the inserted pipe has been
inserted far enough. In that case, a flexible assembly
would be used having only one housing corresponding
to the housing 152 described above. There would be no
requirement for the housing corresponding to the hous-
ing 52 or 150.

Claims

1. A method for use in installing a plastic pipe in an
 existing steel pipe connected to a main, the method
defined by inserting an elongate flexible probe ar-
rangement (18) including elongate flexible guidance means (42) through an open end of the steel pipe remote from the main, said arrangement incorporating a housing which carries at least one electric source of light (60, 154) and at least one electric means (82, 156) sensitive to light, said probe guidance means including a portion extending beyond the light sensitive electric means, said at least one source and said at least one means being connected to an electric circuit (86), including a supply of energy for said sources, which circuit includes a warning device (200) and which circuit automatically energises said warning device when the intensity of light reaching said means is reduced due to entry to the main and/or receipt of sealant in that region.

2. A method according to claim 1 wherein said plastic pipe and said probe arrangement are inserted through said open end together and said plastic pipe carries at its leading end an assembly which includes an external seal (38) which engages said steel pipe an annular member (34) which is secured to a flexible element of the probe and which engages stop means (36) on said assembly or on said annular member, said stop means allowing advance of said probe into said steel pipe only together with said plastic pipe, but which allows withdrawal of said probe while leaving said plastic pipe behind anchored to said steel pipe by said sealant, and the distance between said housing and said seal is such that when said housing enters said main said seal is sufficiently advanced in said steel pipe.

3. A method according to claim 1 or 2 wherein said electric circuit having means (R3) by which the threshold of response can be adjusted and the method including the step of adjusting said means before each occasion of inserting said flexible probe.

4. A method according to claim 1 or 2 said flexible probe arrangement incorporating two said housings, the first housing (150) which is closer to the leading end of the probe being used first to obtain said warning of when the first housing enters said main and the second housing (152), which is positioned at a greater distance from said leading end than said first housing, is used to obtain said warning of when the sealant has filled the space surrounding said second housing.

5. A flexible elongate detector probe for insertion in a pipe comprising flexible guidance means (60, 70, 74) for guiding the probe through the pipe, at least one light emitting device (80, 154) for providing a light source radiating externally of the probe and at least one light detector means (82, 156) to detect reflected light from the pipe wall, in use, to determine the relative position of the probe within the pipe and/or to determine the presence of sealant in the vicinity of the light detector means, said probe guidance means including a resilient body portion extending beyond the detector means, and warning means for automatically providing an indication of when the end of the pipe is reached and/or when the sealant is present.

6. A probe as claimed in claim 5 wherein a second light emitting detector system (154, 156) is provided for determining when the sealant is in the vicinity of the pipe end.

7. A probe as claimed in claim 5 or 6 wherein the warning means includes threshold setting means (23) for adjusting the threshold of response.

8. A probe as claimed in claim 5, 6 or 7 including first and second switching means (216, 218) for respectively selecting the detection of the end of the pipe or the sealant.

9. A probe as claimed in any one of claims 5 to 8 wherein coupling means (32, 36) are provided to allow a flexible liner pipe to accompany the probe through the existing pipe.

10. A probe as claimed in any one of claims 5 to 9 wherein means (36) are provided to allow withdrawal of the probe whilst the liner pipe remains in situ.

11. A probe as claimed in any one of claims 5 to 10 wherein a resilient body portion is formed by an elongate coiled spring (70).

Patentansprüche

1. Verfahren zum Einsetzen eines Kunststoffrohres in ein vorhandenes Stahlrohr, das mit einer Hauptversorgungsleitung verbunden ist, wobei das Verfahren definiert wird durch Einführen einer langgestreckten flexiblen Sondenanordnung (18), die langgestreckte flexible Führungsmittel (42) enthält, über ein von der Hauptversorgungsleitung entfernt gelegenes offenes Ende des Stahlrohres, wobei diese Anordnung ein Gehäuse einschließt, das mindestens eine elektrische Lichtquelle (60, 154) und mindestens eine elektrische lichtempfindliche Einrichtung (82, 156) trägt, wobei die Sonden-Führungsmittel ein Teilstück aufweisen, das sich über die lichtempfindliche elektrische Einrichtung hinaus erstreckt, wobei die zumindest eine Quelle und die zumindest eine Einrichtung mit einer elektrischen Schaltung (86) mit einer Energieversorgung für die Quellen verbunden sind, wobei die Schaltung eine Warnvorrichtung (200) enthält und diese Warnvor-
richtung automatisch erregt, sobald die die genann-
te Einrichtung erreichende Lichtintensität reduziert wird infolge des Eintritts von Dichtmittel in die Hauptversorgungsleitung und/oder der Aufnahme des Dichtmittels in diesem Bereich.

2. Verfahren nach Anspruch 1, bei dem das Kunststoffrohr und die Sonderanordnung über das offene Ende zusammen eingeführt werden und das Kunststoffrohr am vorderen Ende eine Baugruppe trägt, die eine äußere Dichtung (38) enthält, die am Stahlrohr angreift, ferner ein Ringbauteil (34), das an einem flexiblen Element der Sonde befestigt ist und an einer Anschlageneinrichtung (36) an der Baugruppe oder am Ringbauteil angreift, wobei die Anschlageneinrichtung ein Vordringen der Sonde in das Stahlrohr nur zusammen mit dem Kunststoffrohr erlaubt, aber ein Zurückziehen der Sonde zuläßt, während das Kunststoffrohr, durch das Dichtmittel mit dem Stahlrohr verankert, zurückgelassen wird, und wobei der Abstand zwischen dem Gehäuse und der Dichtung so ist, daß bei Eintritt des Gehäuses in die Hauptversorgungsleitung die Dichtung im Stahlrohr in ausreichendem Maße vorangetrieben wird.

3. Verfahren nach Anspruch 1 oder 2, bei dem die elektrische Schaltungs Mittel (R3) aufsteht, durch welche der Grenzwert des Ansprechens eingeregt werden kann, und das Verfahren den Verfahrensschritt des Einregelns dieses Mittels enthält, und zwar vor jedem Einführen der flexiblen Sonde.

4. Verfahren nach Anspruch 1 oder 2, bei dem die flexiblen Sonderanordnung zwei Gehäuse aufweist, wobei das erste Gehäuse (150), das dichter am vorderen Ende der Sonde gelegen ist, zunächst dazu verwendet wird, die genannte Warnung dafür zu erteilen, wann das erste Gehäuse in die Hauptversorgungsleitung eintritt, und das zweite Gehäuse (152), das in einem größeren Abstand als das erste Gehäuse vom vorderen Ende angeordnet ist, dazu verwendet wird, die genannte Warnung dafür zu erteilen, wann das Dichtmittel den Raum gefüllt hat, der das zweite Gehäuse umgibt.

5. Flexible langgestreckte Detektorsonde zum Einführen in ein Rohr, mit flexiblen Führungsstücken (50, 70, 74) zum Führen der Sonde durch das Rohr hindurch, mit mindestens einer Licht emittingen Vorrichtung (80, 154) zum Vorsehen einer Lichtquelle, die von der Sonde nach außen strahlt, und mit mindestens einer Licht-Detektorereinrichtung (82, 156), um von der Rohrwand reflektiertes Licht zu ermitteln, um bei Gebrauch die relative Position der Sonde innerhalb des Rohres und/oder die Präsenz von Dichtmittel in der Nähe der Licht-Detektorereinrichtung festzustellen, wobei die Sonder-Führungsmitz ein federnd-nachgiebiges Körperteilstück aufweisen, das sich über die Detektorereinrichtung hinaus erstreckt, und mit einer Warnseinrichtung für das automatische Liefern einer Anzeige dafür, wann das Ende des Rohres erreicht ist und/oder wann das Dichtmittel präsent ist.

6. Sonde nach Anspruch 5, bei der ein zweites Licht emittierendes Detektorsystem (154, 156) vorgesehen ist, um festzustellen, wann das Dichtmittel sich in der Nähe des Rohrendes befindet.

7. Sonde nach Anspruch 5 oder 6, bei der die Warnseinrichtung eine Grenzwert-Einstelleinrichtung (23) zum Einregeln des Grenzwertes für das Ansprechverhalten.

9. Sonde nach einem der Ansprüche 5 bis 8, bei der Kopplungsmittel (32, 36) vorgesehen sind, damit ein flexibles Auskleidungsrohr die Sonde durch das vorhandene Rohr hindurch begleiten kann.

10. Sonde nach einem der Ansprüche 5 bis 9, bei der Mittel (36) vorgesehen sind, die ein Zurückziehen der Sonde zulassen, während das Auskleidungsrohr an Ort und Stelle verbleibt.

11. Sonde nach einem der Ansprüche 5 bis 10, bei der ein federnd-nachgiebiges Körperteilstück durch eine langgestreckte gewendelte Feder (70) gebildet ist.

Revendications

1. Procédé à utiliser dans l'installation d'une conduite en matière plastique dans une conduite existante en acier raccordée à une canalisation principale, le procédé étant défini par l'introduction d'un agencement à sonde flexible allongée (18) comprenant un moyen de guidage flexible allongé (42) à travers une extrémité ouverte de la conduite d'acier éloignée de la canalisation principale, ledit agencement comprenant un boîtier qui porte au moins une source électrique de lumière (60, 154) et au moins un moyen électrique (82, 156) sensible à la lumière, ledit moyen de guidage de sonde comprenant une partie s'étendant au-delà du moyen électrique sensible à la lumière, ladite, au moins une, source et ledit, au moins un, moyen étant connectés à un circuit électrique (86), comprenant une alimentation en énergie pour lesdites sources, lequel circuit comprend un dispositif d'alertement (200) et le-
2. Procédé selon la revendication 1, dans lequel ladite conduite en matière plastique et ledit agencement à sonde sont introduits ensemble à travers ladite extrémité ouverte et ladite conduite en matière plastique porte à son extrémité avant un ensemble qui comprend un joint externe (36) d'étanchéité s'appliquant contre ladite conduite en acier, un organe annulaire (34) qui est fixé à un élément flexible de la sonde et qui porte contre un moyen d'arrêt (36) sur ledit ensemble ou sur ledit organe annulaire, ledit moyen d'arrêt permettant une avance de ladite sonde dans ladite conduite d'acier uniquement en association avec ladite conduite en matière plastique, mais qui permet de retirer ladite sonde tout en laissant en arrière ladite conduite en matière plastique, ancrée à ladite conduite d'acier par ledit agent d'obturation étanche, et la distance entre ledit boîtier et ledit joint d'étanchéité est telle que, lorsque ledit boîtier entre dans ladite canalisation principale, ledit joint d'étanchéité est suffisamment avancé dans ladite conduite d'acier.

3. Procédé selon la revendication 1 ou 2, dans lequel ledit circuit électrique comporte un moyen (R3) à l'aide duquel le seuil de réponse peut être ajusté et le procédé comprend l'étape d'ajustement dudit moyen avant chaque occasion d'introduction de ladite sonde flexible.

4. Procédé selon la revendication 1 ou 2, dans lequel ledit agencement à sonde flexible comprend deux desdits boîtiers, le premier boîtier (150) qui est plus proche de l'extrémité avant de la sonde étant utilisé en premier pour l'obtention dudit avertissement indiquant que le premier boîtier entre dans ladite canalisation principale et le second boîtier (152), qui est positionné à une plus grande distance de ladite extrémité avant que ledit premier boîtier, est utilisé pour obtenir ledit avertissement indiquant que l'agent d'obturation étanche a rempli l'espace entourant ledit second boîtier.

5. Sonde à détecteur allongée et flexible destinée à être introduite dans une conduite, comportant un moyen de guidage flexible (50, 70, 74) destiné à guider la sonde dans la conduite, au moins un dispositif (80, 154) d'émission de lumière destiné à produire une source de lumière rayonnant extérieurement à la sonde et au moins un moyen à détecteur de lumière (82, 156) destiné à détecter la lumière réfléchie provenant de la paroi de la conduite, lors de l'utilisation, pour déterminer la position relative de la sonde à l'intérieur de la conduite et/ou pour déterminer la présence d'un agent d'obturation étanche au voisinage du moyen à détecteur de lumière, ledit moyen de guidage de sonde comprenant une partie de corps élastique s'étendant au-delà du moyen à détecteur, et un moyen d'avertissement pour indiquer automatiquement lorsque l'extrémité de la conduite est atteinte et/ou lorsque l'agent d'obturation étanche est présent.

6. Sonde selon la revendication 5, dans laquelle un second système (154, 156) à détecteur d'émission de lumière est prévu pour déterminer lorsque l'agent d'obturation étanche se trouve au voisinage de l'extrémité de la sonde.

7. Sonde selon la revendication 5 ou 6, dans laquelle le moyen d'avertissement comprend un moyen (23) de réglage de seuil pour ajuster le seuil de réponse.

8. Sonde selon la revendication 5, 6 ou 7, comprenant des premier et second moyens de commutation (216, 218) pour sélectionner, respectivement, la détection de l'extrémité de la conduite ou de l'agent d'obturation étanche.

9. Sonde selon l'une quelconque des revendications 5 à 8, dans laquelle des moyens d'accouplement (32, 36) sont prévus pour permettre à un tube flexible de revêtement d'accompagner la sonde dans la conduite existante.

10. Sonde selon l'une quelconque des revendications 5 à 9, dans laquelle des moyens (36) sont prévus pour permettre de retirer la sonde, tandis que le tube de revêtement reste en place.

11. Sonde selon l'une quelconque des revendications 5 à 10, dans laquelle une partie de corps élastique est formée par un ressort hélicoïdal allongé (70).