EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 18.06.2003 Bulletin 2003/25

Application number: 95307733.6

Date of filing: 30.10.1995

Single ended simplex dual port memory cell

Einseitige Simplex-Zweitorspeicherzelle

Cellule de mémoire à deux portes, ayant une entrée unique par porte

Designated Contracting States: DE FR GB IT

Date of publication of application: 26.06.1996 Bulletin 1996/26

Proprietor: CYPRESS SEMICONDUCTOR CORPORATION
San Jose California 95134 (US)

Inventors:
- Sywyk, Stefan P.
 San Jose, California 94128 (US)
- Chou, Richard K.
 Sunnyvale, California 94086 (US)
- Hawkins, Andrew L.
 Starkville, Mississippi 39759 (US)

Representative: Steinfl, Alessandro et al
Ladas & Parry,
Dachauerstrasse 37
80335 München (DE)

References cited:
- EP-A- 0 434 852
 IEEE TRANSACTIONS ON CIRCUITS AND
 SYSTEMS I: FUNDAMENTAL THEORY AND
 APPLICATIONS, vol. 41, no. 11, November 1994,
 NEW YORK US, pages 677-685, XP000496357
 LAI ET AL.: "A NEW DESIGN METHODOLOGY FOR
 MULTIPORT SRAM CELL"
 • SIEMENS COMPONENTS, vol. 25, no. 5, October
 1990, MUNCHEN DE, pages 163-166,
 XP000171023 LIEDEL ET AL.: "DUAL PORT RAM
 FOR COST ATTRACTIVE MULTI
 MICROCONTROLLER SYSTEMS"
 • CHU ET AL.: 'MULTIACCESS MEMORY: AN
 OVERVIEW' IEEE PROCEEDINGS OF THE
 TEXAS CONFERENCE ON COMPUTING
 SYSTEMS November 1975, pages 2B - 1.1-2B-1
 • JOY AND SEEWANN: 'MULTI-PORT
 ASYMMETRICAL MEMORY CELL' IBM
 TECHNICAL DISCLOSURE BULLETIN vol. 23,
 no. 7A, December 1980, page 2822

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND OF THE INVENTION

[0002] A typical random access memory (RAM) architecture consists of an array of memory cells. Each cell can store one bit of information. The array is arranged as rows and columns of memory cells. Each row is also referred to as a wordline. Each column is also referred to as a bitline. A memory device containing such an array with 2^m rows and 2^n columns can store 2^{m+n} bits of information. If fabrication of such an array requires one unit of area, then the memory cell density for such an array is 2^{m+n} cells per unit area.

[0003] In systems which require memory devices, storage capacity and operational speed of the memory are important attributes. From a system throughput standpoint, the accessibility of the memory device is another important attribute. Storage capacity refers to the amount of data that a memory device can store. Operational speed refers to the speed at which the memory device can store or retrieve data. Accessibility is largely dependent upon the architecture of the system. Generally, the system throughput increases when more than one system device can directly access the memory device. The system throughput is generally further increased when more than one device can simultaneously access the memory.

[0004] Since a memory device typically contains one or more arrays of memory cells, the storage capability of a memory device is largely dependent upon the size of a memory cell. The size of a cell given a fixed number of components will change as fabrication technology evolves. However, any reduction in the size of a memory cell will permit fabrication of memory devices containing an increased density of memory cells. A reduction in cell area will permit an increase in an array's cell density by a factor approaching the reduction factor.

[0005] Thus, for example, a cell which uses 40% of the area of another cell will have a reduction factor of 2.5. Therefore, an array of the smaller cells may have a cell density approaching 2.5 times that of an array of the larger cells.

[0006] Storage capacity is directly related to cell density. Given a fixed unit of area for an array of memory cells, a reduction factor of 2.5 will permit memory devices constructed with the smaller cells to have up to 2.5 times the storage capacity of memory devices constructed with the larger cells.

[0007] System access speed can often be dramatically increased through the use of a dual port memory architecture. A dual port memory has two access ports so that more than one system device may directly access the memory. A single port memory permits direct coupling to only one system device such that other system devices must contend for the port in order to gain access to the memory. By permitting direct coupling to more than one system device, overall system performance is usually enhanced since a dual port architecture decreases the contention for access to a port of the memory.

Disclosure

T. Joy, E. Seewann, showing a single ended dual port memory cell having a dedicated read port and a dedicated write port.

Examples of memory devices utilizing a dual port memory architecture include dual port static random access memories (SRAMs) and first-in-first-out ("FIFO") buffers. An integrated circuit dual port memory device may include an array of dual port memory cells. Such a prior art dual port memory cell is illustrated in Figure 1.

Further disadvantages of the prior art dual port memory cell is that the layout size of such a cell is approximately 2 - 2.5 times the size of a single port cell constructed using the same fabrication technology. Another disadvantage of the prior art dual port memory cell is that a pair of bitlines are required for each port due to the differential nature of the cell.

Another method of achieving the effect of a dual port memory device in practice is to use an array of single port memory cells inside the dual port memory device. Such a prior art single port memory cell is illustrated in Figure 2. In this example, the ports of the memory device are multiplexed before gaining access to the memory array. Thus two devices are contending for access at the device level as opposed to at the level of a memory cell in the array.

cated write port.

SUMMARY AND OBJECTS OF THE INVENTION

[0013] A single ended dual port memory cell as claimed in claim 1 attached herein, is described. The memory cell can store a bit of data received from one of a first port and a second port. The first and second ports can simultaneously detect the stored bit.

[0014] The single ended dual port memory cell can be used in applications were one port is dedicated for read operations and another port is dedicated for write operations. In such applications, the single ended dual port memory cell functions as a single ended simplex dual port memory cell and the ports may be optimized for their respective dedicated read or write operations.

[0015] Other objects, features, and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description that follows below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:

- Figure 1 illustrates a schematic for one prior art differential dual port memory cell.
- Figure 2 illustrates a schematic for one prior art differential single port memory cell.
- Figure 3 illustrates a schematic for a single ended dual port memory cell.
- Figure 4 illustrates a schematic for a prior art single ended single port memory cell.
- Figure 5 illustrates an alternative embodiment for a single ended dual port memory cell.
- Figure 6 illustrates a block diagram of the supporting circuitry for an array of single ended dual port memory cells.
- Figure 7 illustrates a block diagram of the supporting circuitry for an array of single ended simplex dual port memory cells.

DETAILED DESCRIPTION

[0017] Figure 3 illustrates the circuit diagram for one embodiment of a single ended dual port static memory cell as implemented using metal oxide semiconductor (MOS) technology. The cell 300 of Figure 3 is a static random access memory (SRAM) cell. A dual port memory device may include an array of such cells.

[0018] NMOS transistors 350 and 360 serve as pass gates to bitlines 372 and 382 of the first 370 and second 380 ports, respectively.

[0019] The latch device for storing a bit of data is formed by NMOS transistors 310 and 320 and PMOS transistors 330 and 340. Figure 5 illustrates an alternative embodiment which uses resistive load devices 530 and 540 instead of the PMOS transistors 330 and 340 of Figure 3.

[0020] Referring to Figure 3, first port 370 is associated with bitline 372 and wordline 374. First port bitline 372 is used for writing a single bit of data to memory cell 300 from the first port 370. First port bitline 372 is also used for reading a single bit of information from memory cell 300 via the first port 370. First port wordline 374 is used to select memory cell 300 for a read or write operation via the first port 370.

[0021] The second port operates in a similar fashion. Second port 380 is associated with bitline 382 and wordline 384. Second port bitline 382 is used for writing a single bit of data to memory cell 300 from the second port 380. Second port bitline 382 is also used for reading a single bit of information from memory cell 300 via the second port 380. Second port wordline 384 is used to select memory cell 300 for a read or write operation via the second port 380.

[0022] Both the first and second ports must utilize the same logic basis for storage in order to ensure that the first and second ports can share the memory cell. In other words, the first and second ports must both use either a positive or a negative logic system.

[0023] In order to ensure that the same logic system is used by both the first and second ports, the data provided by one of the bitlines (372 or 382) should be inverted. The addition of inverting logic to the supporting circuitry for the memory array should not consume any substantial area since the inverting logic may be added at the device port level instead of at the memory cell level. Figure 6 illustrates one embodiment of the supporting circuitry 600 for an array of single ended dual port memory cells 610 in block diagram form. For example, in a 32K x 1 bit dual port memory device, inverting logic might be added to one but not both of the device ports. In Figure 6, the right port data input buffer 622 and the port output buffer and pad driver 624 might include inverting logic to accomplish the data inversion at the port level. Another embodiment might utilize an inverting data input driver 632 and an inverting sense amplifier (SAMP) 634. This should be contrasted with requiring inverting logic for each memory cell of the array 610.

[0024] Such inverting logic is generally faster and tends to consume less area than the multiplexing circuitry of a prior art memory device which uses the multiplexed single port cells as discussed above.

[0025] Unless specifically provided for otherwise, the reading and writing examples will assume a positive logic system with respect to the first port 370. This means that a high logic level or "1" is represented by a voltage greater in magnitude than the voltage representing a low logic level or "0." The voltage level at node 351 indicates the state of the cell. Thus for purposes of example, the supporting circuitry is inverting bitline 382 signals (and...
not signals on bitline 372).

[0026] Typically there may be problems associated with reading or writing single ended single port memory cells as contrasted with differential cells. Referring to Figure 2, a pair of complementary signals are supplied to differential memory cell 200 via bitlines 272a and 272b during a write operation. This helps to ensure that memory cell 200 can "flip" or change states when the cell contents do not match the value that is to be stored. For example, if a "1" is to be stored, bitline 272a will carry a logical "1" and bitline 272b will carry a logical "0." When wordline 274 is brought to a high level, one side of cell 200 is "pushed" and the other side will be "pulled" to ensure that the cell stores a logical "1." This is the differential or dual-ended nature of the cell during a write operation. In contrast, referring to the single ended cell of Figure 3, instead of a combined "push" and "pull" action on cell 300 during a write operation there is only either a "push" or a "pull" from one port or the other. This is because there is only one bitline associated with each port and the ports operate independently from each other. Since a write or a read operation of cell 300 takes place by using a single bitline, other techniques must be utilized to ensure that memory cell 300 can be forced to change states and retain the stored value. Otherwise cell 300 may be unable to latch a value written to it during a write operation.

[0027] A differential memory cell is generally built to maintain cell stability during read operations and the ability to latch a value during write operations without the use of special supporting circuitry such as charge pumps and reference signals. A single ended memory cell may be unable to latch the value written to it for write operations which utilize normal supporting circuitry. One embodiment of a prior art single ended single port cell is illustrated in Figure 4. In Figure 4, the inability to latch a value written to cell 400 is due to the low conductance (high resistance) of pass gate transistor 450 as compared to that of transistor 410.

[0028] Referring to the prior art differential memory cell 200 in Figure 2, the ratio of the gate width-to-length ratio of transistor 210 to the gate width-to-length ratio of transistor 250 is in the range of approximately 1.5 - 2.0. The ratio of the gate width-to-length ratio of transistor 220 to that of 260 is approximately the same as the ratio of the gate width-to-length ratio of transistor 250 to the gate width-to-length ratio of transistor 210. The ratio of the width-to-length ratio of the pull down or latch device (i.e., 210) over the effective width-to-length ratio of the pass gate (i.e., 250) is called the Beta Ratio of the memory cell. Algebraically this equates to \(\frac{W_{210}}{W_{250}} \) for cell 200. If transistors 210 and 250 are constructed with the same gate length, then the Beta Ratio is simply the ratio of the gate widths (i.e., \(\frac{W_{210}}{W_{250}} \)). Although Figure 2 illustrates two pass gates (250, 260) and two pull down devices (210, 220), there is only one Beta Ratio for the cell because the cell is typically symmetrical. In other words, the load devices 240 and 230 have identical characteristics and the widths, lengths, and operational characteristics of transistors 210 and 250 are identical to those of transistors 220 and 260, respectively. Thus the Beta Ratio for prior art cell 200 is typically in the range of 1.5 - 2.0. The Beta Ratio for a prior art cell utilizing resistive loads is typically 2.5 - 3.0. In other words, the gate width-to-length ratio of transistors 210 and 220 is up to three times that of transistors 250 and 260, respectively, in the prior art differential cell 200 when resistive loads are used. Utilizing a Beta Ratio of 1.5 - 2.0 in the single ended cell 400 of Figure 4, can lead to the inability to properly latch values written to the cell during a write operation.

[0029] One method for overcoming this inability to properly latch values for cell 400 is to use a wordline boost circuit to increase the conductance (reduce the resistance) of transistor 450 during a write operation. Increasing the conductance of transistor 450 will permit a write operation which utilizes a single bitline 472. Applying a voltage greater than \(V_{CC} \) to wordline 474 will increase the conductance of transistor 450. During a read operation a normal voltage (e.g., \(V_{CC} \)) is applied to the wordline 474 and the cell remains stable for the read operation.

[0030] Another method involves changing the Beta Ratio of memory cell 400 from that of a typical differential memory cell. For example, a memory designer may choose input pass gate transistor 450 to be twice the size of 410 and 420. By doubling the size of transistor 450 with respect to transistors 410 and 420, the memory designer has reduced the Beta Ratio of the memory cell to approximately 0.5. This will permit write operations which use normal supporting circuitry and normal wordline voltages (e.g., \(V_{CC} \)). However, decreasing the resistance of pass gate 450 generally causes the memory cell to be unstable with respect to read operations. In other words, a read operation may cause the cell to lose the value stored. Cell stability can be maintained by decreasing the conductance of pass gate transistor 450 during the read operation. The conductance of pass gate transistor 450 can be decreased by using a voltage less than \(V_{CC} \) on wordline 474 during the read operation.

[0031] The methods applied to overcome reading or writing difficulties for the single ended single port cell 400 may be extended to the single ended dual port memory cell 300 illustrated in Figure 3. Thus the memory cell designer may choose to maintain a Beta Ratio similar to that of the prior art differential memory cells or the memory designer may choose to design a cell with a lower Beta Ratio. Accordingly, the designer will have to modify the supporting circuitry for the write operation or the read operation.

[0032] To execute a read operation of memory cell 300 from the first port 370, wordline 374 is set to a logical high level. If cell 300 is designed to have a Beta Ratio similar to that of the prior differential memory cells, the wordline voltage should be approximately \(V_{CC} \). Otherwise, if cell 300 is designed with a lower Beta Ratio, the
supporting circuitry should provide a voltage less than \(V_{CC} \) for the wordline 374 voltage. This turns bitline pass gate transistor 350 on to permit a data bit to be communicated from cell 300 to bitline 372. Assuming a positive logic system with respect to the first port, if cell 300 contains a logical "1," transistors 340 and 320 will be on and transistors 330 and 310 will be off. Since transistor 340 is on and transistor 310 is off, a voltage approaching \(V_{CC} \) will be imposed on bitline 372 from node 351.

In the event that cell 300 contains a logical "0," transistors 310 and 330 are on and transistors 320 and 340 are off. Since transistor 310 is on and transistor 340 is off, a voltage approaching \(V_{SS} \) will be imposed on bitline 372 from node 351.

The read operation as executed from the second port is similar except that the memory cell is referenced as positive logic with respect to the first port. To execute a read operation of cell 300 from the second port 380, wordline 384 is set to a logical high level. This permits bitline pass gate transistor 360 to turn on to permit a data bit to be communicated from cell 300 to bitline 382. Assuming a positive logic system with respect to the first port, transistors 340 and 320 will be on and transistors 330 and 310 will be off when cell 300 contains a logical "1," just as when the read operation is performed from the first port. Since transistor 320 is on and transistor 330 is off, a voltage approaching \(V_{SS} \) will be imposed on bitline 382. Since \(V_{SS} \) represents a logical "0," the supporting circuitry for the memory array will have to invert the data from bitline 382 in order to accurately represent the contents of memory cell 300. As discussed previously, inverting logic could be provided at the level of the second device port as opposed to a cell by cell basis. Another embodiment might utilize inverting logic at an intermediate level, such as with groups of bitlines.

One manner in which to execute a write operation is illustrated as follows. In order to execute a write operation to port 370, wordline 374 is raised to a logical high level. If cell 300 is designed with a typical differential memory cell Beta Ratio, the wordline 374 voltage may need to exceed \(V_{CC} \). Otherwise if cell 300 is designed to have a smaller Beta Ratio, the wordline 374 voltage is approximately \(V_{CC} \). This permits bitline pass gate transistor 350 to turn on with sufficient conductance so that a data bit to be written may be communicated from bitline 372 to cell 300. Assuming cell 300 is currently storing a logical level "0" (voltage at node 351 approaching \(V_{SS} \), if a logical level "1" is to be written to cell 300), the logical "high" voltage on bitline 372 begins to raise the voltage at node 351. As the voltage at node 351 increases, the conductance of PMOS transistor 330 decreases and the conductance of NMOS transistor 320 increases. This decreases the voltage at node 361. As the voltage at node 361 decreases, the conductance of NMOS transistor 310 decreases and the conductance of PMOS transistor 340 increases. The voltage at node 351 decreases. Thus a positive feedback cycle is established and continues until transistors 310 and 330 are turned off and transistors 320 and 340 are turned on such that node 351 is latched at a voltage level approaching \(V_{CC} \). Similarly, node 361 is latched at a voltage level approaching \(V_{SS} \). If the cell was storing a "1" before the operation, then node 351 would simply remain at a level approaching \(V_{CC} \). Regardless of the previous state of the cell, cell 300 is now latched in a logical "1" state such that the voltage imposed on bitline 372 approaches \(V_{CC} \).

To ensure that this method of writing to memory cell 300 will function properly, pass gate transistor 350 is chosen so that it has a small "on" resistance (drain to source resistance) compared to the "on" resistance of 310. The same relationship holds true for the "on" resistance of pass gate transistor 360 and transistor 320. This will permit writing to memory cell 300 using typical supporting circuitry and wordline voltages (\(V_{CC} \)). An alternative embodiment would be to maintain the same Beta Ratio as a standard differential memory cell. As stated previously, this may require the supporting circuitry to provide voltages greater than \(V_{CC} \) on the wordlines 374 or 384 during a write operation.

Transistors 330 and 340 (or resistive load devices in an alternative embodiment) are large enough to ensure cell stability while meeting leakage constraints determined by the memory designer. One embodiment might be PMOS transistors 340 and 330 which have an "on" resistance of approximately twice that of the "on" resistance of NMOS transistors 310 and 320, respectively. Another embodiment as illustrated in Figure 5 might include resistive load devices 540 and 530 which have a resistance which is twice that of the "on" resistance of transistors 510 and 520, respectively.

Referring back to Figure 3, the process for writing a logical "0" to port 370 is similar to the process for writing a logical "1." Wordline 374 is raised to a logical high level to permit a data bit to be communicated from bitline 372 to cell 300. If the memory cell 300 is designed with a typical differential memory cell Beta Ratio, the wordline 374 voltage may need to exceed \(V_{CC} \). Otherwise if the memory cell 300 is designed to have the smaller Beta Ratio, the wordline 374 voltage is approximately \(V_{CC} \). This permits bitline pass gate transistor 350 to turn on with sufficient conductance so that a data bit to be written may be communicated from bitline 372 to cell 300. Assuming cell 300 is currently storing a logical level "0" (voltage at node 351 approaching \(V_{SS} \), if a logical level "1" is to be written to cell 300), the logical "high" voltage on bitline 372 begins to raise the voltage at node 351. As the voltage at node 351 increases, the conductance of PMOS transistor 330 decreases and the conductance of NMOS transistor 320 increases. This decreases the voltage at node 361. As the voltage at node 361 decreases, the conductance of NMOS transistor 310 decreases and the conductance of PMOS transistor 340 increases. The voltage at node 351 decreases. Thus a positive feedback cycle is established and continues until transistors 310 and 330 are turned off and transistors 320 and 340 are turned on such that node 351 is latched at a voltage level approaching \(V_{CC} \). Similarly, node 361 is latched at a voltage level approaching \(V_{SS} \). If the cell was storing a "1" before the operation, then node 351 would simply remain at a level approaching \(V_{CC} \). Regardless of the previous state of the cell, cell 300 is now latched in a logical "1" state such that the voltage imposed on bitline 372 approaches \(V_{CC} \).

To ensure that this method of writing to memory cell 300 will function properly, pass gate transistor 350 is chosen so that it has a small "on" resistance (drain to source resistance) compared to the "on" resistance of 310. The same relationship holds true for the "on" resistance of pass gate transistor 360 and transistor 320. This will permit writing to memory cell 300 using typical supporting circuitry and wordline voltages (\(V_{CC} \)). An alternative embodiment would be to maintain the same Beta Ratio as a standard differential memory cell. As stated previously, this may require the supporting circuitry to provide voltages greater than \(V_{CC} \) on the wordlines 374 or 384 during a write operation.

Transistors 330 and 340 (or resistive load devices in an alternative embodiment) are large enough to ensure cell stability while meeting leakage constraints determined by the memory designer. One embodiment might be PMOS transistors 340 and 330 which have an "on" resistance of approximately twice that of the "on" resistance of NMOS transistors 310 and 320, respectively. Another embodiment as illustrated in Figure 5 might include resistive load devices 540 and 530 which have a resistance which is twice that of the "on" resistance of transistors 510 and 520, respectively.

Referring back to Figure 3, the process for writing a logical "0" to port 370 is similar to the process for writing a logical "1." Wordline 374 is raised to a logical high level to permit a data bit to be communicated from bitline 372 to cell 300. If the memory cell 300 is designed with a typical differential memory cell Beta Ratio, the wordline 374 voltage may need to exceed \(V_{CC} \). Otherwise if the memory cell 300 is designed to have the smaller Beta Ratio, the wordline 374 voltage is approximately \(V_{CC} \). This permits bitline pass gate transistor 350 to turn on with sufficient conductance so that a data bit to be written may be communicated from bitline 372 to cell 300. Assuming cell 300 is currently storing a logical level "0" (voltage at node 351 approaching \(V_{SS} \), if a logical level "1" is to be written to cell 300), the logical "high" voltage on bitline 372 begins to raise the voltage at node 351. As the voltage at node 351 increases, the conductance of PMOS transistor 330 decreases and the conductance of NMOS transistor 320 increases. This decreases the voltage at node 361. As the voltage at node 361 decreases, the conductance of NMOS transistor 310 decreases and the conductance of PMOS transistor 340 increases. The voltage at node 351 decreases. Thus a positive feedback cycle is established and continues until transistors 310 and 330 are turned off and transistors 320 and 340 are turned on such that node 351 is latched at a voltage level approaching \(V_{CC} \). Similarly, node 361 is latched at a voltage level approaching \(V_{SS} \). If the cell was storing a "1" before the operation, then node 351 would simply remain at a level approaching \(V_{CC} \). Regardless of the previous state of the cell, cell 300 is now latched in a logical "1" state such that the voltage imposed on bitline 372 approaches \(V_{CC} \).
es as the conductance of NMOS transistor 310 increases. Thus a positive feedback cycle is established and continues until transistors 310 and 330 are turned on and transistors 320 and 340 are turned off such that node 351 is latched at a voltage level approaching V_{SS}. Similarly, node 361 is latched at a voltage level approaching V_{CC}; if the cell was storing a "0" before the operation, then node 351 would simply remain at a level approaching V_{SS}. Regardless of the previous state of the cell, cell 300 is now latched in a logical "0" state such that the voltage imposed on bitline 372 approaches V_{SS}. [0039] The process for executing a write operation to port 380 requires raising wordline 384 to a logical high level to permit a data bit to be communicated from bitline 382 to cell 300. Data to be written to port 380 should be inverted since the memory cell is based on positive logic with respect to port 370. For example, when a logical "1" is to be written to the second port of a memory device, the supporting circuitry for the array should invert the signal so that a logical "0" is presented to port 380 of cell 300. Assuming cell 300 is currently storing a logical level "0" (voltage at node 361 approaching V_{CC}), the logical "low" voltage on bitline 382 begins to lower the voltage at node 361. From this point, the cell operates similarly to the way in which a "1" was written to port 370. As the voltage at node 361 decreases, the conductance of PMOS transistor 340 increases and the conductance of NMOS transistor 310 decreases. This increases the voltage at node 351. As the voltage at node 351 increases, the conductance of NMOS transistor 320 increases and the conductance of PMOS transistor 330 decreases. The voltage at node 361 decreases as the conductance of NMOS transistor 320 increases. Thus a positive feedback cycle is established and continues until transistors 310 and 330 are turned on and transistors 320 and 340 are turned off such that node 361 is latched at a voltage level approaching V_{SS}. Similarly, node 351 is latched at a voltage level approaching V_{CC}; if the cell was storing a "1" before the operation, then node 361 would simply remain at a level approaching V_{SS}. Regardless of the previous state of the cell, cell 300 is now latched in a logical "1" state. [0040] The operation for using port 380 to store a logical "0" using the second port of a memory device is similarly executed in that the data bit is inverted by supporting circuitry such that a logical "1" is carried by bitline 382 to the cell. [0041] Some memory applications require writing only to one port and reading only from the other port. In this case the single ended dual port memory cell can be optimized to avoid applying multiple voltages on the wordlines. A dual port memory cell which permits read and write operations at each port is referred to as a duplex cell. If a dual port memory cell has one port dedicated for writing and another port dedicated for reading, then the cell is referred to as a simplex cell. Examples of memory applications which require writing only to one port and reading only from another port include input buffers, output buffers, and first-in-first-out buffers (FIFOs). [0042] In the duplex dual port memory cell, symmetry with respect to the devices associated with each port is important because writing and reading operations take place at each port. Introduction of asymmetry into a duplex cell may create differences in reading or writing capabilities at each port. However, by introducing device asymmetry, first port 370 may be optimized for writing and second port 380 may be optimized for reading so that cell 300 may be used effectively as a single ended simplex dual port memory cell. The supporting circuitry would not need to provide multiple voltages on each port wordline if cell 300 were a single ended simplex dual port memory cell. [0043] For a single ended simplex dual port memory cell, write port transistor 350 is intentionally sized larger (i.e., lower resistance) than transistor 310. By choosing a larger transistor 350, cell 300 is intentionally destabilized with respect to write port 370 so that a boost voltage (i.e., greater than V_{CC}) is not required on wordline 374 for a write operation. [0044] Similarly, read port transistor 360 is intentionally sized smaller (i.e., greater resistance) than transistor 320. By choosing a smaller pass gate transistor (360), port 380 can facilitate stable reading without the use of voltages less than V_{CC} on wordline 384. [0045] Since drain-to-source resistance is inversely proportional to transistor gate widths (assuming a fixed gate length), the higher resistance devices might be fabricated as small as possible and the sizes of the less resistive devices may be chosen after determining the size of the smaller components. In one embodiment, transistors 310, 330, 340, and 360 might be chosen to have the same device geometries (i.e., gate widths are equal and gate lengths are equal). Pass gate 350 is chosen to have a significantly greater gate width than NMOS transistor 310. Conversely, NMOS transistor 320 is chosen to have a significantly greater gate width than pass gate 360. Thus using a process that permits minimum geometries of 0.5 microns, PMOS transistors 330 and 340 might have gate widths of 0.5 microns and gate lengths of 0.5 microns. Read operation pass gate 360 and transistor 310 might have gate widths of 0.5 microns and gate lengths of 0.5 microns. Write operation pass gate 350 and transistor 320 might have gate widths of 1.2 microns and gate lengths of 0.5 microns. Due to the asymmetry, cell 300 now has a write port Beta Ratio and a read port Beta Ratio which are no longer equal. [0046] For the single ended simplex dual port cell 300, a read operation is accomplished through port 380. Transistor 360 has a greater drain-to-source resistance than 320 in order to keep the cell stable with respect to the read port when bitline 382 is carrying V_{CC} and node 361 is latched at a value approaching V_{SS}. Thus even if bitline 382 is carrying a voltage approaching V_{CC} when pass gate 360 is selected by wordline 384, the cell contents will not change (i.e., node 361 will not change from...
presented on bitline 272a and the complementary signal detected by measuring the difference between a signal the cell. In Figure 2, the state of the memory cell is determined by measuring the potential difference between bitlines 172a and 172b for port 170 or by measuring the potential difference between bitlines 182a and 182b for port 180. In Figure 3, however, the state of cell 300 may be determined by comparing the potential sensed on bitlines 372 or 382 to a reference voltage (e.g., \(V_{CC} \), \(V_{SS} \), or signal ground) instead of to other complementary signals provided by the memory cell (e.g., the complementary bitlines 172b and 182b of Figure 1 or 272b of Figure 2).

A memory device utilizing single ended simplex dual port memory cells can provide (1) the accessibility benefits typically associated with dual port cells as shown in Figure 1 while simultaneously achieving (2) the storage capacity of a memory device constructed with the single port memory cell structure as illustrated in Figure 2. Furthermore, since the simplex cell may be optimized for both read and write operations, the memory designer may avoid the supporting circuitry modifications required for providing multiple wordline voltages.

In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made therefrom without departing from the scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims

1. A single ended dual port memory cell (300) having a dedicated read port and a dedicated write port, the memory cell comprising:

 - a first transistor (310) having a first transistor first terminal, a first transistor second terminal, a first transistor gate, and a first transistor gate width-to-length ratio;

 - a second transistor (320) having a second transistor first terminal, a second transistor second terminal, a second transistor gate, and a second transistor gate width-to-length ratio;

 - a first pass gate transistor (350) having a first pass gate transistor first terminal, a first pass gate transistor second terminal, a first pass gate transistor gate, and a first pass gate transistor gate width-to-length ratio;

 - a second pass gate transistor (360) having a
second pass gate transistor first terminal, a second pass gate transistor second terminal, a second pass gate transistor gate, and a second pass gate transistor gate width-to-length ratio;
a first load device (340, 540) having a first load device first terminal and a first load device second terminal;
a second load device (330, 530) having a second load device first terminal and a second load device second terminal;

wherein:

the first transistor first terminal receives a first voltage (Vss);
the second transistor first terminal is coupled to the first transistor first terminal, the second transistor second terminal is coupled to the first transistor gate and the second transistor gate is coupled to the first transistor second terminal;
the first pass gate transistor first terminal is coupled to the first transistor second terminal, the first pass gate transistor second terminal forming said dedicated write port;
the second pass gate transistor first terminal is coupled to the second transistor second terminal, the second pass gate transistor second terminal forming said dedicated read port;
the first load device first terminal receives a second voltage (Vcc), and the first load device second terminal is coupled to the first transistor second terminal; and
the second load device first terminal receives the second voltage, and the second load device second terminal is coupled to the second transistor second terminal,

the memory cell being characterized in that

the ratio of the first transistor gate width-to-length ratio to the first pass gate transistor gate width-to-length ratio is in a range between 1/2.4 and 1.5 and the ratio of the second transistor gate width-to-length ratio to the second pass gate transistor gate width-to-length ratio is in a range between 1.5 and 4.0.

2. A memory array comprising a plurality of the memory cells (300) of claim 1.

3. The memory cell of claim 1, wherein (i) the first pass gate transistor second terminal is coupled to a first bitline (372), (ii) the first pass gate transistor first terminal is coupled to the second transistor gate, (iii) the second pass gate transistor second terminal is coupled to a second bitline (382), and (iv) the second pass gate transistor first terminal is coupled to the first transistor gate.

4. The memory cell of claim 1, wherein the first transistor (310) and the second transistor (320) are NMOS transistors.

5. The memory cell of claim 1, wherein at least one of the first and second pass gate transistors (350, 360) is an NMOS transistor.

6. The memory cell of claim 1, wherein:
a) the first load device comprises a first load transistor (340) having a first load transistor first terminal, a first load transistor second terminal, and a first load transistor gate, the first load transistor gate being coupled to the first transistor gate, and
b) the second load device comprises a second load transistor (330) having a second load transistor first terminal, a second load transistor second terminal, and a second load transistor gate, the second load transistor gate being coupled to the second transistor gate.

7. The memory cell of claim 6 wherein the first and second transistors (310, 320) are NMOS transistors and the first and second load transistors (340, 330) are PMOS transistors.

8. The memory cell of claim 1 wherein:
a) the first pass gate transistor gate is coupled to a first port wordline (374) and the first pass gate transistor second terminal is coupled to a first port bitline (372), the first pass gate transistor allowing communication between the first port bitline and the memory cell, only if the first port wordline is selected; and
b) the second pass gate transistor gate is coupled to a second port wordline (384) and the second pass gate transistor second terminal is coupled to a second port bitline (382), the second pass gate transistor allowing communication between the second port bitline and the memory cell, only if the second port wordline is selected.

9. The memory cell of claim 8, wherein the first and
second transistors (310, 320) are NMOS transistors, and wherein at least one of the first and second pass gate transistors (350, 360) is an NMOS transistor.

10. The memory cell of claim 8, wherein a memory cell supporting circuitry inverts a bit communicated between the memory cell (300) and one of the first and second port bitlines (372, 382).

11. The memory cell of claim 1, wherein the first and second transistors (310, 320) are each a first type of transistor and the first and second load devices (340, 330) are each a second type of transistor.

12. The memory cell of claim 11, wherein the first and second transistors (310, 320) are NMOS transistors and the first and second load devices (340, 330) are PMOS transistors.

Patentansprüche

1. Single-Ended Dual-Port-Speicherzelle (300) mit einem dedizierten Lese-Port und einem dedizierten Schreib-Port, wobei die Speicherzelle folgendes umfasst:

- einen ersten Transistor (310) mit einem ersten Terminal des ersten Transistors, einem zweiten Terminal des ersten Transistors, einem ersten Transistor-Gate und einem Breiten-Längenverhältnis eines ersten Transistor-Gates;
- einen zweiten Transistor (320) mit einem ersten Terminal des zweiten Transistors, einem zweiten Terminal des zweiten Transistors, einem zweiten Pass-Gate-Transistor-Gate und einem Breiten-Längenverhältnis eines ersten Pass-Gate-Transistors-Gates;
- einen ersten Pass-Gate-Transistor (350) mit einem ersten Terminal des ersten Pass-Gate-Transistors, einem zweiten Terminal des ersten Pass-Gate-Transistors, einem ersten Pass-Gate-Transistor-Gate und einem Breiten-Längenverhältnis eines ersten Pass-Gate-Transistor-Gates;
- einen zweiten Pass-Gate-Transistor (360) mit einem ersten Terminal des zweiten Pass-Gate-Transistors, einem zweiten Terminal des zweiten Pass-Gate-Transistors, einem zweiten Pass-Gate-Transistor-Gate und einem Breiten-Längenverhältnis eines zweiten Pass-Gate-Transistor-Gates;

wobei der erste Terminal des ersten Transistors eine erste Spannung (Vss) empfängt; wobei der erste Terminal des ersten Transistors mit dem ersten Terminal des ersten Transistors gekoppelt ist, wobei der zweite Terminal des ersten Transistors mit dem ersten Transistor-Gate gekoppelt ist, wobei das erste Transistor-Gate mit dem zweiten Terminal des ersten Transistors gekoppelt ist; wobei der erste Terminal des ersten Pass-Gate-Transistors mit dem zweiten Terminal des ersten Transistors gekoppelt ist, wobei der zweite Terminal des ersten Pass-Gate-Transistors mit dem genannten dedizierten Schreib-Port bildet; wobei der erste Terminal des zweiten Pass-Gate-Transistors mit dem zweiten Terminal des zweiten Transistors gekoppelt ist, wobei der zweite Terminal des zweiten Pass-Gate-Transistors mit dem zweiten Terminal des zweiten Transistors gekoppelt ist; wobei der erste Terminal der ersten Lastvorrichtung die zweite Spannung (Vcc) empfängt, und wobei der zweite Terminal der ersten Lastvorrichtung mit dem zweiten Terminal des ersten Transistors gekoppelt ist; wobei der erste Terminal der zweiten Lastvorrichtung die zweite Spannung empfängt, und wobei der zweite Terminal der zweiten Lastvorrichtung mit dem zweiten Terminal des zweiten Transistors gekoppelt ist; wobei die Speicherzelle dadurch gekennzeichnet ist, dass das Verhältnis des Breiten-Längenverhältnisses des ersten Transistor-Gates zu dem Breiten-Längenverhältnis des ersten Pass-Gate-Transistor-Gates im Bereich zwischen 1/2,4 und 1,5 liegt, und wobei das Verhältnis zwischen dem Breiten-Längenverhältnis des zweiten Transistor-Gates und dem Breiten-Längenverhältnis des zweiten Pass-Gate-Transistors im Bereich zwischen 1,5 und 4,0 liegt.

2. Speicherfeld, das eine Mehrzahl der Speicherzellen (300) aus Anspruch 1 umfasst.

3. Speicherzelle nach Anspruch 1, wobei (i) der zweite Terminal des ersten Pass-Gate-Transistors mit einer ersten Bitline (372) gekoppelt ist, (ii) der erste Terminal des zweiten Pass-Gate-Transistors mit dem zweiten Bitline gekoppelt ist, (iii) der zweite Transistor-Gate gekoppelt mit einer ersten Bitline (382) gekoppelt ist, und (iv) der erste Terminal des zweiten Pass-Gate-Transistors mit dem ersten Transistor-Gate gekoppelt ist.
4. Speicherzelle nach Anspruch 1, wobei es sich bei dem ersten Transistor (310) und bei dem zweiten Transistor (320) um NMOS-Transistoren handelt.

5. Speicherzelle nach Anspruch 1, wobei es sich bei mindestens einem der erste und zweiten Pass-Gate-Transistoren (350, 260) um einen NMOS-Transistor handelt.

6. Speicherzelle nach Anspruch 1, wobei:
 a) die erste Lastvorrichtung einen ersten Lasttransistor (340) umfasst, der einen ersten Terminal des ersten Lasttransistors, einen zweiten Terminal des ersten Lasttransistors und ein erstes Lasttransistor-Gate aufweist, wobei das erste Lasttransistor-Gate mit dem ersten Transistor-Gate gekoppelt ist; und
 b) die zweite Lastvorrichtung einen zweiten Lasttransistor (330) umfasst, der einen ersten Terminal des zweiten Lasttransistors, einen zweiten Terminal des zweiten Lasttransistors und ein zweites Lasttransistor-Gate aufweist, wobei das zweite Lasttransistor-Gate mit dem zweiten Transistor-Gate gekoppelt ist.

7. Speicherzelle nach Anspruch 6, wobei es sich bei den ersten und zweiten Transistoren (310, 320) um NMOS-Transistoren handelt, und wobei es sich bei den ersten und zweiten Lasttransistoren (340, 330) um PMOS-Transistoren handelt.

8. Speicherzelle nach Anspruch 1, wobei:
 a) das erste Pass-Gate-Transistor-Gate mit einer ersten Port-Wordline (374) gekoppelt ist, und wobei der zweite Terminal des ersten Pass-Gate-Transistors mit einer ersten Port-Bitline (372) gekoppelt ist, wobei der erste Pass-Gate-Transistor eine Kommunikation zwischen der ersten Port-Bitline und der Speicherzelle ermöglicht, nur wenn die erste Port-Wordline ausgewählt worden ist; und
 b) das zweite Pass-Gate-Transistor-Gate mit einer zweiten Port-Wordline (384) gekoppelt ist, und wobei der zweite Terminal des zweiten Pass-Gate-Transistors mit einer zweiten Port-Bitline (382) gekoppelt ist, wobei der zweite Pass-Gate-Transistor eine Kommunikation zwischen der zweiten Port-Bitline und der Speicherzelle ermöglicht, nur wenn die zweite Port-Wordline ausgewählt worden ist.

9. Speicherzelle nach Anspruch 8, wobei es sich bei den ersten und zweiten Transistoren (310, 320) um NMOS-Transistoren handelt, und wobei es sich bei mindestens einem der ersten und zweiten Pass-
 Gate-Transistoren (350, 360) um einen NMOS-Transistor handelt.

10. Speicherzelle nach Anspruch 8, wobei eine Speicherzellen-Unterstützungsschaltkreisanordnung ein zwischen der Speicherzelle (300) und einer der ersten und zweiten Port-Bitlines (372, 382) kommuniziertes Bit invertiert.

11. Speicherzelle nach Anspruch 1, wobei es sich bei den ersten und zweiten Transistoren (310, 320) jeweils um eine erste Art von Transistor handelt, und wobei es sich bei den ersten und zweiten Lastvorrichtungen (340, 330) jeweils um eine zweite Art von Transistor handelt.

12. Speicherzelle nach Anspruch 11, wobei es sich bei den ersten und zweiten Transistoren (310, 320) um NMOS-Transistoren handelt, und wobei es sich bei den ersten und zweiten Lastvorrichtungen (340, 330) um PMOS-Transistoren handelt.

Revendications

1. Cellule de mémoire à double port à entrée unique (300) ayant un port dédié à la lecture et un port dédié à l’écriture, la cellule de mémoire comprenant :
 un premier transistor (310) ayant une première borne de premier transistor, une seconde borne de premier transistor, une grille de premier transistor, et un rapport de largeur sur longueur de grille de premier transistor ;
 un second transistor (320) ayant une première borne de second transistor, une seconde borne de second transistor, une grille de second transistor, et un rapport de largeur sur longueur de grille de second transistor ;
 un premier dispositif de charge (340, 540) ayant une première borne de premier dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de second dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) ayant une première borne de second dispositif de charge et une seconde borne de premier dispositif de charge ;
 un second dispositif de charge (330, 530) having
une première borne de second dispositif de charge et une seconde borne de second dispositif de charge ;

où

la première borne de premier transistor reçoit une première tension (Vss) ;
la première borne de second transistor est couplée à la première borne de premier transistor,
la seconde borne de second transistor est couplée à la grille de premier transistor et la grille de second transistor est couplée à la seconde borne de premier transistor ;
la première grille de premier transistor à grille de passage est couplée à la seconde borne de premier transistor, la seconde borne de premier transistor à grille de passage formant ledit port dédié à l'écriture ;
la première borne de second transistor à grille de passage est couplée à la seconde borne de second transistor, la seconde borne de second transistor à grille de passage formant ledit port dédié à la lecture ;
la première borne de premier dispositif de charge reçoit une seconde tension (Vcc), et la seconde borne de premier dispositif de charge est couplée à la seconde borne de premier transistor ;
la première borne de second dispositif de charge reçoit une seconde tension (Vcc), et la seconde borne de second dispositif de charge est couplée à la seconde borne de second transistor, la cellule de mémoire étant caractérisée en ce que

le rapport du rapport de largeur sur longueur de grille de premier transistor sur le rapport de largeur sur longueur de grille de premier transistor à grille de passage est compris dans une gamme entre 1/2,4 et 1,5 et le rapport du rapport de largeur sur longueur de grille de second transistor à grille de passage sur le rapport de largeur sur longueur de grille de second transistor à grille de passage est compris dans une gamme entre 1,5 et 4,0.

2. Réseau de mémoire comprenant une pluralité de cellules de mémoire (300) selon la revendication 1.

3. Cellule de mémoire selon la revendication 1, dans laquelle (i) la seconde borne de premier transistor à grille de passage est couplée à une première ligne binaire (372), (ii) la première borne de premier transistor à grille de passage est couplée à la seconde grille de transistor, (iii) la seconde borne de second transistor à grille de passage est couplée à une seconde ligne binaire (382), et (iv) la première borne de second transistor à grille de passage est couplée à la grille de premier transistor.

4. Cellule de mémoire selon la revendication 1, dans laquelle le premier transistor (310) et le second transistor (320) sont des transistors NMOS.

5. Cellule de mémoire selon la revendication 1, dans laquelle au moins un des premiers et second transistors à grille de passage (350, 360) est un transistor NMOS.

6. Cellule de mémoire selon la revendication 1, dans laquelle :

 a) le premier dispositif de charge comprend un premier transistor de charge (340) ayant une première borne de premier transistor de charge, une seconde borne de premier transistor de charge, et une grille de premier transistor de charge étant couplée à la grille de premier transistor ; et
 b) le second dispositif de charge comprend un second transistor de charge (330) ayant une première borne de second transistor de charge, une seconde borne de second transistor de charge, et une grille de second transistor de charge étant couplée à la grille de second transistor.

7. Cellule de mémoire selon la revendication 6 dans laquelle les premiers et seconds transistors (310, 320) sont des transistors NMOS et les premiers et seconds transistors de charge (340, 330) sont des transistors PMOS.

8. Cellule de mémoire selon la revendication 1 dans laquelle :

 a) la grille de premier transistor à grille de passage est couplée à une première ligne de mots de port (374) et la seconde borne de premier transistor à grille de passage est couplée à une première ligne binaire de port (372), le premier transistor à grille de passage permettant une communication entre la première ligne binaire de port et la cellule de mémoire, seulement si la première ligne de mots de port est sélectionnée ; et
 b) la grille de second transistor à grille de passage est couplée à une seconde ligne de mots de port (384) et la seconde borne de second transistor à grille de passage est couplée à une seconde ligne binaire de port (382), le second transistor à grille de passage permettant une communication entre la seconde ligne binaire de port et la cellule de mémoire, seulement si la seconde ligne de mots de port est sélectionnée.

9. Cellule de mémoire selon la revendication 8, dans
laquelle les premier et second transistors (310, 320) sont des transistors NMOS, et où au moins un des premier et second transistors à grille de passage (350, 360) est un transistor NMOS;

10. Cellule de mémoire selon la revendication 8, dans laquelle le circuit de support de cellule de mémoire inverse un bit communiqué entre la cellule de mémoire (300) et une des première et seconde lignes binares de port (372, 382).

11. Cellule de mémoire selon la revendication 1, dans laquelle les premier et second transistors (310, 320) sont chacun un premier type de transistor et les premier et second dispositifs de charge (340, 330) sont chacun un second type de transistor.

12. Cellule de mémoire selon la revendication 11, dans laquelle les premier et second transistors (310, 320) sont des transistors NMOS et les premier et second dispositifs de charge (340, 330) sont des transistors PMOS.
FIG. 1
(PRIOR ART)
FIG. 2
(PRIOR ART)
FIG. 5
FIG. 6
FIG. 7