EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 06.04.1998 Bulletin 1998/15

(21) Application number: 95917193.5

(22) Date of filing: 28.04.1995

(51) Int Cl.: H03G 3/30, H03D 3/00

(86) International application number: PCT/US95/05257

(54) METHOD AND APPARATUS FOR AUTOMATIC GAIN CONTROL AND DC OFFSET CANCELLATION IN QUADRATURE RECEIVER

VERFAHREN UND VORRICHTUNG ZUR AUTOMATISCHER VERSTÄRKUNGSREGELUNG UND GLEIDSPANNUNGS-OFFSETUNTERDRÜCKUNG IN EINEM QUADRATUREMPFÄNGER

PROCEDE ET APPAREIL DE COMMANDE DE GAIN AUTOMATIQUE ET D’ANNULATION DE DECALAGE CC DANS UN RECEPTEUR A QUADRATURE

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States: LT SI

(43) Date of publication of application: 17.04.1996 Bulletin 1996/16

(73) Proprietor: QUALCOMM INCORPORATED
San Diego, California 92121 (US)

(72) Inventors:
• WILSON, Nathaniel, B.
 San Diego, CA 92124 (US)

• BLACK, Peter, J.
 St. Lucia, QLD 4067 (US)

• PETERZELL, Paul, E.
 San Diego, CA 92124 (US)

(74) Representative: Walsh, Michael Joseph et al
TOMKINS & CO.
5, Dartmouth Road
Dublin 6 (IE)

(56) References cited:
EP-A- 0 305 603
US-A- 4 653 117
EP-A- 0 482 927
US-A- 4 944 025

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates generally to RF receivers using quadrature demodulation. More particularly, the present invention relates to novel methods and apparatus for providing automatic gain control, out-of-band signal rejection, and D.C. offset cancellation within a digital receiver.

II. Description of the Related Art

In analog receivers, such as are used in narrowband FM cellular communication systems, FM demodulators are employed to extract information encoded in the phase of an incident waveform. Existing FM demodulators often include an analog frequency discriminator preceded by an analog limiter, with the limiter serving to constrain the input signal power to a constant level. In this way maximum signal to noise ratio is maintained at the input to the frequency discriminator over the full dynamic range of the FM input signal. However, such an analog signal processing technique generally involves extensive signal filtering, and frequently is implemented using a large number of discrete components. Moreover, it has been demonstrated that improved performance may be achieved using linear digital waveform demodulation rather than analog demodulation. Unfortunately, conventional demodulation techniques are often not applicable to digital receivers, since clipping of the received signal would result in corruption of the data derived therefrom.

US-A-4 944 025 is an example of an analog receiver. The particular feature disclosed in the patent is that a direct conversion FM receiver that includes AC coupling and automatic gain control employs an offset frequency at the first local oscillator. The offset frequency prevents the frequency spectrum occupied by the signal modulation from being affected by AC coupling. The offset frequency is chosen so that it translates the frequency spectrum of the received signal outside the DC notch created in the spectrum by the AC coupling. To conserve battery supplied power, an error amplifier coupled between the output of the receiver and the first local oscillator maintains the offset frequency after it has been established by a frequency synthesizer, which is then turned off. In the described embodiment, an incoming FM signal is amplified at an Automatic Gain Control (AGC) controlled RF amplifier which provides low noise amplification that establishes the sensitivity of the receiver and maintains signal linearity. This amplifier maintains the gain at a desired level within the receiver circuit in response to the gain measured by an AGC detector positioned at the output junction of two parallel signal paths. The output of the preamplifier is applied to each of two parallel signal paths. In these two paths, down conversion mixers that translate the incoming radio signal to essentially baseband are provided.

A digital receiver for receiving a digitally modulated information signal will generally include a variable gain amplifier with a gain adjusted by a control signal. Typically in digital receivers, the AGC process adjusting the gain of a received signal using a control signal involves measurement of an output signal power of the variable gain amplifier. The measured value is compared with a value representing the desired signal power and a control signal for the variable gain amplifier is generated. The error value is then used to control amplifier gain so as to adjust the signal strength to coincide with the desired signal power. To affect digital demodulation with an optimal signal to noise ratio, automatic gain control is used to hold the magnitude of the baseband waveforms close to the full dynamic range of the baseband analog to digital converters. This generally requires, however, that automatic gain control be provided over the full dynamic range of the received signal power.

In the cellular environment, a digital receiver may receive a signal which experiences rapid and wide variations in signal power. In digital receivers such as are used in a code division multiple access (CDMA) and Time Division Multiple Access (TDMA) mobile cellular telephones, it is necessary to control the power of the demodulated signal for proper signal processing. However, in digital receivers to be both CDMA or TDMA compatible and conventional FM compatible, i.e., dual-mode digital/FM receivers, it is necessary to provide power control of both wideband CDMA (or TDMA) signals and narrowband FM signals. The control process is complicated by the differing dynamic ranges associated with the received FM and CDMA signal power. That is, the magnitude of received FM signals may vary over a dynamic range greater than 100 dB, whereas CDMA systems typically result in a more limited dynamic range, i.e., approximately 80 dB.

The provision of separate AGC circuitry for each mode increases the hardware complexity and expense of such receivers. Accordingly, it would be desirable to provide AGC circuitry capable of operating both upon narrowband, wide-dynamic range FM signals, as well as upon wideband CDMA signals of more limited dynamic range.

It would also be desirable to provide digital AGC in inexpensive receivers utilizing analog to digital (A/D) converters with limited dynamic range. Again, because FM signals within cellular systems may vary more than 100 dB and relatively inexpensive B-bit A/D's are limited to a dynamic range of approximately 48 dB, a cost effective AGC implementation should be capable of controlling the gain of the portion of the receiver preceding the A/D converters so as to control the signal's dynamic range at the A/D converter. The alternative is to employ expensive A/D converters having greater dynamic range, thereby increasing the cost of the receiver or to
increase the AGC range of the analog portion of the radio which is very difficult and costly.

It is therefore an object of the present invention to provide a novel and improved AGC circuit which incorporates the desirable features mentioned above, and which, as is described hereinafter, also realizes certain other advantages relative to conventional AGC techniques.

In standard FM cellular telephones, the AGC function is performed by a circuit called a limiter. When a limiter is used, out-of-band signal rejection can only be done using intermediate frequency (IF) filters. Although the requisite signal rejection capability may be achieved through the use of ceramic IF filters, these tend to be relatively large and expensive. Smaller and less expensive IF filters are generally incapable of being realized so as to possess the desired signal rejection characteristics, and hence are generally not employed in FM cellular telephone receivers.

As is well known, recent advances in integrated circuit (IC) technology have made possible the realization of active baseband filters which are quite small and inexpensive compared to IF filters. It follows that it would be desirable to employ active IC baseband filters to effect significant out-of-band signal suppression, thereby allowing smaller and less expensive IF filters to be used to provide any additional required signal rejection. In an active filter, the higher the gain the better the rejection that is possible. But the higher the gain, the more susceptible the system to unwanted D.C. offsets. Suppression of such D.C. offsets is desirable to maximize the available signal dynamic range, minimize offset induced distortion in the baseband demodulated signal and minimize offset induced errors in baseband signal strength estimates.

In standard digital communications systems such as quadrature phase shift keying (QPSK), used in standard CDMA communication systems (and some TDMA systems), or binary phase shift keying (BPSK), information from the waveform is recovered by downconversion of the signal to baseband frequency centered about D.C. In this case, D.C. offsets are easily removed, since for QPSK and BPSK, the carrier is generally suppressed by the transmitter anyway. Hence at baseband, a D.C. notch can be used.

However, for constant amplitude modulations such as FM and continuous phase FSK (which are used in FM cellular telephone systems such as AMPS) and Gaussian Minimum Shift Keying (GMSK) (used in some TDMA systems), the carrier must be preserved in order to demodulate the received signal.

The employment of active baseband IC filters leads to the necessity of providing some mechanism for suppression of undesired D.C. offsets. The IF processing chain of conventional digital cellular telephone receivers typically includes a local oscillator (L.O.) having a frequency selected such that the carrier frequency is downconverted to D.C., and a simple D.C. notch filter is used to remove unwanted D.C. offsets. If an FM, FSK, or GMSK signal is processed by such an IF processing chain, then the D.C. offset suppression will not only remove unwanted D.C. components, but also critical phase and amplitude information at the carrier frequency. That is, in FM cellular telephone systems, significant amplitude and phase information is present at the carrier frequency, and performance will be adversely affected if such information is destroyed.

However, there are two narrow bands of frequencies in between the carrier frequency F_c and $F_c + F_1$ and between F_c and $F_c - F_1$ (where F_1 is the lowest frequency expected in the demodulated spectrum, typically $F_1 = 300$ Hz for FM cellular) which can be suppressed without adversely affecting the demodulated signal. Although minimal voice information is carried at intermodulation products at frequencies close to the carrier frequency, such products are uncommon and of relatively short duration. Accordingly, the suppression of only the low-frequency intermodulation products after baseband downconversion does not usually result in the loss of appreciable voice information. Similarly, in FSK and GMSK systems, very little signal power is present below F_1 (symbol rate)/100, so again the frequency band between F_c and $F_c + F_1$ may be suppressed without degradation of the digital data.

It is therefore a further object of the present invention to provide a quadrature receiver in which high-gain/highly selective active baseband filters may be employed without causing the loss of carrier frequency information.

SUMMARY OF THE INVENTION

The invention is set forth in Claims 1 and 17 relative to US-A-4,944,025 as nearest prior art.

The present invention is a novel automatic gain control method and apparatus for controlling signal power of received RF signal over a wide dynamic range. In a preferred implementation, the automatic gain control apparatus may be adjusted to provide a desired control response to varying fading characteristics of the received RF signal. In applications where the signal of interest is a suppressed carrier digital format such as BPSK or QPSK (for CDMA Digital Cellular) or a constant envelope continuous-phase format such as GMSK, FSK, or FM (used in AMPS cellular phase system), the apparatus of the present invention is capable of providing the necessary gain control, out-of-band signal rejection, and downconversion to baseband, with no D.C offset.

In accordance with the present invention, an automatic gain control 40 (AGC) apparatus for a dual mode receiver is disclosed. The AGC apparatus includes an adjustable gain amplifier having an input port for receiving an input signal, a control port for receiving a gain control signal, and an output port for providing an output signal. A downconverter coupled to the output port
serves to translate the frequency of the output signal to
a baseband frequency, thereby producing a baseband
signal. In a preferred implementation, the downconvert-
er is operative to map the carrier frequency of the re-
ceived signal of the output signal to a baseband fre-
cency offset by a predetermined margin from D.C. A D.C.
feedthrough suppression loop, disposed to receive said
baseband signal, suppresses D.C. feed through signals
produced by the downconverter, hence providing a com-
pensated baseband signal.

The AGC apparatus further comprises means for
generating a received power signal based on the power
of the output signal. A saturating integrator compares
the received power signal to a reference signal and pro-
duces the gain control signal by integrating or by refrain-
ing from integration based on values of the reference,
received power signal, and gain control signals.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present
invention will become more apparent from the de-
tailed description set forth below when taken in con-
junction with the drawings in which like reference char-
acters identify correspondingly throughout and wherein:

Figure 1 illustrates in block diagram form an exam-
plary application of the automatic gain control appara-
tus (AGC) of the present invention;
Figure 2 Illustratively represents the gain of an AGC
amplifier as a function of the gain control voltage;
Figure 3 shows an exemplary embodiment of the
automatic gain control apparatus of the invention
which includes a control loop implemented in anal-
alog form;
Figures 4A and 4B illustratively represent the volt-
age and power transfer characteristics, respective-
ly, associated with an exemplary implementation of
a signal limiter included within the inventive gain
control apparatus;
Figure 5 depicts an exemplary implementation of
decision logic used to govern operation of an integ-
ration control switch;
Figures 6A-6C are timing diagrams illustrative of the
operation of the AGC apparatus of the invention;
Figure 7 shows a preferred embodiment of the AGC
apparatus of the invention including a digital reali-
ization of the control loop;
Figure 8 depicts an exemplary implementation of a
digital saturating accumulator included within the in-
tegrator of Figure 7;
Figure 9 shows an alternately preferred embodi-
ment of the AGC loop of invention which includes a
D.C. feed through suppression loop; and
Figure 10 provides a block diagram representation
of an analog D.C. feedthrough suppression loop.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In a digital receiver, such as used in a code division
multiple access (CDMA) portable cellular communica-
tions device, it is necessary to set the power of the pro-
cessed signal to a constant level. In the cellular envi-
ronment, a receiver may receive a signal which experi-
ences rapid and wide variations in signal power. In order to
properly process the digital data contained within the re-
ceived signal, the signal power must be controlled within
the receiver. In a dual-mode digital receiver, e.g., a dig-
ital receiver capable of processing both CDMA (or TD-
MA) and standard FM signals, the received signal dy-
namic range will vary as a function of the selected op-
erative mode. Accordingly, an automatic gain control ap-
paratus for a digital receiver is disclosed which is capa-
bles, in each of its operative modes, of compensating for
variation in received signal power in either environment.

Figure 1 illustrates in block diagram form an exam-
plary application of the automatic gain control apparatus
of the present invention. In Figure 1, the automatic gain
control apparatus is implemented in the transceiver of
a CDMA portable cellular telephone 10. Telephone 10
may be dual mode, i.e., CDMA (or TDMA) and con-
ventional FM compatible. The automatic gain control appa-
ratus of the present invention is capable of providing
power control of both wideband CDMA (or TDMA) sig-
als and narrowband FM signals. The compatibility of
such circuitry to operate on both wideband and narrow-
band signals provides cost, component and power sav-
ings for the receiver.

Telephone 10 includes antenna 12 for receiving RF
signals, including CDMA or FM communication signals,
transmitted from a base station. Antenna 12 couples the
received signals to duplexer 14 which provides the re-
ceived signals to the receiver portion of telephone 10.
Duplexer 14 also receives CDMA or FM communication
signals from a transmitter portion of telephone 10 for
coupling to antenna 12 and transmission to a base sta-

tion.

The received signals are output from duplexer 14
to downconverter 16 where the RF signals are convert-
ed to a lower frequency range and are provided as cor-
responding intermediate frequency (IF) signals. The IF
signals from downconverter 16 are provided to automat-
ic gain controlled IF amplifier 18. The IF signals are am-
plified at a gain level determined by an AGC signal
(V_{AGC}) which is also provided to amplifier 18. Amplifier
18 is capable of providing linear control of gain over a
high dynamic range, such as in excess of 80 dB, on the
basis of V_{AGC}. Amplifier 18 may be of a design described
in, for example, U.S. Patent No. 5,099,204, entitled
"LINEAR GAIN CONTROL AMPLIFIER", and assigned
to the Assignee of the present invention.

In the above-referenced U.S. Patent No. 5,099,204,
a compensation circuit is employed to achieve a desired
dynamic range of linear control. In particular implemen-
tations, such control may be provided by the amplification circuit in the absence of assistance from a compensation circuit. Included among such implementations are those, for example, in which several amplification stages are arranged in cascade. Similarly, the availability of a high-voltage power supply may eliminate the need for a compensation circuit.

The gain controlled IF signals are output from amplifier 18 to a second frequency downconverter, downconverter 20, where the IF signals are converted to a lower frequency range and are provided as corresponding in-phase and quadrature-phase baseband signals I_{kb} and Q_{kb}. In the embodiment shown in Figure 1, the baseband signals in the CDMA mode of operation are I and Q samples of encoded digital data which are output for further phase demodulation and correlation. In a dual mode receiver, downconverter 20 also frequency downconverts FM signals so as to provide baseband FM in-phase and quadrature-phase signals, which are further phase/frequency demodulated into an audio output signal.

Detector 25 measures the strength of the signals output by downconverter 20 and generates a corresponding received signal strength indication (RSSI) signal. The RSSI signal, along with an AGC reference signal (AGC_REF) supplied by a controller (not shown), are provided to a saturating integrator 22. The AGC_REF signal corresponds to a desired signal strength level for the baseband signals. The controller also provides AGC limit low (AGC_LOW) and AGC limit high (AGC-HIGH) reference signals to saturating integrator 22. The AGC_HIGH and AGC_LOW signals correspond to limits on the magnitude of a gain control signal (V_{AGC}) provided to a control port of amplifier 18 by saturating integrator 22.

Figure 2 illustratively represents the gain of amplifier 18 as a function of the gain control voltage. Referring to Figure 2, the gain of amplifier 18 is seen to nonlinearly taper to relatively constant values for control voltages exceeding AGC_HIGH and less than AGC_LOW. In general, it will be desired to constrain the value of V_{AGC} to within the linear range between AGC_HIGH and AGC_LOW in order that the corresponding time constant of the control loop remain within an acceptable range. Deviation of the loop time constant from the acceptable range could result in significant loop control errors. In accordance with the invention, amplifier 18 is constrained to operate within a region of linear gain by saturating integrator 22 in order to prevent the performance degradation introduced by such loop control errors.

As is described below, saturating integrator 22 is operative to integrate the difference between the RSSI and AGC_REF signals when V_{AGC} is between AGC_HIGH and AGC_LOW. When presented with an input which would cause V_{AGC} to exceed AGC_HIGH or fall below AGC_LOW, integrator 22 stops integrating, and the gain control signal V_{AGC} is held constant at either AGC_HIGH or AGC_LOW, thereby improving control loop response as described above.

Referring again to Figure 1, saturating integrator 22 receives the RSSI signal from detector 25, along with the AGC_REF signal from the controller. In order to provide accurate power control, in general it is necessary for the difference between the RSSI signal and the AGC_REF signal to be minimized. Saturating integrator 22 is used to provide this function in the AGC loop by forcing the difference to zero. For example, if the gain of the signal is too high, the RSSI signal will also be high as compared to AGC_REF. Until these signals are of equivalent magnitude, the integrator output signal V_{AGC} will continue to decrease the gain of amplifier 18.

It should be understood that the RSSI measurement can be made at various points in the processing of the received signal. Although Figure 1 illustrates that the measurement is made after frequency downconversion by downconverter 20, the measurement can be made at any point in the signal processing chain following IF amplifier 18. The RSSI measurement will preferably be made subsequent to completion of signal filtering, thereby minimizing the measured spurious interference power. In using analog power control techniques for both the wideband and narrowband signals, the same power control circuitry can be used for both modes of operation.

With respect to a transmitter portion 30 of the portable telephone of Figure 1, transmit power is also controlled. The V_{AGC} signal is again used to provide instantaneous control of transmit power in CDMA mode. The V_{AGC} signal is provided to the transmitter portion 30, along with various other control signals from the controller (not shown).

Referring now to Figure 3, there is shown an exemplary embodiment of the automatic gain control apparatus of the invention which includes a partially analog implementation of saturating integrator 22. In Figure 3, the saturating integrator includes operational amplifier (op amp) integrator 40 having a capacitive feedback network. In particular, integrator 40 receives the AGC_REF signal through resistor 42 at its non-inverting input, to which is also connected capacitor 43. When switch 44 is closed in response to control information provided by integrator decision logic 46, an RSSI signal output by RSSI detector 48 is received by integrator 40 through resistor 50. When switch 44 is held in an open position in response to control information from integrator decision logic 46, a capacitor 52 serves to hold the output (V_{AGC}) of integrator 40 constant at either AGC_HIGH or AGC_LOW. This prevents saturation of amplifier 18 when the magnitude of the IF input signal departs from a predefined dynamic range.

Again referring to Figure 3, an embodiment of a switching arrangement is shown using RF switches 49 and 55. RF switches 49 and 55 couple CDMA IF bandpass filter 51 to IF amplifier 18 during CDMA mode as shown by the setting of the switches in Figure 3. In FM
mode, the position of RF switches 49 and 55 changes to couple FM IF bandpass filter 53 and limiter 54 to IF amplifier 18. FM IF bandpass filter 53 for rejecting out-of-channel interference defines the bandwidth of the FM signals provided through limiter 54 to amplifier 18. For example, in FM mode operation, the FM IF filter 53 is designed to have a passband spanning approximately one cellular channel (e.g., 30 kHz), and a stopband extending significantly beyond (e.g., +/- 60 kHz) the IF center frequency. During CDMA mode operation, the CDMA IF filter 51 is designed to reject out-of-channel interference and defines the bandwidth of the CDMA signals provided to amplifier 18. For example, during CDMA mode, CDMA IF bandpass filter 51 may provide a passband commensurate with the chip rate of the baseband portion of the receiver (e.g., 1.26 MHz), and provide a predefined rejection bandwidth (e.g., 1.8 MHz). In an alternative embodiment, limiter 54 could be in the common path before IF amplifier 18.

Limiter 54 attenuates high power RF signals, which are principally received during FM mode operation. FM signals may exceed the maximum power of signals encountered during CDMA mode operation. In a preferred embodiment, limiter 54 limits the input power to amplifier 18 to within the dynamic range, e.g., 80 dB, characteristic of CDMA operation. Limiter 54 allows the control range of the automatic gain control (AGC) loop of Figure 3 to be designed on the basis of the expected CDMA dynamic range, thereby eliminating the need to provide separately calibrated AGC control loops for FM and CDMA mode operation.

Figures 4A and 4B illustratively represent the voltage and power transfer characteristics, respectively, associated with an exemplary implementation of limiter 54. Referring to Figures 4A and 4B, limiter 54 does not attenuate signals having voltage magnitudes less than a predefined maximum voltage Vm. The saturated power may be quantified as $P_{\text{SAT}} = V_m^2/R_L$, where R_L denotes the input load impedance of amplifier 18. For input power in excess of P_{SAT}, the output signal power produced by limiter 54 is made to remain constant at approximately P_{SAT} by clipping the peak signal voltage to the voltage Vm. The value of P_{SAT} will be selected based on the maximum expected CDMA input power level. Accordingly, for example, for high-power sinusoidal IF input signals ($P_{\text{in}} > P_{\text{SAT}}$), the output waveform produced by limiter 54 is truncated to a fixed amplitude but has the same fundamental frequency and phase information is not lost. The limiter induced harmonic distortion is removed by lowpass filter 56.

Low-pass filter 56, included within the downconverter 20, is designed to have a cut-off frequency larger than the frequency of the IF signal output by amplifier 18 in either CDMA mode or FM mode. As noted above, low-pass filter 56 is designed to attenuate harmonics of the IF signal output by amplifier 18 prior to downconversion to baseband in-phase (I) and quadrature phase (Q) components. High-power waveforms clipped by limiter 54 create unwanted harmonics. IF lowpass filter 56 removes the unwanted harmonics so that they are not converted to baseband along with the desired IF signal information. In an exemplary embodiment the type, order, and passband edge of filter 56 are selected to attenuate the baseband distortion products arising from the IF harmonics inherent in the amplified IF signal produced by amplifier 18.

The filtered IF signal is provided to a first input of a mixer 60, while the other input of mixer 60 receives a locally generated reference signal from oscillator 64. Mixer 60 mixes the filtered IF signal with the reference signal to produce the I and Q baseband (quadrature) components on output lines 70 and 72, respectively. The mixer 60 is designed to map a frequency which is offset from the IF center frequency by a predefined margin, e.g., from 3 to 300 Hz, to the baseband D.C. frequency. Such a D.C. offset margin allows the automatic gain control loop of Figure 3 to distinguish between an unmodulated FM signal (i.e., a continuous wave (CW) signal) from an input D.C. offset error. Specifically, mixer 60 will preferably be operative to produce an output frequency of approximately 100 Hz in response to an input CW signal at the mid-band IF frequency. In this way, input D.C. offset errors tending to corrupt RSSI power measurements are removed by a D.C. notch filter 66 without attenuating CW signal information.

Referring again to Figure 3, output lines 70 and 72 are respectively connected to baseband I and Q channel lowpass filters (LPFs) 76 and 78. I and Q-channel LPFs 76 and 78 will preferably each be implemented so as to provide lowpass transfer functions exhibiting cutoff frequencies of 13 kHz and 630 kHz, respectively, during FM and CDMA mode operation. In an exemplary embodiment I and Q-channel LPFs 76 and 78 each include a pair of filters, one of which is employed during CDMA mode operation and the other during FM mode operation. The individual filters included within I and Q-channel LPFs 76 and 78 are switched into the baseband I and Q signal paths, respectively, in accordance with the selected mode of operation. In the preferred embodiment, the system controller includes means for switching the filters included within the filter networks in accordance with the operative mode selected.

In addition to performing an anti-aliasing function for A/D converters 86 and 88, I and Q-channel LPFs 76 and 78 also provide out-of-band signal rejection. In the preferred embodiment, filters 76 and 78 have high gain and high stop-band rejection. As a result, IF bandpass filters 51 and 53 can have less stop-band rejection, and therefore can be less expensive.

After filtering by I and Q-channel LPFs 76, 78 and by D.C. notch filter 66, the resulting baseband I and Q signals are provided to RSSI detector 48. RSSI detector 48 provides an output RSSI signal indicative of measured signal power (in dB). The difference between the RSSI signal output by RSSI detector 48 and AGC_REF is integrated within saturating integrator 22 so as to pro-
duce the control voltage V_{AGC}.

Again referring to Figure 3, the I and Q outputs of the I and Q-channel LPFs 76 and 78 are also provided to I and Q analog to digital (A/D) converters 86 and 88, respectively. A/D converters 86 and 88 operate to quantize the baseband I and Q signals for digital demodulation in the selected operate mode, e.g. either CDMA or FM. In the preferred embodiment the dynamic range of A/D converters 86 and 88 is selected to be sufficient to accommodate signals that exceed the control range of the AGC apparatus of IF amplifier 18. As was noted above with reference to Figures 2 and 3, decision logic 46 within saturating integrator 22 constrains the control voltage V_{AGC} to be within the range $AGC_LOW < V_{AGC} < AGC_HIGH$. This prevents amplifier 18 from saturating in a nonlinear operating region.

Accordingly, A/D converters 86 and 88 are designed to quantize input signals, without excessive distortion, whether or not integrator 40 is saturated. In the preferred embodiment, each of A/D converters 86 and 88 provides 6 to 8 bits of dynamic range. This dynamic range is sufficient to prevent degradation in the signal to noise ratio of the input to A/D converters 86 and 88 as compared to the signal to noise ratio of the quantized digital output of A/D converters 86 and 88 for any RF input level. For example, when V_{AGC} reaches AGC_LOW, limiter 54 constrains the amplitude of the IF signal. In this way, the signal level at the input of A/D converters 86 and 88 may exceed the level indicated by AGC_REF by only some fixed amount. Therefore, A/D converters 86 and 88 will continue to accurately quantize the baseband signals at the increased level.

Likewise the dynamic range of A/D converters 86 and 88 is sufficient to prevent degradation of the signal to noise ratio at low RF input signal levels. For example, when V_{AGC} reaches AGC_HIGH and switch 44 opens, if the input RF signal continues to fall, the baseband signal level at the input of A/D converters 86 and 88 falls below the level indicated by AGC_REF. The decreased level of the signal input to A/D converters 86 and 88 results in less than full utilization of the device, i.e., some of the bits of the output of the A/D converters 86 and 88 are not used. For larger RF input signals, the entire dynamic range of the A/D converters 86 and 88 is utilized during the conversion process. Hence, the AGC apparatus of the invention enables a limited range AGC control loop to be used in demodulating signals spanning a substantially larger dynamic range than the control range of the IF amplifier 18.

Figure 5 depicts an exemplary implementation of decision logic 46 operative to control the position of the switch 44. As shown in Figure 5, the AGC_HIGH and V_{AGC} signals are presented to logical comparator 104. When V_{AGC} exceeds the level of AGC_HIGH, the output of comparator 104 becomes a logic level one (1). The output of comparator 104 is logically AND'ed with the output of flip-flop 110, which is at a logic level 1 due to the closed position of switch 44. The output of flip-flop 110 is delayed through delay element 114 to prevent excessive, spurious toggling of the position of switch 44. AND gate 108 and delay element 114 operate to prevent switch 44 from being opened until after a fixed period of time following its closure. The output of AND gate 108 transitions from low to high thus resetting the output of flip-flop 110 to a logic level 0 and producing a logic level 0 at the output of AND gate 120 and opening switch 44. When switch 44 is opened, the RSSI signal and AGC_REF signal are no longer forced by the loop to be equivalent. In the case when AGC_HIGH has been exceeded and the loop is opened, the RSSI signal indicates a smaller signal than AGC_REF and the output of logical comparator 102 becomes a logic level 0. When the RSSI signal exceeds the level of AGC_REF, the output of comparator 102 transitions high and the output of AND gate 106 also transitions high, thus setting the output of flip-flop 110 to logic level 1 and closing switch 44. Delay element 112 and AND gate 106 function similarly to delay element 114 and AND gate 108, and prevent closure of switch 44 until it has been open for a predefined time period.

An analogous sequence of logical operations is executed when the level of the RF input signal exceeds the AGC range. When V_{AGC} falls below the level of AGC_LOW, the output of comparator 118 becomes a logic level 1. The output of comparator 118 is logically AND'ed with the output of flip-flop 124, which is at a logic level 1 when switch 44 is closed. The output of AND gate 122 then transitions from low to high, thus resetting the output of flip-flop 124 to a logic level 0. This causes a logic level 0 to appear at the output of AND gate 130, which results in the opening of switch 44. When switch 44 is opened, the RSSI signal is no longer forced by the loop to be equal to AGC_REF. Upon the loop being opened in this manner the RSSI signal will be larger than AGC_REF and the output of logical comparator 116 will be at logical level 0. When the RSSI signal becomes smaller than AGC_REF, the outputs of comparator 116 and AND gate 120 transition high. The transition sets the output of flip-flop 124 to logic level 1 and closes switch 44. Delay elements 126 and 128 and AND gates 120 and 122 function similarly to delay element 114 and AND gate 108, and serve to prevent rapid toggling of switch 44 between open and closed positions.

The logical output of AND gate 130 can be considered an integration enable signal and is impressed upon a switch control line 124 connected to switch 44. In the preferred embodiment, switch 44 is closed in response to the impression of a logical 1 upon control line 124, and is opened when a logical 0 is impressed thereupon. Integrator decision logic 46 thus controls when the difference between the RSSI and AGC_REF signals is integrated by op amp integrator 40. In this way, integrator decision logic 46 and integrator 40 cooperate to provide the V_{AGC}. The operation of the AGC apparatus of Figure 3 may be described in greater detail with reference to the timing diagrams of Figures 6A-6C. In particular, Fig-
ures 6A and 6B respectively depict the time variation in the power of an exemplary RF signal and the corresponding state (open or closed) of switch 44 within saturating integrator 22. Figure 6C shows the corresponding value of the gain control voltage (V_{AGC}) generated by op amp integrator 40 in response to the RF input signal of Figure 6A.

As is indicated by Figures 6A and 6C, over a first integration interval (t_0 < t < t_1), the power of the RF input signal is confined to the AGC control range of the AGC loop, and accordingly AGC_LOW < V_{AGC} < AGC_HIGH (Figure 6C). At time t=t_1, integrator decision logic 46 determines that V_{AGC} has reached AGC_LOW, and consequently opens switch 44. Switch 44 remains open over the time interval t_1 < t < t_2, during which time integrator 40 is prevented from integrating the difference between RSSI and AGC_REF. During this time the input of A/D converters 86 and 88 is constrained by limiter 54. At time t=t_2 the RF input signal power has again become less than the upper bound of the loop control range, which results in switch 44 being closed by integrator decision logic 46 and V_{AGC} exceeding AGC_LOW. Switch 44 then remains closed over a second integration interval (t_2 < t < t_3) until the control voltage V_{AGC} reaches AGC_HIGH at which time switch 44 is again opened by integrator decision logic 46. During this time the input of A/D converters 86 and 88 varies in response to changes in RF input signal level. In a similar manner switch 44 is closed by integrator decision logic 46 at times t_4, t_5 and t_6 in order to initiate third, fourth and fifth integration intervals.

Referring now to Figure 7, there is shown a preferred embodiment of the AGC loop of the invention in which is included a digital realization of saturating integrator 22. In the embodiment of Figure 7, digital highpass filter 150, rather than analog D.C. notch filter 66, is employed to remove the D.C. offset inherent in the baseband I and Q samples produced by A/D converters 86 and 88. The cutoff frequency of the digital highpass filter 150 is selected to be substantially less than the frequency offset introduced within mixer 60. In an alternate implementation, removal of the D.C. offset may be achieved by:

(i) separately determining averages of the baseband I and Q signal samples, and
(ii) subtracting the resultant D.C. component from each I and Q component prior to further processing.

Digital RSSI detector 154 will typically include a look-up table containing values of log power indexed as a function of the magnitudes of the baseband I and Q samples. Digital RSSI detector 154 approximates log power, i.e., 10 LOG (I^2 + Q^2), by determining the value of \text{LOG(MAX(ABS(I),ABS(Q))))} and the value of a correction term. The operation \text{MAX(ABS(I),ABS(Q))} produces an output value equivalent to the magnitude of the largest component of a given I/Q sample pair. In a particular implementation, this output value serves as an index into a look-up table of log power. The output derived from the look-up table is then added to a correction term approximately equivalent to the difference between \text{LOG (I^2 + Q^2)} and \text{LOG(MAX(ABS(I),ABS(Q))))}.

The received power estimate, i.e., the RSSI signal, produced by digital RSSI detector 154 is supplied to digital subtractor 156 along with the AGC_REF signal. The resulting error signal is then scaled in accordance with a desired loop time constant \tau_d by digital scaling multiplier 162. The loop time constant \tau_d is chosen in accordance with the expected fading characteristics of the RF input signal. Relatively short loop time constants (faster loop response) will generally be selected to enable tracking of signals exhibiting abrupt fading characteristics while slowing the loop response to a level that does not cause excessive overshoot or ringing, given the delays introduced in the loop by filters and other elements.

In a preferred embodiment, scaling multiplier 162 may be programmed to multiply the error signal from digital subtractor 156 by a first loop time constant in response to decaying RSSI signals, and to multiply the error signal by a second loop time constant when the value of the RSSI signal is increasing. This allows for further flexibility in tailoring the AGC loop response on the basis of the fading characteristics of the operational environment and minimizes loop overshoot.

Referring again to Figure 7, a scaled error signal generated by scaling multiplier 162 is provided to saturating accumulator 166. Saturating accumulator 166 operates to accumulate values of the scaled error signal into an aggregate error signal until the aggregate error signal reaches either AGC_HIGH or AGC_LOW. The value of the aggregate error signal is then held at either AGC_HIGH or AGC_LOW until a scaled error signal is received which, after combination with the existing aggregate error signal, results in an aggregate error signal within the range defined by AGC_HIGH and AGC_LOW.

Figure 8 depicts an exemplary discrete time implementation of saturating accumulator 166. As is indicated by Figure 8, the scaled error signal is provided to a first input of a digital adder 170. The scaled error signal is added within digital adder 170 to the aggregate error signal produced in the previous time step by saturating accumulator 166, where the aggregate error signal is stored in register 174. The values of AGC_HIGH and AGC_LOW provided by a system controller (not shown) are stored within second register 178. Minimum and maximum signal clippers 162 and 164, coupled to second register 178, constrain the value of the digital signal provided to first register 174 to within the range defined by AGC_HIGH and AGC_LOW.

The digital implementation of highpass filter 150, RSSI detector 154 and saturating integrator 22 depicted in Figures 7 and 8 offers several advantages relative to corresponding analog realizations. For example, the digital components utilized therein are not susceptible
to temperature drift and allow the integration time constant to be adjusted in accordance with expected signal fading conditions so as to expedite loop signal acquisition. In addition, a filter and integrator implemented in digital form occupy significantly less volume than a corresponding arrangement of discrete resistive and capacitive components.

It is also anticipated that the utilization of a digital RSSI detector and a digital saturating integrator will result in improved accuracy. In particular, during the period when the value of V_{AGC} is required to be maintained at either AGC_HIGH or AGC_LOW, capacitive discharge and the like associated with analog components will generally result in the value of V_{AGC} "dropping" from the desired level over a period of time. The digital implementation of the saturating integrator shown in Figures 7 and 8 does not exhibit the signal "droop" characteristic of analog implementations.

Referring again to Figures 7 and 8, the control signal stored within the first register 174 of saturating accumulator 166 is provided to digital to analog converter (DAC) 190. In a preferred embodiment, the resolution of DAC 190 will be sufficient to provide an output analog AGC step size of less than 1 dB. Alternatively, a pulse width modulated (PWM) or pulse density modulated (PDM) output pulse sequence of 0,1 logic levels is produced in response to the control signal. PDM signaling is explained in U.S. Patent No. 5,337,338, titled "Pulse Density Modulation Circuit (Parallel to Serial) comparing in a Nonsequential Bit Order" and assigned to the Assignee of the present invention. The average value of the output pulse sequence corresponds to the desired analog output voltage.

The analog output provided by DAC 190 is passed through lowpass filter 194 prior to being applied to the gain control port of IF amplifier 18. Lowpass filter 194 is designed to attenuate any spurious output produced by DAC 190.

Referring now to Figure 9, there is shown an alternate preferred embodiment of the AGC loop of invention operative to advantageously suppress undesired D.C. offset signal components without simultaneously destroying carrier frequency signal information. The AGC loop of Figure 9 bears substantial similarity to the AGC loop of Figure 7, and hence like reference numerals are used in the representation of like circuit elements. As noted in the Background of the Invention, in receivers for digital modulation such as QPSK or BPSK, it is common for the frequency of the local oscillator (L.O.) within the IF processing chain to be selected such that the received carrier frequency is downconverted (i.e., mapped) to D.C. Again, however, subsequent baseband processing designed to suppress undesired D.C. feedthrough passed by mixer 60 also tends to destroy signal information centered about the received carrier which occurs for modulation schemes such as FM, and continuous-phase FSK.

In accordance with one aspect of the invention, the L.O. frequency of the oscillator 64 is selected such that the received carrier is mapped to a baseband frequency offset from D.C. by a predetermined margin. A D.C. feedthrough suppression loop 200 (Figure 9) enables cancellation of undesired D.C. feedthrough while simultaneously preserving signal information at the received carrier frequency. In a preferred implementation, the L.O. frequency is chosen to be offset by a small amount (e.g., 100 Hz) from the carrier frequency nominally resulting in downconversion of the received spectrum to baseband. It follows that the I and Q channel signal energy output by the mixer 60 at the predetermined offset frequency (e.g., 100 Hz) corresponds to the information impressed upon the received carrier frequency. The downconverted spectrum, including carrier information, is passed to A/D converters 86 and 88 while undesired D.C. feedthrough from mixer 60 is suppressed. Although this process results in the attenuation of energy at the frequency spaced from the received carrier by the predetermined offset, in many applications (e.g., voice communication), the suppressed low frequency energy carries minimal usable signal information. Accordingly, the D.C. suppression loop 200 advantageously allows cancellation of extraneous D.C. feedthrough without destruction of information present at the received carrier frequency.

As is indicated by Figure 9, the D.C. feedthrough suppression loop 200 includes I and Q channel digital integrator 204 and 206 having input ports operatively coupled to the outputs of I and Q channel LPF's 76 and 78 through A/D converters 86 and 88, respectively. In the embodiment of Figure 9, the integrators 204 and 206 are respectively disposed to integrate the digital outputs of A/D converters 86 and 88. The results of each integration are converted to analog signals by I and Q channel digital to analog converters (D/A) 208 and 210 which are seen to be respectively interposed between the digital integrators 204 and 206 and analog subtractors 212 and 214. The gain constants of digital integrators 204 and 206 may be selected such that integrators 204 and 206 are unresponsive to signal power at frequencies at 100 Hz and above. The resultant D.C. cancellation signals produced by integrators 204 and 206 are nominally equal to the undesired D.C. errors introduced in the signal path by mixer 60, I and Q channel LPF's 76 and 78, and A/D converters 86 and 88. In this way it is ensured that the power level provided to A/D converters 86 and 88, and hence also to the RSSI circuit 154, is indicative of the power level actually received by saturating integrator 22. Hence, the D.C. feedthrough suppression loop 200 functions to maintain the integrity of the received power level even during elimination of undesired D.C. feed through.

Turning now to Figure 10, there is shown an analog implementation of a D.C. feedthrough suppression loop 230 (which can be substituted in Fig. 9 in place of feedthrough suppression loop 200) operative to eliminate undesired D.C. feedthrough while simultaneously
preserving the level of signal power supplied to digital
RSSI detector 154. The L.O. frequency of the oscillator
64 (Fig. 9) is again selected such that the carrier fre-
quency is mapped to a baseband frequency offset from
D.C. by a predetermined margin. The D.C. feedthrough
suppression loop 230, in a manner substantially similar
to that described above with reference to the feedthrough suppression loop 200, enables cancellation
of undesired D.C. feedthrough while simultaneously
preserving signal information at the received carrier
frequency. Specifically, by appropriately selecting the
gains at integrators 234 and 236, the downconverted
carrier information mapped to the offset frequency is
passed to A/D converters 86 and 88. As discussed
above, undesired D.C. feedthrough from mixer 60 is
then suppressed by subtractors 212 and 214.

The D.C. feedthrough suppression loop 230 also
operates to ensure that the baseband signal power
provided to A/D converters 86 and 88, and hence to RSSI
detector 154, is indicative of the signal power actually
received, and is uncorrupted by extraneous D.C. sig-

In an exemplary embodiment it may be desired to
modify the D.C. feedthrough suppression technique de-
scribed above in order to accommodate the reception
of received FM signals corresponding to "multi-tone" an-
alog signals. More particularly, in certain applications
the received FM signal may be representative of a "mul-
ti-tone" waveform comprised of a set of stationary, i.e.,
fixed-frequency, FM signal components, where each
stationary component corresponds to the magnitude or
pitch of a particular analog tone. This may require that
the low-frequency intermodulation products created by
interaction of the multiple FM signal components be
preserved. Accordingly, if a static frequency offset is intro-
duced by the oscillator 64, it is possible that particular
intermodulation products will be mapped to baseband D.C.
(i.e., to the same baseband frequency at which may be present D.C. feedthrough). In this case, it may prove
difficult to distinguish between undesired D.C. feed through and useful signal information mapped
by mixer 60 to baseband D.C. Since the D.C. feedthrough suppression loops 200 and 230 will gener-
ally be designed to cancel substantially all D.C. signal
energy produced by mixer 60, it is conceivable that use-
ful intermodulation information could be eliminated
along with the undesired D.C. feedthrough.

Referring again to Figure 9, in accordance with an-
other aspect of the invention, this difficulty is addressed
by providing an L.O. offset modulator 260 operative to
introduce time varying variation into the D.C. offset ap-
plied to the nominal L.O. frequency. The term "nominal"
L.O. frequency refers to that frequency at which the re-
ceived center carrier frequency is mapped to baseband
D.C. by mixer 60. Because in this case the L.O. offset
frequency supplied to mixer 60 is not static, but instead
varies over a predefined range, received stationary
components will not be continuously mapped to base-
band D.C. but will instead be mapped to baseband fre-
quencies based on variation in the L.O. offset. Hence,
useful low-frequency intermodulation products may be
distinguished from undesired D.C. feedthrough, be-
cause D.C. feedthrough remains at baseband D.C. not-
withstanding variation in the frequency offset applied to
the L.O. oscillator signal. Accordingly, the offset modu-
lator 260 allows the D.C. feedthrough suppression loop
to eliminate undesired D.C. feedthrough while simulta-
neously preserving certain stationary signal information.

The modulated frequency offset introduced to the
nominal L.O. frequency may be characterized in terms of
a mean offset frequency, a minimum and a maximum
offset frequency, and an offset modulation frequency (i.e.,
the rate at which the offset is varied between the min-
imum and maximum offset frequencies). For example,
in a particular embodiment, the mean frequency offset
is selected to be 100 Hz, the minimum and maximum
offsets are respectively chosen to be 50 Hz and 150 Hz,
and the offset modulation frequency is set at 10 Hz.

If the described embodiment is used to build an FM
FSK, or GMSK receiver, then the output of A/D convert-
ers 86 and 88 is fed to an FM demodulator (not shown).
The modulation signal introduced by L.O. offset modu-
lator 260 (10 Hz in preferred embodiment) can be easily
removed after the FM demodulation by a digital high
pass filter with a cutoff frequency somewhat higher than
L.O. offset modulators 260's maximum offset frequency
without affecting audio quality.

Claims

1. An automatic gain control apparatus comprising:

 an adjustable gain amplifier (18) having an in-
 put port for receiving an input signal, a control
 port for receiving a gain control signal (VAGC),
 and an output port for providing an output signal
 (IF);

 a downconverter (20) coupled to said output
 port for downconverting frequency of said out-
 put signal (IF) to a baseband frequency so as to
 produce a baseband signal (BB); and

 a detector means (154) for generating a received
 power signal (RSSI) based on power of said base-
 band signal;

characterized in that:

 said downconverter (20) is operative to map a
 carrier frequency of said output signal (IF) to a
 baseband frequency offset by a predetermined
 margin from D.C.;

 a D.C. feedthrough suppression loop (150,
200) is provided, disposed to receive said baseband signal (BB), for suppressing D.C. feedthrough signals produced by said frequency downconverter (20) and for providing a compensated baseband signal;

said detector means (154) is for generating the received power signal (RSSI) based on said compensated baseband signal; and

saturating integrator means (22) are provided for comparing a received power signal (RSSI) to a reference signal (AGC_REF) and for generating an error signal in response to a result of the comparison, said saturating integrator means (22) including means for providing said gain control signal (V_{AGC}) by selectively integrating said error signal based on values of said error and gain control signals.

2. The automatic gain control apparatus of claim 1, wherein said D.C. feedthrough suppression loop (200) further includes:

a subtractor (212, 214) having a first input for receiving said baseband signal (BB), and an output port operatively coupled to an input of a low-pass filter (76, 78), and

an integrator (204, 206) having an integrator input port operatively coupled to an output port of said low-pass filter (76, 78), and having an integrator output port operatively coupled to a second input of said subtractor (212, 214).

3. The automatic gain control apparatus of claim 2, wherein said D.C. feedthrough suppression loop further includes:

an analog to digital converter (86, 88) coupled to said output port of said low-pass filter (76, 78), and

a digital to analog converter (208, 210) interfaced between said integrator (204, 206) output port and said second input of said subtractor (212, 214).

4. The automatic gain control apparatus of claim 1, wherein said saturating integrator means (22) includes first means (104, 110, 114, 108, 130, 102, 112, 106) for selectively enabling said error signal to be integrated only while magnitude of said gain control signal (V_{AGC}) is less than a first predefined threshold (AGC_LOW) and second means (118, 124, 128, 122, 130, 116, 120, 126) for selectively enabling said error signal to be integrated only while magnitude of said gain control signal (V_{AGC}) exceeds a second predefined threshold (AGC_LOW).

5. The automatic gain control apparatus of claim 1, wherein said downconverter (20) includes:

a mixer (60) having a first input port for receiving said output signal (IF); and

a local oscillator (64) connected to a second input port of said mixer (60), wherein frequency of said local oscillator (64) is selected such that the center frequency of said output signal (IF) is mapped to said baseband frequency (BB) offset by said predetermined margin from D.C.

6. The automatic gain control apparatus of claim 5, wherein said downconverter (20) includes an offset modulator circuit (260) for varying said frequency of said oscillator circuit (64) so as to vary said predetermined margin by which said center frequency of said output signal (IF) is mapped relative to D.C.

7. The automatic gain control apparatus of claim 6, wherein said downconverter (20) includes a mixer (60) coupled to said output port of said adjustable gain amplifier (18), said mixer (60) being operative to downconvert said output signal (IF) to I and Q baseband signal components (I_{BB}, Q_{BB}) of said baseband signal (BB).

8. The automatic gain control apparatus of claim 7, wherein said D.C. feedthrough suppression loop (200) includes first and second low-pass filters (76) and (78) for filtering said I and Q baseband signal components (I_{BB}, Q_{BB}) respectively.

9. The automatic gain control apparatus of Claim 1, wherein said D.C. feedthrough suppression loop is a filter (150), coupled to the downconverter (20), for removing D.C. offset errors and signal in the baseband signal (BB) to generate a filtered signal.

10. The automatic gain control apparatus of claim 9, further including control logic (46) for selectively enabling the difference to be integrated while a magnitude of the gain control signal (V_{AGC}) is less than a first predetermined threshold (AGC_HIGH) and greater than a second predetermined threshold (AGC_LOW).

11. The automatic gain control apparatus of claim 10, wherein the saturating integrator means (22) includes a switch (44) controlled by the control logic (46), in a closed position, the switch (44) coupling the received power signal (RSSI) to an input of an integrator (40) and, in an open position, a capacitor (43) holding the integrator (40) input at one of a plurality of predetermined voltage levels.
12. The automatic gain control apparatus of claim 9, wherein the downconverter (20) is comprised of:

- an intermediate frequency filter (56) coupled to the output port of the adjustable gain amplifier (18);
- an oscillator (64) for generating a frequency reference signal;
- a mixer (60), coupled to the oscillator (64) and the intermediate frequency filter (55), for generating at least one baseband signal component in response to the frequency reference signal and the output signal (IF); and
- at least one low pass filter (76, 78), coupled to the mixer (60), for generating at least one low pass transfer function from the at least one baseband signal component.

13. The automatic gain control apparatus of claim 12, wherein the apparatus operates in either a code division multiple access mode (CDMA) or a frequency modulated (FM) mode and comprises a first filter (51) for operation in the CDMA mode and a second filter (53) for operation in the FM mode.

14. The automatic gain control apparatus of Claim 1, wherein said control port is for receiving an analog gain control signal (V_{AGC}), characterized by the provision of:

- at least two analog to digital converters (86, 88), each coupled to a different baseband signal component of the baseband signal (BB), each analog to digital converter (86, 88) generating a digital representation of the respective baseband signal component; and
- a digital to analog converter (190) coupled between the saturating integrator means (22) and the adjustable gain amplifier (18), the digital to analog converter (190) generating the analog gain control signal (V_{AGC}) from a digital gain control signal.

15. The apparatus of claim 14, wherein the saturating integrator means (22) comprises:

- a subtractor (155) coupled to the detector means (154), the subtractor (155) generating the error signal in response to a difference between the received power signal (RSSI) and the reference signal (AGC_REF);
- a scaling multiplier (162), coupled to the subtractor (158), that generates a scaled error signal by multiplying the error signal by a first constant when the received power signal (RSSI) is decreasing in value and multiplying the received power signal (RSSI) by a second constant when the power level signal is increasing in value; and
- an accumulator (166), coupled to the scaling multiplier (162), that generates the digital gain control signal by accumulating the scaled error signal, the accumulator (166) holding the digital gain control signal at a minimum predetermined threshold (AGC_LOW) when the accumulated scaled error signal decreases to the minimum predetermined threshold and the accumulator (166) holding the digital gain control signal (AGC_HIGH) at a maximum predetermined threshold when the accumulated scaled error signal increases to the maximum predetermined threshold.

16. The apparatus of claim 14, further including a low pass filter (194) coupling the digital to analog converter (190) to the adjustable gain amplifier (18).

17. A method for automatic gain control using an adjustable gain amplifier (18), the adjustable gain amplifier having an input port for receiving an input signal, a control port for receiving a gain control signal (V_{AGC}), and an output port for providing an output signal (IF), the method comprising the steps of:

- downconverting frequency of said output signal (IF) to a baseband frequency so as to produce a baseband signal (BB); and
- generating a received power signal (RSSI) based on power of said baseband signal;

characterized by the steps of:

- mapping a carrier frequency of said output signal (IF) to a baseband frequency offset by a predetermined margin from D.C.;
- suppressing D.C. feedthrough signals accompanying said baseband signal (BB) so as to provide a compensated baseband signal;
- generating the received power signal (RSSI) based on said compensated baseband signal; and
- integrating selectively a difference between said received power signal (RSSI) and a reference signal (AGC_REF) based on values of said difference and said gain control signal.
18. The method of claim 17, wherein said gain control signal (V_{AGC}) is generated by integrating the difference only when the value of the gain control signal (V_{AGC}) is greater than a minimum predetermined threshold (AGC_{LOW}) and less than a maximum predetermined threshold (AGC_{HIGH}).

19. The method of Claim 17, wherein said gain control signal (V_{AGC}) is an analog signal, comprising the steps of:

 generating a digital representation of respective baseband signals (BB);

 generating a digital gain control signal by selectively integrating said difference in response to values of the difference and the digital gain control signal; and

 converting the digital gain control signal to the analog gain control signal (V_{AGC}).

20. The method of claim 19, wherein the step of generating a digital gain control signal further includes integrating the difference only when the value of the digital gain control signal is greater than a minimum predetermined threshold (AGC_{LOW}) and less than a maximum predetermined threshold (AGC_{HIGH}).

Patentansprüche

1. Automatische Verstärkungssteuervorrichtung, die folgendes aufweist:

 einen Verstärker (18) mit einstellbarer Verstärkung mit einem Eingangsanschluß zum Empfang eines Eingangssignals, einem Steueranschluß zum Empfang eines Verstärkungssteuersignals (V_{AGC}) und einem Ausgangsanschluß zum Liefern eines Ausgangssignals (IF);

 einen mit dem Ausgangsanschluß gekoppelten Abwärtsumwandler (20) zum Abwärtsumwandeln der Frequenz des Ausgangssignals (IF) auf eine Basisbandfrequenz, um so ein Basisbandsignal (BB) zu erzeugen; und

 Detektormittel (154) zur Erzeugung eines Leistungsempfangssignals (received power signal = RSSI) basierend auf der Leistung des erwähnten Basisbandsignals;

 dadurch gekennzeichnet, daß:

 der Abwärtsumwandler (20) betriebsmäßig eine Trägerfrequenz des erwähnten Ausgangssignals (IF) auf eine Basisbandfrequenz abbil-

det, und zwar versetzt um einen vorbestimmten Betrag gegenüber DC (Gleichstrom bzw. Gleichspannung); eine DC-Durchführungsunterdrückungsschleife (150, 200) vorgesehen ist, und zwar angeordnet zum Empfang des erwähnten Basisbandsignals (BB) zur Unterdrückung von DC-Durchführungsignalen erzeugt durch den erwähnten Abwärtsumwandler (20) und zum Vorsehen eines kompensierten Basisbandsignals; wobei die erwähnten Detektormittel (154) zur Erzeugung des Leistungsempfangssignals (RSSI) dienen, basierend auf dem erwähnten kompensierten Basisbandsignal, und Sättigungsintegratormittel (22) vorgesehen sind, um ein Leistungsempfangssignal (RSSI) mit einem Bezugsignal (AGC_{REF}) zu vergleichen und zur Erzeugung eines Fehlersignals anprechend auf das Vergleichsergebnis, wobei die erwähnten Sättigungsintegratormittel (22) Mittel aufweisen zur Erzeugung des Verstärkungssteuersignals (V_{AGC}) durch selektives Integrieren des erwähnten Fehlersignals basierend auf Werten der Fehler- und Verstärkungssteur-Signale.

2. Automatische Verstärkungssteuervorrichtung nach Anspruch 1, wobei die DC-Durchführungsunterdrückungsschleife (200) ferner folgendes aufweist:

 Subtraktionsmittel (212, 214) mit einem ersten Eingang zum Empfang des erwähnten Basisbandsignals (BB) und mit einem Ausgangsanschluß, der betriebsmäßig mit einem Eingang eines Tieftiefpasses (76, 78) gekoppelt ist, und einen Integrator (204, 206) mit einem Integratoreingangsanschluß betriebsmäßig gekoppelt mit einem Ausgangsanschluß des erwähnten Tieftiefpasses (76, 78) und mit einem Integratorausgangsanschluß betriebsmäßig gekoppelt mit einem zweiten Eingang der Subtraktionsmittel (212, 214).

3. Automatische Verstärkungssteuervorrichtung nach Anspruch 2, wobei die DC-Durchführungsunterdrückungsschleife ferner folgendes aufweist:

 einen Analog-zu-Digital-Umwandler (86, 88) gekoppelt mit dem Ausgangsanschluß des erwähnten Tieftiefpasses (76, 78) und einen Digital-zu-Analog-Umwandler (208, 210) angeordnet, zwischen dem Ausgangsanschluß des Integrators (204, 206) und dem erwähnten zweiten Eingang der Subtraktionsmittel (212, 214).

4. Automatische Verstärkungssteuervorrichtung nach
Anspruch 1, wobei die Sättigungsintegratormittel (22) erste Mittel (104, 110, 114, 108, 130, 102, 112, 106) aufweisen, um das erwähnte Fehlersignal selektiv in die Lage versetzen, integriert zu werden, nur dann wenn die Größe des erwähnten Verstärkungssteuersignals (V_{AGC}) kleiner ist als eine erste vordefinierte Schwelle (AGC_{HIGH}), und mit zweiten Mitteln (118,124, 128, 122, 130, 116, 120, 126) zum selektiven In-die-Lage-Versetzen des Fehlersignals, nur dann integriert zu werden während die Größe des erwähnten Verstärkungssteuersignals (V_{AGC}) eine zweite vordefinierte Schwelle (AGC_{LOW}) übersteigt.

5. Automatische Verstärkungsvorrichtung nach Anspruch 1, wobei der Abwärtsumwandler (20) folgender aufweist:

- einen Mischer (60) mit einem ersten Eingangsanschluß zum Empfang des erwähnten Ausgangssignals (IF); und
- einen Oszillator (Empfangsoszillator) (64) verbunden mit einem zweiten Eingangsanschluß des Mischers (60), wobei die Frequenz des Oszillators (64) daran gewählt ist, daß die Mittelfrequenz des Ausgangssignals (IF) auf die Basisbandfrequenz (BB) abgebildet wird, und zwar versetzt um den vorbestimmten Betrag gegenüber DC.

10. Automatische Verstärkungsvorrichtung nach Anspruch 9, wobei der Steueroelogik (46) vorgesehen ist, um selektiv zu ermöglichen, daß die Differenz integriert wird während eine Größe des Verstärkungssteuersignals (V_{AGC}) kleiner ist als eine erste vorbestimmte Schwelle (AGC_{HIGH}) und größer als eine zweite vorbestimmte Schwelle (AGC_{LOW}).

15. Automatische Verstärkungsvorrichtung nach Anspruch 10, wobei die Sättigungsintegratormittel (22) einen Schalter (44) gesteuert durch die Steueroelogik (46) aufweisen, wobei in einer geschlossenen Position der Schalter (44) das Leistungsempfangssignal (RSSI) mit einem Eingang eines Integrators (40) koppelt und in einer offenen Position einen Kondensator (43) den Eingang des Integrators (40) auf einem der Vielzahl von vorbestimmten Spannungsspegeln hält.

20. Automatische Verstärkungsvorrichtung nach Anspruch 9, wobei der Abwärtsumwandler (20) folgendes aufweist:

- einen Zwischenfrequenzfilter (56) gekoppelt mit dem Ausgangsanschluß des Verstärkers (16) mit einstelliger Verstärkung;
- einen Oszillator (64) zur Erzeugung eines Frequenzbezugsgeignals;
- einen Mischer (60) gekoppelt mit dem Oszillator (64) und dem Zwischenfrequenzfilter (56) zur Erzeugung von mindestens einer Basisbandsignalkomponente entsprechen auf das Frequenzkeuzsignal und das Ausgangssignal (IF); und
- mindestens einen Tiefpaßfilter (76, 78) gekoppelt mit dem Mischer (60) zur Erzeugung von mindestens einer Tiefpaßübertragungsfunktion aus der mindestens einen Basisbandsignalkomponente.

25. Automatische Verstärkungsvorrichtung nach Anspruch 12, wobei die Vorrichtung entweder in einer Codedivisionsmehrfachzugriffsbetriebsart (CDMA) oder in einer frequenzmodulierten (FM) Betriebsart arbeitet und einen ersten Filter (51) aufweist für den Betrieb in der CDMA-Betriebsart und einen zweiten Filter (53) für den Betrieb in der FM-Betriebsart.

30. Automatische Verstärkungsvorrichtung nach Anspruch 1, wobei die Steueroanschluß zum Emp-
fang eines analogen Verstärkungssteuersignals (V_{AGC}) dient und durch das Vorsehen von folgender dem gekennzeichnet ist; mindestens zwei Analog-zu-Digital-Umwandler (86, 88), deren jeder mit einer unterschiedlichen Basisbandsignalkomponente des Basisbands (BB) gekoppelt ist, wobei jeder Analog-zu-Digital-Umwandler (86, 88) eine Digital-darstellung der entsprechenden Basisbandsignalkomponente erzeugt; und ein Digital-zu-Analog-Umwandler (190) gekoppelt zwischen den Sättigungsintegratormitteln (22) und dem Verstärker (18) mit einstellbarer Verstärkung, wobei der Digital-zu-Analog-Umwandler (190) das analoge Verstärkungssteuersignal (V_{AGC}) aus einem digitalen Verstärkungssteuersignal erzeugt.

15. Vorrichtung nach Anspruch 14, wobei die Sättigungsintegratormittel (22) folgendes aufweisen:

Subtraktionsmittel (159) gekoppelt mit den Detektormitteln (154), wobei die Subtraktionsmittel (158) ein Fehlersignal erzeugen, und zwar ansprechend auf eine Differenz zwischen dem empfangenen Leistungssignal (RSSI) und dem Bezugsignal (AGC_REF), einen Skalier- oder Maßstabsmultiplizierer (162) gekoppelt mit den Subtraktionsmitteln (158), wobei der Multiplizierer (162) ein Maßstabs- oder Skalierfehlersignal erzeugt, und zwar durch Multiplizieren des Fehlersignals mit einer ersten Konstante, wenn das empfangene Leistungssignal (RSSI) in seinem Wert abnimmt und Multiplizieren des empfangenen Leistungssignals (RSSI) mit einer zweiten Konstante, dann wenn das Leistungspegelsignal in seinem Wert ansteigt, und ein Akkumulator (165) gekoppelt mit dem Skaliermultiplizierer (162), wobei der Akkumulator das digitale Verstärkungssteuersignal erzeugt, und zwar durch Akkumulieren des skalierter Fehlersignals, und wobei der Akkumulator (166) das digitale Verstärkungssteuersignal auf einer minimalen vorbestimmten Schwelle (AGC_LOW) hält, wenn das akkumuliertes skalierter Fehlersignal auf die minimale vorbestimmte Schwelle abnimmt, und wobei der Akkumulator (166) das digitale Verstärkungssteuersignal (AGC_HIGH) auf einer maximalen vorbestimmten Schwelle dann hält, wenn das akkumuliertes skalierter Fehlersignal auf die maximale vorbestimmte Schwelle ansteigt.

16. Vorrichtung nach Anspruch 14, wobei ferner ein Tiefpaßfilter (194) vorgesehen ist, welches den Digital-zu-Analog-Umwandler (190) mit der eine einstellbare Verstärkung besitzenden Verstärker (18) koppelt oder verbindet.

17. Verfahren zur automatischen Verstärkungssteuerung unter Verwendung eines Verstärkers (18) mit einstellbarer Verstärkung, wobei der verstärker mit einstellbarer Verstärkung einen Eingangsanschluß aufweist zum Empfang eines Eingangssignals, einen Steuerranschluß zum Empfang eines Verstärkungssteuersignals (V_{AGC}) und einen Ausgangsanschluß zum Liefern eines Ausgangssignals (IF), wobei das Verfahren die folgenden Schritte aufweist:

Herabwandeln der Frequenz des erwähnten Ausgangssignals (IF) auf eine Basisbandfrequenz, um so ein Basisbandsignal (BB) zu erzeugen; und Erzeugen eines Leistungspegelsignals (RSSI) basierend auf der Leistung des Basisbandsignals.

gekennzeichnet durch die folgenden Schritte:

Abbildern einer Trägerfrequenz des erwähnten Ausgangssignals (IF) auf eine Basisbandfrequenz versetzt (Offset) um einen vorbestimmten Betrag gegenüber DC; Unterdrücken der DC-Durchführungssignale, die das erwähnte Basisbandsignal (BB) begleiten, um so ein kompensiertes Basisbandsignal vorzusehen; Erzeugen des Leistungsempfangssignals (RSSI) basierend auf dem erwähnten kompensierten Basisbandsignal; und selektives Integrieren einer Differenz zwischen dem erwähnten Leistungsempfangssignal (RSSI) und einem Bezugsignal (AGC_REF) basierend auf Werten der erwähnten Differenz und dem erwähnten Verstärkungssteuersignal.

18. Verfahren nach Anspruch 17, wobei das Verstärkungssteuersignal (V_{AGC}) erzeugt wird durch Integrieren der Differenz nur dann, wenn der Wert des Verstärkungssteuersignals (V_{AGC}) größer ist als eine minimale vorbestimmte Schwelle (AGC_LOW) und kleiner als eine maximale vorbestimmte Schwelle (AGC_HIGH).

19. Verfahren nach Anspruch 17, wobei das Verstärkungssteuersignal (V_{AGC}) ein Analogsignal ist, wo bei die folgenden Schritte vorgesehen sind:

Erzeugen einer digitalen Darstellung entsprechender Basisbandsignale (BB); Erzeugen eines digitalen Verstärkungssteuersignals durch selektives Integrieren der Differenzansprechend auf Werte der Differenz und des digitalen Verstärkungssteuersignals; und Umwandeln des digitalen Verstärkungssteuersignals in das analoge Verstärkungssteuersi-
signal (V\textsubscript{AGC}).

Revendications

1. Appareil de commande automatique de gain comprenant :

un amplificateur à gain réglable (18) ayant un accès d'entrée pour recevoir un signal d'entrée, un accès de commande pour recevoir un signal de commande de gain (V\textsubscript{AGC}), et un accès de sortie pour fournir un signal de sortie (IF) ;

un convertisseur abaisseur (20) couplé à l'accès de sortie pour abaisser la fréquence du signal de sortie (IF) vers une fréquence de bande de base de façon à produire un signal de bande de base (BB) ;

un moyen détecteur (154) pour produire un signal de puissance reçue (RSSI) sur la base de la puissance du signal de bande de base ;

caractérisé en ce que :

le convertisseur abaisseur (20) agit pour mapper une fréquence portante du signal de sortie (IF) vers une fréquence de base décalée d'une marge prédéterminée par rapport au continu ;

une boucle de suppression de transmission de continu (150, 200) est prévue, et est disposée pour recevoir le signal de bande de base (BB) pour supprimer les signaux de transmission de continu produits par le convertisseur abaisseur de fréquence (20) et pour fournir un signal de bande de base compensé ;

le moyen détecteur (154) est destiné à produire le signal de puissance reçue (RSSI) sur la base du signal de bande de base compensé ;

et un moyen intégrateur à saturation (22) est prévu pour comparer le signal de puissance reçue (RSSI) à un signal de référence (AGC_REF) et pour produire un signal d'erreur en réponse au résultat de la comparaison, le moyen intégrateur à saturation (22) comprenant un moyen pour fournir le signal de commande de gain (V\textsubscript{AGC}) en intégrant sélectionnément le signal d'erreur sur la base des valeurs des signaux d'erreur et de commande de gain.

2. Appareil de commande automatique de gain selon la revendication 1, dans lequel la boucle de suppression de transmission continue (200) comprend en outre :

un soustracteur (212, 214) ayant une première entrée pour recevoir le signal de bande de base (BB), et un accès de sortie coupé opérativement à une entrée d'un filtre passe-bas (76, 78) ;

et un intégrateur (204, 206) ayant un accès d'entrée d'intégrateur opérativement coupé à un accès de sortie du filtre passe-bas (76, 78), et ayant un accès de sortie d'intégrateur coupé opérativement à une seconde entrée du soustracteur (212, 214).

3. Appareil de commande automatique de gain selon la revendication 2, dans lequel la boucle de suppression de transmission continue comprend en outre :

un convertisseur analogique-numérique (86, 88) coupé à l'accès de sortie du filtre passe-bas (76, 78) ;

et un convertisseur numérique-analogique (208, 210) interposé entre l'accès de sortie de l'intégrateur (204, 206) et la seconde entrée du soustracteur (212, 214).

4. Appareil de commande automatique de gain selon la revendication 1, dans lequel le moyen d'intégrateur à saturation (22) comprend un premier moyen (104, 110, 114, 108, 130, 102, 112, 106) pour valider sélectivement le signal d'erreur à intégrer seulement quand l'amplitude du signal de commande de gain (V\textsubscript{AGC}) est inférieure à un premier seuil déterminé (AGC_HIGH) et un second moyen (118, 124, 128, 122, 130, 116, 120, 126) pour valider sélectivement le signal d'erreur à intégrer seulement quand l'amplitude du signal de commande de gain (V\textsubscript{AGC}) dépasse un second seuil prédéterminé (AGC_LOW).

5. Appareil de commande automatique de gain selon la revendication 1, dans lequel le convertisseur abaisseur (20) comprend :

un mélangeur (60) ayant un premier accès d'entrée pour recevoir le signal de sortie (IF) ;

et un oscillateur local (64) connecté à un second accès d'entrée du mélangeur (60), la fréquence de l'oscillateur local (64) étant choisie pour que la fréquence centrale du signal de sortie (IF) soit mappée sur la fréquence de bande de base (BB) décalée de ladite marge prédéterminée par rapport au continu.
6. Appareil de commande automatique de gain selon la revendication 5, dans lequel le convertisseur abaisseur (20) comprend un circuit modulateur d'offset (280) pour faire varier la fréquence du circuit oscillateur (64) pour faire varier ladite marge prédéterminée dont la fréquence centrale du signal de sortie (IF) est mappée par rapport au continu.

7. Appareil de commande automatique de gain selon la revendication 6, dans lequel le convertisseur abaisseur (20) comprend un mélangeur (60) couplé à l'accès de sortie de l'amplificateur à gain réglable (15), le mélangeur (60) agissant pour convertir vers le bas le signal de sortie (IF) en composantes de signal de bande de base I et Q (I_{BB}, Q_{BB}) du signal de bande de base (BB).

8. Appareil de commande automatique de gain selon la revendication 7, dans lequel la boucle de suppression de transmission continue (200) comprend des premier et second filtres passe-bas (76, 78) pour filtrer les composantes de signal de bande de base I et Q (I_{BB}, Q_{BB}) respectivement.

9. Appareil de commande automatique de gain selon la revendication 1, dans lequel la boucle de suppression de transmission continue est un filtre (150) couplé au convertisseur abaisseur (20) pour supprimer les erreurs d'offset continu et le signal dans la bande de base (BB) pour produire un signal filtré.

10. Appareil de commande automatique de gain selon la revendication 9, comprenant en outre un circuit logique de commande (46) pour valider sélectivement la différence à intégrer quand l'amplitude du signal de commande de gain (V_{AGC}) est inférieure à un premier seuil prédéterminé (AGC_HIGH) et supérieure à un second seuil prédéterminé (AGC_LOW).

11. Appareil de commande automatique de gain selon la revendication 10, dans lequel le moyen intégrateur à saturation (22) comprend un commutateur (44) commandé par le circuit logique de commande (46), en position fermée le commutateur (44) couplant le signal de puissance reçu (RSSI) vers une entrée d'un intégrateur (40) et, en position ouverte, un condensateur (43) maintenue l'entrée (40) de l'intégrateur à l'un d'une pluralité de niveaux de tension prédéterminés.

12. Appareil de commande automatique de gain selon la revendication 9, dans lequel le convertisseur abaisseur (20) comprend :

- un filtre à fréquence intermédiaire (56) couplé à l'accès de sortie de l'amplificateur à gain réglable (18); un oscillateur (64) pour produire un signal de référence de fréquence;
- un mélangeur (60) couplé à l'oscillateur (64) et au filtre à fréquence intermédiaire (56) pour produire au moins une composante de signal en bande de base en réponse au signal de référence de fréquence et au signal de sortie (IF); et
- au moins un filtre passe-bas (76, 78) couplé au mélangeur (60) pour produire au moins une fonction de transfert passe-bas à partir d'au moins une composante de signal en bande de base.

13. Appareil de commande automatique de gain selon la revendication 12, fonctionnant dans un mode d'accès multiple par différence de code (CDMA) ou un mode de modulation de fréquence (FM) et comprenant un premier filtre (51) pour fonctionner dans le mode CDMA et un second filtre (53) pour fonctionner dans le mode FM.

14. Appareil de commande automatique de gain selon la revendication 1, dans lequel l'accès de commande est destiné à recevoir un signal de commande de gain analogique (V_{AGC}), caractérisé en ce qu'il comprend :

- au moins deux convertisseurs analogique-numérique (86, 88) dont chacun est couplé à une composante de signal de bande de base différente du signal de bande de base (BB), chaque convertisseur analogique-numérique (86, 88) produisant une représentation numérique de la composante de signal en bande de base respective;
- et un convertisseur numérique-analogique (190) couplé entre le moyen d'intégrateur à saturation (22) et l'amplificateur à gain réglable (18), le convertisseur numérique-analogique (190) produisant le signal de commande de gain analogique (V_{AGC}) à partir d'un signal de commande de gain numérique.

15. Appareil selon la revendication 14, dans lequel le moyen d'intégrateur à saturation (22) comprend :

- un soustracteur (158) couplé au moyen détecteur (154), le soustracteur (158) produisant le signal d'erreur en réponse à une différence entre le signal de puissance reçu (RSSI) et le signal de référence (AGC_REF);
- un multiplicateur de normalisation (162) couplé au soustracteur (158) qui produit un signal d'erreur normalisé en multipliant le signal d'erreur par une première constante quand le signal de puissance reçu (RSSI) est en train de diminuer et en multipliant le signal de puissance re-
çue (RSSI) par une deuxième constante quand le signal de niveau de puissance est en train d'augmenter ; et un accumulateur (166) couplé au multiplicateur de normalisation (162) qui produit le signal de commande de gain numérique en cumulant le signal d'erreur normalisé, l'accumulateur (166) maintenant le signal numérique de commande de gain à un seuil minimum prédéterminé (AGC_LOW) quand le signal d'erreur normalisé cumulé diminue jusqu'au seuil minimum prédéterminé, et l'accumulateur (166) maintenant le signal numérique de commande de gain (AGC_HIGH) à un seuil maximum prédéterminé quand le signal d'erreur normalisé cumulé augmente jusqu'au seuil maximum prédéterminé.

16. Appareil selon la revendication 14, comprenant en outre un filtre passe-bas (194) couplant le convertisseur numérique-analogique (190) à l'amplificateur à gain réglable (18).

17. Procédé de commande automatique de gain utilisant un amplificateur à gain réglable (18), l'amplificateur à gain réglable ayant un accès d'entrée pour recevoir un signal d'entrée, un accès de commande pour recevoir un signal de commande de gain (V_{AGC}) et un accès de sortie pour fournir un signal de sortie (IF), ce procédé comprenant les étapes suivantes :

- convertir vers le bas la fréquence du signal de sortie (IF) vers une fréquence de bande de base de façon à produire un signal de bande de base (BB) ;
- produire un signal de puissance reçue (RSSI) sur la base de la puissance du signal de bande de base ;

caractérisé par les étapes suivantes :

- mapper une fréquence porteuse du signal de sortie (IF) vers une fréquence de bande de base décalée d'une marge prédéterminée par rapport au continu ;
- supprimer les signaux de transmission de continu accompagnant le signal de bande de base (BB) de façon à fournir un signal de bande de base compensé ;
- produire le signal de puissance reçue (RSSI) sur la base du signal de bande de base compensé ;
- intégrer sélectivement la différence entre le signal de puissance reçue (RSSI) et un signal de référence (AGC_REF) sur la base des valeurs de ladite différence et du signal de commande de gain.

18. Procédé selon la revendication 17, dans lequel le signal de commande de gain (V_{AGC}) est produit en intégrant la différence seulement quand la valeur du signal de commande de gain (V_{AGC}) est supérieure à un seuil minimum prédéterminé (AGC_LOW) et inférieure à un seuil maximum prédéterminé (AGC_HIGH).

19. Procédé selon la revendication 17, dans lequel le signal de commande de gain (V_{AGC}) est un signal analogique comprenant les étapes suivantes :

- produire une représentation numérique des signaux de bande de base respectifs (BB) ;
- produire un signal numérique de commande de gain en intégrant sélectivement ladite différence en réponse à des valeurs de ladite différence et du signal numérique de commande de gain ;
- convertir le signal numérique de commande de gain en un signal analogique de commande de gain (V_{AGC}).

20. Procédé selon la revendication 19, dans lequel l'étape consistant à produire un signal numérique de commande de gain comprend en outre l'étape consistant à intégrer ladite différence seulement quand la valeur du signal numérique de commande de gain est supérieure à un seuil minimum prédéterminé (AGC_LOW) et inférieure à un seuil maximum prédéterminé (AGC_HIGH).
FIG. 8