(45) Date of publication and mention of the grant of the patent: 06.05.1999 Bulletin 1999/18

(21) Application number: 95306179.3

(22) Date of filing: 04.09.1995

(54) Bicycle chainwheel
Fahrradkettenrad
Pignon à chaîne pour bicyclette

(84) Designated Contracting States:
DE FR GB IT

(43) Date of publication of application:
13.03.1996 Bulletin 1996/11

(73) Proprietor: Shimano Inc.
Osaka 590 (JP)

(72) Inventor:
Nakamura, Yasushi,
c/o Shimano Inc.
Sakai, Osaka 590 (JP)

(74) Representative:
Pacitti, Pierpaolo A.M.E. et al
Murgitroyd and Company
373 Scotland Street
Glasgow G5 8QA (GB)

(56) References cited:
EP-A- 0 474 139
EP-A- 0 479 032
EP-A- 0 510 361

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
DESCRIPTION

BACKGROUND OF THE INVENTION

[0001] The present invention is directed to bicycle chainwheels and, more particularly, to a bicycle chainwheel of the type having missing teeth or teeth shaped differently from other teeth on the chainwheel.

[0002] Figure 7 is a view from the bottom of part of a known rear multi-gear chainwheel mounted on the rear hub of a bicycle. The drive face of two of the ordinary teeth 4 is removed to produce smooth-disengagement teeth 5 in which the tooth width d thereof is smaller than the tooth width D of the ordinary teeth 4.

[0003] In general, the pitch between the ordinary teeth 4 is set to p-α (where p is the pitch of the chain 3 hooked onto the chainwheel 1'), which is somewhat smaller than the chain pitch p so that the engagement with the chain 3 will be smoother. Furthermore, the sum of the pitches P between the ordinary tooth 4 immediately ahead of the smooth-disengagement teeth 5 and the ordinary tooth 4 immediately behind is set to be the sum of the pitches p-α between the ordinary teeth 4, i.e., (p-α) × 3.

[0004] Similarly, although not depicted in the figures, there are also chainwheels in which the number of teeth of the chainwheel were removed to facilitate shifting, or in which some of the teeth are bent into chain guard stays. In these chainwheels the sum of the pitches P between the ordinary teeth immediately ahead of and behind the removed or bent teeth is also set to be (p-α) × (N+1). In this case N is the number of continuous removed teeth or the number of continuous bent teeth.

[0005] In a chainwheel composed solely of ordinary teeth 4 (i.e., no smooth-disengagement teeth 5 are provided and none of the teeth are bent), the drive force is transmitted when the roller 3a of the chain 3 comes into contact with the drive face of the forwardmost ordinary tooth 4 in the drive direction. When the chain 3 is disengaged from this forwardmost ordinary tooth 4, the next roller 3a of the chain 3 comes into contact with the next ordinary tooth 4, but there is a gap of α, which is the difference between the chain pitch p and the tooth pitch p-α, between the drive face of the next ordinary tooth 4 and the next roller 3a. Consequently, the chain 3 or the chainwheel moves forward relatively by this distance α, after which the drive face of the next ordinary tooth 4 and the next roller 3a come into contact. This occurs with each tooth, so the presence of the gap α generates a sound referred to as clicking.

[0006] In the above chainwheel 1' having the smooth-disengagement teeth 5, the smooth-disengagement teeth 5 produced by removal of the drive face do not participate in the transmission of drive force as much as do the ordinary teeth 4, and those teeth that are completely removed or bent do not play any part in the transmission of drive force. Nevertheless, the chainwheels are still constructed with the gap of α for each tooth as noted above. Thus, when an α equal to the number of smooth-disengagement teeth 5 is added and there are two continuous smooth-disengagement teeth 5 (for example), then a gap of 3α will be present between the roller 3a and the ordinary tooth 4 immediately behind the smooth-disengagement teeth 5. The sudden motion of the chain or chainwheel as it moves across this relatively large gap, in contrast to a gap of α in the normal case, interferes with smooth pedaling and causes a very unpleasant noise. The same holds true for chainwheels having completely removed or bent teeth.

SUMMARY OF THE INVENTION

[0007] The present invention is directed to a bicycle chainwheel of the type having missing teeth or teeth shaped differently from other teeth on the chainwheel and which substantially reduces or eliminates unpleasant noises and rough operation. In one embodiment of the present invention, a bicycle chainwheel has a plurality of first teeth spaced at (p-α) from each other, where p is the chain pitch, and a second tooth shaped differently from at least one of the first teeth. A sum of the pitch P between one of the first teeth disposed immediately ahead of the second tooth in a driving direction of the chainwheel and another one of the first teeth disposed behind the second tooth is greater than 2(p-α). If desired, P may be approximately equal to 2(p-α) + α.

In the case where there is a plurality N of the second teeth disposed adjacent to each other, where N is an integer greater than one, then P is preferably greater than (p-α) × (N+1), and, if desired, approximately equal to ((p-α) × (N+1)) + Nα. In the case of a chainwheel having missing teeth, then a sum of the pitch P between one of the plurality of teeth and a second one of the plurality of teeth disposed adjacent thereto is preferably greater than (p-α) × (N+1), where N is an integer greater than zero.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Fig. 1 is a side view of a particular embodiment of a bicycle chainwheel assembly according to the present invention;
Fig. 2 is a bottom view of the chainwheel assembly shown in Fig. 1;
Fig. 3 is a bottom view of the chainwheel assembly shown in Fig. 1 illustrating a chain switching from one chainwheel to another chainwheel;
Fig. 4 is an enlarged detail side view of a particular embodiment of one of the chainwheels shown in Fig. 1;
Fig. 5 is a side view of an alternative embodiment of a bicycle chainwheel assembly according to the present invention;
Fig. 6 is a plan view of the chainwheel assembly shown in Fig. 5; and

Fig. 7 is a bottom view of a known chainwheel assembly.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0009] Figure 1 is a side view of a particular embodiment of a rear multi-gear chainwheel according to the present invention that is mounted on the rear hub of a bicycle. This chainwheel usually comprises about eight chainwheels of different diameter, but for the sake of simplicity, only two chainwheels of different diameter are shown, namely, a chainwheel with an arbitrarily selected large diameter and a smaller-diameter chainwheel 2 that is adjacent to this large-diameter chainwheel. The rest of the chainwheels are not depicted. In Figure 1, the chain 3 that had been hooked onto the large-diameter chainwheel 1 is about to be downshifted onto the small-diameter chainwheel 2 by a derailleur (not shown).

[0010] Almost all of the numerous teeth on the above-mentioned large-diameter chainwheel 1 are ordinary teeth 4, but two specific, continuous teeth are smooth-disengagement teeth 5 from which the chain 3 is readily disengaged. More specifically, as shown in Figure 2, the drive face 5a side of the smooth-disengagement teeth 5, which comes in contact with the roller 3a of the chain 3 during drive, has been removed somewhat, so that the tooth width d of this smooth-disengagement teeth 5 is smaller than the tooth width D of the other ordinary teeth 4. As shown in more detail in Figure 4, the area around the bottom of the tooth of the drive face 4a of the ordinary tooth 4 forms a circular surface with a radius of R, and the area around the bottom of the drive face 5a of the smooth-disengagement teeth 5 forms a circular surface with a radius of r, which is larger than the radius R. As a result, the tooth width d of the smooth-disengagement teeth 5 is smaller than the tooth width D of the ordinary tooth 4.

[0011] Since the tooth width d of the smooth-disengagement teeth 5 is smaller than the tooth width D of the ordinary teeth 4, as shown in Figure 3, the inner link and 3b of the chain 3 does not come into contact with these smooth-disengagement teeth 5 during shifting by the derailleur (not shown). The chain 3 is inclined as desired, and this chain 3 is readily disengaged from the large-diameter chainwheel 1 and changed onto the adjacent small-diameter chainwheel 2. Thus, as to how much larger the radius of the smooth-disengagement teeth 5 should be than the radius R of the drive face 4a of the ordinary teeth 4, it should be large enough that the inner link or 3b of the chain 3 does not come into contact with the smooth-disengagement teeth 5 during shifting.

[0012] The pitch between the above-mentioned ordinary teeth 4 is set at (p-α), where p is the pitch of the chain 3 so that engagement of the chain with the chainwheel will be smooth. Then, if we let the sum of the pitches between the ordinary tooth 4 immediately ahead of the two smooth-disengagement teeth 5 and the ordinary tooth 4 immediately behind be P, then the formula with a conventional chainwheel would be

\[P = (p-\alpha) \times 3, \]

and if we let the number of continuous smooth-disengagement teeth 5 be N, then the formula would be

\[P = (p-\alpha) \times (N+1) \]

[0013] With the chainwheel of the present invention, however, the sum is set such that it will satisfy the following formula:

\[P > (p-\alpha) \times (N+1) \]

and more specifically, such that it will satisfy the following formula:

\[P \approx (p-\alpha) \times (N+1) + N\alpha \]

[0014] Therefore, although in the past there was a gap of (N+1)α which had to be taken up when the chain switched from the drive face 4a of the ordinary tooth 4 immediately ahead of the smooth-disengagement teeth 5 to the ordinary tooth 4 immediately behind the smooth-disengagement teeth, there is only a gap of α with the present invention. Since this gap of α is the same value as the gap occurring with all the other ordinary teeth 4, there is no unpleasant noise, and pedaling is also smoother.

[0015] Figures 5 and 6 show an alternative embodiment of the present invention. This embodiment usually comprises two or three chainwheels of different diameter, but for the sake of simplicity, only chainwheel 1A with the largest diameter is shown, and the rest of the chainwheels are omitted.

[0016] Almost all of the numerous teeth on this largest-diameter chainwheel 1A are ordinary teeth 4A, but two specific teeth are bent 180° to the outside, and a chain guard 6 is fixed to these bent teeth. In other words, components that were originally intended to act as teeth instead act as stays for the chain guard 6, and as a result non-working tooth portions 5A that do not act as teeth are formed.

[0017] As shown in Figure 6, if we let the pitch of the chain 3 be p, the pitch between the ordinary teeth 4A be (p-α), and the sum of the pitches between the ordinary tooth 4A immediately ahead of the non-working tooth portion 5A and the ordinary tooth 4A immediately behind be P, then the formula with a conventional chainwheel would be

\[P \approx (p-\alpha) \times (N+1), \]
but with the chainwheel of the present invention, the formula is

\[P > (p-\alpha) \times (N+1) \]

and more specifically, the formula is

\[P = (p-\alpha) \times (N+1) + N\alpha \]

[0018] With this construction, as in the first embodiment, smooth pedaling can be achieved without the generation of unpleasant noise.

[0019] While the above is a description of some embodiments of the present invention, even further modifications may be employed. For example, in the first embodiment a rear multi-gear chainwheel was used as an example, but the same technology can be applied to a front multi-gear chainwheel as well. Also, downshifting, in which the chain 3 was changed from the large-diameter chainwheel 1 onto the small-diameter chainwheel 2, was used as an example, but it is also possible conversely to change the chain 3 from the small-diameter chainwheel 2 onto the large-diameter chainwheel 1. The smooth-disengagement teeth 5 can be provided on the smaller diameter chainwheel, if desired.

[0020] The example given in the second embodiment involved bending specific teeth to the outside and utilizing them as stays for the chain guard 6, thereby forming non-working tooth portions 5A that do not function as teeth. Alternatively, this technology can also be applied to a chainwheel in which some of the teeth are removed in order to enhance shiftability, and these removed portions are used as the non-working tooth portions 5A.

[0021] As noted above, the pitch \((p-\alpha)\) between the ordinary teeth 4 or 4A was based on the drive face of the ordinary teeth 4 or 4A, and the sum \(P\) of the pitches between the ordinary tooth 4 immediately ahead of the smooth-disengagement teeth 5 and the ordinary tooth 4 immediately behind, as well as the sum of the pitches between the ordinary tooth 4A immediately ahead of the non-working tooth portion 5A and the ordinary tooth 4A immediately behind, were based on the drive face of the ordinary teeth 4 or 4A. Of course, the determination of these pitches does not necessarily have to be based on the drive face, and can instead be based on the center of the tooth bottom or the center of the tooth crown, or can be based on the center of the circular surface formed by the area around the tooth bottom of the drive face of the ordinary teeth 4 or 4A. These are just some of the various application versions that are possible, and many more are possible. Consequently, the scope of the invention should not be limited to the specific examples shown. Instead, the scope of the invention should be determined by the following claims.

Claims

1. A bicycle chainwheel (1) having a plurality of teeth (4) spaced at \((p-\alpha)\) from each other, where \(p\) is the chain pitch and \(\alpha\) is the difference between the chain pitch and the chainwheel tooth pitch, characterised in that the sum \(P\) of the pitches between a first one of the plurality of teeth (4) and a second one of the plurality of teeth (4) is greater than \([(p-\alpha) \times (N+1)] \), where \((N+1)\) is an integer corresponding to the number of complete \((p-\alpha)\) spacings between the first one and the second one of said teeth.

2. A chainwheel (1) as claimed in Claim 1 characterised in that \(P\) is approximately equal to \([(p-\alpha) \times (N+1) + N\alpha] \).

3. A bicycle chainwheel (1A) having a plurality of first teeth (4A) spaced at \((p-\alpha)\) from each other, where \(p\) is the chain pitch and \(\alpha\) is the difference between the chain pitch and the chainwheel tooth pitch, and a second tooth (5A) shaped differently from at least one of the first teeth, characterised in that a sum \(P\) of the pitch between one of the first teeth (4A) disposed immediately ahead of the second tooth (5A) in a driving direction of the chainwheel (1A) and the second tooth (5A) and of the pitch between the second tooth (5A) and another one of the first teeth (4A) disposed immediately behind the second tooth (5A) is greater than \(2(p-\alpha)\).

4. A chainwheel as claimed in Claim 3 characterised in that \(P\) is approximately equal to \([2(p-\alpha) + \alpha]\).

5. A chainwheel as claimed in Claim 3 characterised in that there is a plurality \(N\) of second teeth (5A, 5) disposed adjacent to each other, where \(N\) is an integer greater than one, and characterised in that \(P\) is greater than \([(p-\alpha) \times (N+1)] \).

6. A chainwheel as claimed in Claim 5 characterised in that \(P\) is approximately equal to \([(p-\alpha) \times (N+1) + N\alpha] \).

7. A chainwheel as claimed in either of Claims 5 or 6 characterised in that \(N\) equals two.

8. A chainwheel as claimed in any one of Claims 3 to 7 characterised in that one or each of the one or more second teeth is bent to form a non-working tooth (5A).

9. A chainwheel as claimed in any one of Claims 3 to 8 characterised in that a tooth width \((d)\) of one or each of the one or more second teeth is less
than a tooth width (D) of the one or more first teeth (4).

10. A bicycle chainwheel assembly comprising a larger diameter chainwheel (1) disposed adjacent to a smaller diameter chainwheel (2), characterised in that at least one of the larger diameter chainwheel (1) or the smaller diameter chainwheel (2) is a chainwheel as claimed in any preceding claim.

Patentansprüche

1. Ein Fahrradkettenrad (1) mit einer Vielzahl von Zähnen (4), die in einem Abstand von (p-α) voneinander angebracht sind, wobei p die Kettenteilung und α der Unterschied zwischen der Kettenteilung und der Kettenradzahnteileitung ist, dadurch gekennzeichnet, daß

die Summe P der Teilungen zwischen einem ersten der Vielzahl von Zähnen (4) und einem zweiten der Vielzahl von Zähnen (4) größer als [(p-α) X (N+1)] ist, wobei (N+1) eine ganze Zahl ist, die der Anzahl von vollständigen (p-α) Abständen zwischen dem ersten und dem zweiten der Zähne entspricht.

2. Kettenrad (1) gemäß Anspruch 1, dadurch gekennzeichnet, daß P ungefähr [((p-α) X (N+1)) + Nα] entspricht.

3. Fahrradkettenrad (1A) mit einer Vielzahl von ersten Zähnen (4A), die in einem Abstand von (p-α) voneinander angebracht sind, wobei p die Kettenteilung und α der Unterschied zwischen der Kettenteilung und der Kettenradzahnzähneleitung ist, und einem zweiten Zahn (5A), der sich in der Form von zumindest einem der ersten Zähne unterscheidet, dadurch gekennzeichnet, daß eine Summe P der Teilung zwischen einem der unmittelbar vor dem zweiten Zahn (5A) in die Antriebsrichtung des Kettenrades (1A) angebrachten ersten Zähne (4A) und dem zweiten Zahn (5A) und der Teilung zwischen dem zweiten Zahn (5A) und einem unmittelbar hinter dem zweiten Zahn (5A) angebrachten anderen der ersten Zähne (4A) größer als 2(p-α) ist.

5. Kettenrad gemäß Anspruch 3, dadurch gekennzeichnet, daß es eine Vielzahl N von zweiten Zähnen (5A, 5) gibt, die nebeneinander angebracht sind, wobei N eine ganze Zahl, die größer als eins ist, und dadurch gekennzeichnet, daß P größer als [(p-α) X (N+1)] ist.

7. Kettenrad gemäß Anspruch 5 oder 6, dadurch gekennzeichnet, daß N zwei entspricht.

8. Kettenrad gemäß einer der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß einer oder jeder der zweiten Zähne, die aus einem oder mehreren Zähnen bestehen können, abgebogen ist, um einen nicht arbeitsfähigen Zahn (5A) zu bilden.

9. Kettenrad gemäß einer der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß eine Zahnbreite (d) von einem oder jedem der zweiten Zähne (5), die aus einem oder mehreren Zähnen bestehen können, schmäler als eine Zahnbreite (D) des einen ersten Zahn oder der mehreren ersten Zähne (4) ist.

10. Fahrradkettenradanordnung bestehend aus einem Kettenrad mit größerem Umfang (1), das neben einem Kettenrad mit kleinerem Umfang (2) angebracht ist, dadurch gekennzeichnet, daß zumindest eines des Kettenrades mit größerem Umfang (1) oder des Kettenrades mit kleinerem Umfang (2) ein Kettenrad gemäß einem der vorhergehenden Ansprüche ist.

Revindications

1. Un pignon à chaîne pour bicyclette (1) ayant une pluralité de dents (4), celles-ci étant espacées de (p-α) les unes des autres, où p est le pas de la chaîne et α est la différence entre le pas de la chaîne et le pas des dents du pignon, caractérisé en ce que

la somme P des pas entre une première pluralité de dents (4) et une seconde pluralité de dents (4)

est plus grande que [(p-α) X (N+1)], où (N+1) est un entier correspondant au nombre d'espaces complets (p-α) entre la première et la seconde des dites dents.

2. Un pignon (1) selon la revendication 1 caractérisé en ce que P est approximativement égal à [((p-α) X (N+1)) + Nα].
3. Un pignon à chaîne pour bicyclette (1A) ayant une pluralité de premières dents (4A), celles-ci étant espacées de \(p - \alpha \) les unes des autres, où \(p \) est le pas de la chaîne et \(\alpha \) est la différence entre le pas de la chaîne et le pas des dents du pignon, et une seconde dent (5A) formée différemment d'au moins une des premières dents, caractérisé en ce qu'une somme \(P \)

du pas entre une des premières dents (4A) disposée immédiatement devant la seconde dent (5A) dans un sens d entraînement du pignon (1A) et la seconde dent (5A) et du pas entre la seconde dent (5A) et une autre des premières dents (4A) disposée immédiatement derrière la seconde dent (5A) est supérieure à \(2(p - \alpha) \).

4. Un pignon selon la revendication 3 caractérisé en ce que \(P \) est approximativement égal à \(2(p - \alpha) + \alpha \).

5. Un pignon selon la revendication 3 caractérisé en ce qu'il y a une pluralité \(N \) de secondes dents (5A, 5), celles-ci étant disposées de façon adjacente les unes par rapport aux autres, où \(N \) est un entier plus grand que un, et caractérisé en ce que \(P \) est plus grand que \([(p - \alpha) \times (N+1)] \).

6. Un pignon selon la revendication 5 caractérisé en ce que \(P \) est approximativement égal à \(\left[(p - \alpha) \times (N+1) \right] + N\alpha \).

7. Un pignon selon l'une quelconque des revendications 5 ou 6 caractérisé en ce que \(N \) est égal à deux.

8. Un pignon selon l'une quelconque des revendications 3 à 7 caractérisé en ce qu'une ou chacune parmi une ou plusieurs secondes dents est repliée pour former une dent qui ne travaille pas (5A).

9. Un pignon selon l'une quelconque des revendications 3 à 8 caractérisé en ce qu'une largeur de dent \(d \) d'une ou de chacune parmi une ou plusieurs secondes dents (5) est plus petite qu'une largeur de dent \(D \) parmi une ou plusieurs premières dents (4).

10. Un assemblage de pignons à chaîne pour bicyclette comprenant un pignon de plus grand diamètre (1) disposé de façon adjacente par rapport à un pignon de plus petit diamètre (2), caractérisé en ce qu'au moins un pignon parmi le pignon de plus grand diamètre (1) ou le pignon de plus petit diamètre (2) est un pignon selon l'une quelconque des
FIG. 7 (PRIOR ART)

p - a

P = (p - a) \times 3

p - a